

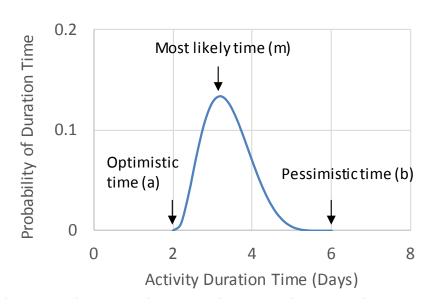
Impact of Product Modularity in Managing Uncertainty in Project Duration

Northern Illinois University Department of Technology

Shun Takai

PERT (Program Evaluation and Review Technique)

PERT


- PERT (Project Evaluation and Review Technique)
 - Method to estimate probability of a project completion before target date
- History
 - Originated in US Navy's Polaris Missile System program
 - Developed by an operations research team that was formed in 1958 with members from:
 - Navy's Special Project Office
 - Booz, Allen, and Hamilton (consulting firm)
 - Lockheed Missile Systems (prime contractor)

Activity Duration

- In PERT, uncertainty of each activity is modeled by beta distribution using three time estimates
 - a: Optimistic time (shortest)
 - m: Most likely time
 - b: Pessimistic time (longest)
- Mean t_e , variance V, and standard deviation σ of an activity duration are calculated from three time estimates

Expected time
$$: t_e = \frac{a + 4m + b}{6}$$

$$: V = \left(\frac{b - a}{6}\right)^2$$

Standard deviation: $\sigma = \frac{b-a}{c}$

Project Duration

- Mean T_e , variance V_p , and standard deviation σ_p of each path in the project are calculated from mean t_e and variance V of activities in the path
 - Activities are assumed to be independent

Expected time:
$$T_e = \sum t_e$$
 for each path Activities in the path Variance: $V_P = \sum V$ for each path

Standard deviation:
$$\sigma_P = \sqrt{V_P}$$

Probability of Project Completion

- Assumption
 - Time of each path is distributed according to a normal distribution
- Probability that a project finishes before T_s (target time) is calculated from z value and z table

$$Z = \frac{T_S - T_e}{\sqrt{V_P}}$$

Example: What is the probability that a project ends in 27 days?

$$-T_s = 27$$

$$- T_e = 29$$

$$- V_p = 6$$

$$Z = \frac{T_s - T_e}{\sqrt{V_P}} = \frac{27 - 29}{\sqrt{6}} = -0.82$$

- From Z-table, the probability that the project completes before 27 days is 0.21
- Using Excel:

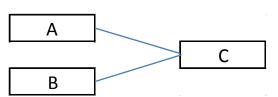

$$NORMSDIST(-0.82) = 0.206$$

	Table IV										
	Standard Normal Distribution										
	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
z = -0.82	-3.4 -3.3 -3.2 -3.1 -3.0	0.0003 0.0005 0.0007 0.0010 0.0013	0.0003 0.0005 0.0007 0.0009 0.0013	0.0003 0.0005 0.0006 0.0009 0.0013	0.0003 0.0004 0.0006 0.0009 0.0012	0.0003 0.0004 0.0006 0.0008 0.0012	0.0003 0.0004 0.0006 0.0008 0.0011	0.0003 0.0004 0.0006 0.0008 0.0011	0.0003 0.0004 0.0005 0.0008 0.0011	0.0003 0.0004 0.0005 0.0007 0.0010	0.0002 0.0003 0.0005 0.0007 0.0010
	-2.9 -2.8 -2.7 -2.6 -2.5	0.0019 0.0026 0.0035 0.0047 0.0062	0.0018 0.0025 0.0034 0.0045 0.0060	0.0018 0.0024 0.0033 0.0044 0.0059	0.0017 0.0023 0.0032 0.0043 0.0057	0.0016 0.0023 0.0031 0.0041 0.0055	0.0016 0.0022 0.0030 0.0040 0.0054	0.0015 0.0021 0.0029 0.0039 0.0052	0.0015 0.0021 0.0028 0.0038 0.0051	0.0014 0.0020 0.0027 0.0037 0.0049	0.0014 0.0019 0.0026 0.0036 0.0048
	-2.4 -2.3 -2.2 -2.1 -2.0	0.0082 0.0107 0.0139 0.0179 0.0228	0.0080 0.0104 0.0136 0.0174 0.0222	0.0078 0.0102 0.0132 0.0170 0.0217	0.0075 0.0099 0.0129 0.0166 0.0212	0.0073 0.0096 0.0125 0.0162 0.0207	0.0071 0.0094 0.0122 0.0158 0.0202	0.0069 0.0091 0.0119 0.0154 0.0197	0.0068 0.0089 0.0116 0.0150 0.0192	0.0066 0.0087 0.0113 0.0146 0.0188	0.0064 0.0084 0.0110 0.0143 0.0183
	-1.9 -1.8 -1.7 -1.6 -1.5	0.0287 0.0359 0.0446 0.0548 0.0668	0.0281 0.0351 0.0436 0.0537 0.0655	0.0274 0.0344 0.0427 0.0526 0.0643	0.0268 0.0336 0.0418 0.0516 0.0630	0.0262 0.0329 0.0409 0.0505 0.0618	0.0256 0.0322 0.0401 0.0495 0.0606	0.0250 0.0314 0.0392 0.0485 0.0594	0.0244 0.0307 0.0384 0.0475 0.0582	0.0239 0.0301 0.0375 0.0465 0.0571	0.0233 0.0294 0.0367 0.0455 0.0559
	-1.4 -1.3 -1.2 -1.1 -1.0	0.0808 0.0968 0.1151 0.1357 0.1587	0.0793 0.0951 0.1131 0.1335 0.1562	0.0778 0.0934 0.1112 0.1314 0.1539	0.0764 0.0918 0.1093 0.1292 0.1515	0.0749 0.0901 0.1075 0.1271 0.1492	0.0735 0.0885 0.1056 0.1251 0.1469	0.0721 0.0869 0.1038 0.1230 0.1446	0.0708 0.0853 0.1020 0.1210 0.1423	0.0694 0.0838 0.1003 0.1190 0.1401	0.0681 0.0823 0.0985 0.1170 0.1379
	-0.9 -0.8 -0.7 -0.6 -0.5	0.1841 0.2119 0.2420 0.2743 0.3085	0.1814 0.2090 0.2389 0.2709 0.3050	0.1788 0.2061 0.2358 0.2676 0.3015	0.1762 0.2033 0.2327 0.2643 0.2981	0.1736 0.2005 0.2296 0.2611 0.2946	0.1711 0.1977 0.2266 0.2578 0.2912	0.1685 0.1949 0.2236 0.2546 0.2877	0.1660 0.1922 0.2206 0.2514 0.2843	0.1635 0.1894 0.2177 0.2483 0.2810	0.1611 0.1867 0.2148 0.2451 0.2776
	-0.4 -0.3 -0.2 -0.1 -0.0	0.3446 0.3821 0.4207 0.4602 0.5000	0.3409 0.3783 0.4168 0.4562 0.4960	0.3372 0.3745 0.4129 0.4522 0.4920	0.3336 0.3707 0.4090 0.4483 0.4880	0.3300 0.3669 0.4052 0.4443 0.4840	0.3264 0.3632 0.4013 0.4404 0.4801	0.3228 0.3594 0.3974 0.4364 0.4761	0.3192 0.3557 0.3936 0.4325 0.4721	0.3156 0.3520 0.3897 0.4286 0.4681	0.3121 0.3483 0.3859 0.4247 0.4641

Critical Path

- Critical path
 - Path (sequence of activities) that gives the longest project duration
- Probability of project completion in PERT is based on the critical path
- This gives optimistic estimates of probability if there are near-critical paths
 - Near-critical path is the path with duration that is close to the duration of the critical path
- Example:
 - Suppose that a project consists of three activities A, B, and C
 - Means and standard deviations of the durations are:
 - Activity A: Mean 5, standard deviation 3 days
 - Activity B: Mean 6, standard deviation 1 days
 - Activity C: Mean 4, standard deviation 2 days
 - Critical path is B-C with 10 days
 - Probability that the path B-C completes within 11 days is $NORMSDIST\left(\frac{11-(6+4)}{\sqrt{1^2+2^2}}\right)=0.673$
 - Probability that the path A-C completes within 11 days is $NORMSDIST\left(\frac{11-(5+4)}{\sqrt{3^2+2^2}}\right)=0.710$
- Overall probability that the project completes within 11 days
 - If paths A-C and B-C are assumed to be independent (only for illustration purpose) \rightarrow 0.673 x 0.71 = 0.478
 - If simulation is used, more accurate estimate of this probability $\rightarrow 0.545$
 - These probabilities are smaller than 0.673 (the probability of project completion calculated based on the critical path)

Benefit of Product Modularization on Project Duration and Uncertainty

Product Modularization

 Modularization is product design approach that divides product architecture into modules that can be independently designed, developed, and tested

Example:

- A Common Module Family (CMF) engineering architecture in Renault/Nissan Alliance vehicles
- Vehicle is divided into engine bay, cockpit, front underbody, rear underbody and electrical/electronic architecture

Benefit of Product Modularization

Illustration

- Suppose that a product is divided into two subsystems A and B
 - Activity A: Develop subsystem A
 - Activity B: Develop subsystem B
 - Activity C: Integrate subsystems A and B
- Suppose that mean and standard deviation of the activity durations are:
 - Activity A: Mean 5, standard deviation 3 months
 - Activity B: Mean 6, standard deviation 1 months
 - Activity C: Mean 4, standard deviation 2 months
- Without modularization

- Project activities are processed in series
- Expected project duration:

- Expected project duration:
$$T_e = \sum t_e = 5 + 6 + 4 = 15$$
 months
- Variance of project duration: $V_P = \sum V = 3^2 + 1^2 + 2^2 = 14$

- Standard deviation of project duration: $\sigma_P = \sqrt{14} = 3.74$ months
- Probability that project complete within 15 months

$$NORMSDIST\left(\frac{15-15}{3.74}\right) = 0.5$$

Benefit of Product Modularization

With modularization

- A C
- Each module is individually designed, developed, and tested
- Then the modules are integrated
 - Subsystem A is module A
 - Subsystem B is module B
- Activities A and B are performed in parallel
- Activity C is performed when both activities A and B are completed
- Impact of product modularization
 - Critical path is B-C with 10 months
 - Using simulation
 - Expected project duration: 10.8 months
 - Standard deviation of project duration: 2.55 months
 - Overall probability that the project completes within 15 months: 0.94