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Abstract 

 
In the approximation methods of reliability analysis, non-normal random variables are 

transformed into standard normal random variables. This transformation tends to increase the 

nonlinearity of a limit-state function and hence results in less accurate reliability approximation. 

The First Order Saddlepoint Approximation for reliability analysis is proposed to improve the 

accuracy of reliability analysis. By approximating a limit-state function at the Most Likelihood 

Point in the original random space and employing the accurate saddlepoint approximation, the 

proposed method reduces the chance of increasing nonlinearity of the limit-state function.  This 

approach generates more accurate reliability approximation than the First Order Reliability 

Method without increasing the computational effort. The effectiveness of the proposed method is 

demonstrated with two examples and is compared with the First and Second Order Reliability 

Methods. 
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Nomenclature 

E = expectation 
F = cumulative distribution function 
f = probability density function 
g = limit-state function 
H = Hessian matrix 
k = main curvature of the limit-state function at u* 
K = cumulant generating function 
nt = number of tractable random variables 
n~t = number of intractable random variables 
P = probability 
pf = probability of failure 
R = reliability 
t = saddlepoint 
x = realization of random variable X 
X = vector of random variables 
X = random variable 
x* = Most Probable Point or Most Likelihood Point in x-space 
Y = system response 
u = realization of random variable U 
U = vector of standard normal random variables 
U = standard normal random variable 
u* = Most Probable Point or Most Likelihood Point in u-space 
β = reliability index 
Φ = cumulative distribution function of standard normal distribution 

1−Φ  = inverse cumulative distribution function of standard normal distribution 
φ = probability density function of standard normal distribution 
∇  = gradient 
 

I. Introduction 

Numerical simulations are routinely used to capture the physical phenomena in detail to predict 

engineering system behaviors and to reduce the number of physical testing. Since the 

performance and reliability of engineering systems are directly affected by the uncertainties of 

model parameters and model structures, it is necessary to consider uncertainties with the 

computational simulations in the design process in order to ensure high reliability. Typical 

applications include reliability-based design1-4 and integrated design for reliability and 
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robustness5-8. Due to higher reliability requirements of an engineering system, the accuracy of 

the calculation of reliability or the probability of failure becomes very critical. The traditional 

Monte Carlo Simulation9 is generally accurate if a sufficient number of simulations are used. 

However, for high reliability, an excessively large number of simulations are often needed. This 

high computational demand is often prohibitive for complex engineering simulations such as 

Finite Element Analysis and Computational Fluid Dynamics. To overcome the shortcoming of 

the expensive computational cost, approximation methods have been developed10-18 such as the 

First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM) to 

reduce the number of function evaluations (simulation runs). Compared to Monte Carlo 

Simulation, both FORM and SORM are much more efficient, especially when the reliability is 

extremely high. Generally, SORM is more accurate than FORM but needs more computations 

than FORM. In spite of its usefulness, FORM is often not accurate enough in many cases. This 

arouses a trade-off consideration between the efficiency and accuracy and leads to the need for a 

more accurate reliability analysis method without large computational demand. To meet this 

need, we propose a new approximation method for reliability analysis – First Order Saddlepoint 

Approximation (FOSPA). FOSPA is generally more accurate than FORM, and in some cases 

more accurate than SORM, while maintaining the same order of magnitude of computational 

effort as FORM.  

 In the next section, we will introduce the theoretical and mathematical background of this 

paper, including FORM, SORM, and the Saddlepoint Approximation. Thereafter, we will present 

the proposed FOSPA in detail and examples to demonstrate its effectiveness. The discussion and 

conclusion will be given in more depth at the end of this paper. 
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II. Methods for Probability Evaluation 

Essentially, the evaluation of reliability or the probability of failure by FORM and SORM 

is to estimate a probability, or the Cumulative Distribution Function (CDF) of a random variable 

which is a function (i.e., a limit-state function) of other random variables (basic variables) 

provided that the distributions of the later variables are given. Saddlepoint Approximation19 was 

originally developed for related purpose, i.e., to approximate CDF of statistics of a random 

variable (e.g., mean of random variable). In the following discussion, we will briefly review 

FORM, SORM, and the Saddlepoint Approximation.  Thereafter, we will discuss the need to 

extend Saddlepoint Approximation to reliability analysis.  

 

A. SORM and FORM 

The reliability is defined as 

 { }= ( ) 0R P g ≥X  (1) 

 The probability of failure is given by 

 { }=1 ( ) 0fp R P g− = <X  (2) 

 If the joint Probability Density Function (PDF) of X is fx , the probability of failure is 

evaluated with the integral 

 
( ) 0

= { ( ) 0} ( )f
g

p P g f d
<

< = ∫ x
x

X x x  (3) 

The limit-state function ( )g X  is usually a nonlinear function of X ; therefore, the 

integration boundary is nonlinear. Since the number of random variables in practical applications 

is usually high, multidimensional integration is involved. Due to these complexities, there is 

rarely a closed-form solution to Eq. (3); it is also often difficult to evaluate the probability with 
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numerical integration methods. When the computation cost of the limit-state function is 

relatively cheap, Monte Carlo integration is often applied to the problem.  However, when Monte 

Carlo simulation is not computationally affordable, approximation methods such as First Order 

Reliability Method (FORM)10 and Second Order Reliability Method (SORM)11 have become the 

methods of choice in practical applications. These approximation methods involve the following 

steps: 

1. Transformation of random variables form their original random space into a standard 

normal space 

2. Optimization process to find the Most Probable Point (MPP) – the design point with the 

highest contribution to the integral calculation in Eq. (3) 

3. Linear (in FORM) or quadratic approximation (in SORM) of the limit-state function in 

the standard normal space at the MPP 

4. Calculation of probability using normal distribution tail approximation 

In the first step, the original random variables { }1 2,  ,  ,  nX X X=X   (in x-space) are 

transformed into a set of random variables { }1 2,  ,  ,  nU U U=U   (in u-space) whose elements 

follow a standard normal distribution. The transformation is given by20: 

 { }1 ( )
ii x iu F x−= F , (4) 

The probability integration is then rewritten as 

 
( ) 0

P{ ( ) 0} ( )
g

g f d
<

< = ∫ u
u

X u u  (5)  

It is noted that after the transformation, the integration in Eq. (5) in u-space is identical to 

the integration in Eq. (3) in x-space without any loss of accuracy, and the contours of the 

integrand ( )fu u  become concentric hyper spheres.  The motivation for using the transformation 
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formulation in Eq. (5) instead of Eq. (3) to calculate probability of failure will become clear in 

the following discussion.  

 In order to make the integration calculation in Eq.(5) easier, in addition to making the 

integrand more regular (concentric hyper circle contours), the integral boundary ( )g u  is also 

approximated linearly with the first order Taylor expansion as 

 * * *( ) ( ) ( )( )g g≈ +∇ −U u u U u  (6) 

or with the second order Taylor expansion as 

 * * * * * *1( ) ( ) ( )( ) ( ) ( )( )
2

Tg g≈ +∇ − + − −U u u U u U u H u U u  (7) 

where *u  is the expansion point. Eq. (6) is used in FORM and Eq. (7) is used in SORM.  

 To reduce the loss of accuracy to a minimum degree, it is natural to expand the function 

( )g U  at a point that has the highest contribution to the probability integration. Therefore, the 

Most Probable Point (MPP) is considered as the expansion point. The MPP is the point on the 

surface of ( ) 0g =U  for which PDF of U is at its maximum. Maximizing the joint PDF of U  on 

the surface of ( ) 0g =U , noting that the ( )fu u  is a concentric hyper sphere, we have the 

following formulation for locating the MPP, 

 
min                      

subject to ( ) 0   g




=
u

u

u
 (8) 

where  ⋅  stands for the norm (length) of a vector.  

 Geometrically, the MPP is the shortest distance point from surface ( ) 0g =u  to the origin 

in u-space and the minimum distance *β = u  is called "reliability index". From Eqs. (5) and 

(6), the probability of failure is approximated by FORM as 
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 { ( ) 0} ( )fp P g β= < = Φ −X  (9) 

 From Eqs. (5) and (7), the Second Order Reliability Method (SORM)11 gives the 

following approximation, 

 ( )
1

1/ 2

1

{ ( ) 0} ( ) 1
n

f i
i

p P g β β κ
−

=

= < = Φ − +∏X  (10) 

 Generally, since the approximation of limit-state in SORM (see Eq. (7)) is better than that 

in FORM, the accuracy of SORM is higher than that of FORM (see Eq. (6)).  

 

B. Saddlepoint Approximation  

 Daniels19 introduced the Saddlepoint Approximation technique for approximating 

distribution of statistics (e.g., mean) by integration of its density estimate. Since Daniels’ work, 

especially after 1980, research and applications in this area have vastly increased21~30. Instead of 

directly approximating the probability integration in Eq. 2, Saddlepoint Approximation uses a 

Fourier inversion formula (in an integral form) to approximate a Probability Density Function 

(PDF). Let Y be a random variable distributed according to the density function f(y).  The 

Moment Generating Function of Y is defined as, 

 ( )( ) yM e f y dyξξ
+∞

−∞

= ∫       (11) 

and the Cumulant Generating Function (CGF) of Y is defined as,,  

 ( ){ }( ) logK Mξ ξ=  (12) 

 To restore f(y) from ( )K ξ , we can apply the inverse Fourier formula 
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( ) ( )

( ){ }

1
2

1 exp
2

i y

i

i

f y M i e d

K y d

xxx
p

xxx 
p

+∞
−

−∞

+ ∞

− ∞

=

= −

∫

∫
 (13)  

 Using exponential power series expansions to evaluate the integral in Eq. (13) and 

Hermite polynomials approximation, Daniels19 arrived to the so-called saddlepoint 

approximation to f(y) as,  

 ( ) ( ) ( ){ }
1
21 exp

2 "
f y K t ty

K tp
  = − 
  

    (14) 

where K"(t) is the second derivative of the CGF with respect to t, where t is the saddlepoint 

corresponding to the solution to the following equation 

 '( )K t y= . (15) 

 The central idea of deriving Eq. (14) is to choose the integral path passing through the 

saddlepoint of the integrand, where the integrand is approximated. Since the saddlepoint is an 

extreme point, the function of integrand falls away rapidly as we move from this point. Thus, the 

influence of neighboring points on the integral in Eq. (13) is diminished29. Interested reader 

should consult Goutis and Casella29 for a good explanation of saddlepoint approximation. For the 

comprehensive methodology, one can refer to Ref. 30.  

 Although the theory of Saddlepoint Approximation is quite complex, its use, especially 

the CDF approximation version, is fairly straightforward21. The approximation of CDF of Y by 

the saddlepoint approximation derived by Lugananni and Rice23 is, 

 1 1{ } ( ) ( )YF P Y y w w
w v

φ  = ≤ = F + − 
 

 (16) 

or alternatively by Barndorff-Nielsen24, 
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 1{ } logY
vF P Y y w

w w
  = ≤ = F +  

  
 (17) 

where 

 [ ]{ }1/ 2
( ) 2 ( )w sign t ty K t= − , (18) 

and 

 { }1/ 2"( )v t K t=  (19) 

in which )(tsign = +1, -1, or 0, depending on where t is positive, negative, or zero.  

 Daniels19 discusses the existence and properties of the real roots to Eq. (15), upon which 

the saddlepoint approximation depends, and concluded that the saddlepoint approximation can be 

used whenever t lies with the restricted range assumed by '( )K t  where Eq. (15) has a unique real 

root. 

 From Eqs. (16) and (17) we see that the CDF of Y is approximated using standard normal 

distribution as shown by the use of CDF and PDF of the standard normal distribution in Eqs. (16) 

and (17). Wood, et al.24 derived a general saddlepoint formula where the normal-base 

distribution is replaced by a general-base distribution. 

As indicated by many previous researches (for example, Ref. 19), the saddlepoint 

approximation yields extremely good accuracy for CDF, especially for the tail area of a 

distribution, while it requires only the process of finding one saddlepoint without any integration. 

In terms of accuracy and efficiency, there is a great potential to extend this technique to 

reliability analysis and eventually to probabilistic engineering design. 

Since the Saddlepoint Approximation method involves the CGF and its derivatives, the 

major requirement for applications of the technique is the tractability (i.e., the existence of a 

CGF) of the distribution of random variable Y. For an engineering application, Y is a system 
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performance (i.e., limit-state function) which is dependent on basic random variables X, i.e, 

( )Y g= X . The key to apply the saddlepoint approximation to a general performance Y is to find 

the CGF of Y provided that distributions of X are given. In this article, a general First Order 

Saddlepoint Approximation (FOSPA) method is developed with the capability of evaluating the 

CDF of a limit-state function accurately for any continuous distributions of basic variables.  

 

III. The First Order Saddlepoint Approximation Reliability Method 

 The calculation error of probability of failure of FORM comes from the linear 

approximation (Eq. (6)) to the limit-state state function in u-space.  The error of SORM comes 

from two sources, one is the quadratic approximation (Eq. (7)) to the limit-state function in u-

space and the other is the approximation of probability integration for the approximated limit-

state function in the quadratic form. For detailed discussion on the error of FORM and SORM, 

please refer to Ref. 31. Even though FORM gives an accurate solution to the probability 

integration for the approximated limit-state function (a linear function), it is generally less 

accurate than SORM because of the linear approximation. The fact that SORM is generally more 

accurate than FORM implies that the accuracy of the limit-state function approximation is very 

important to ensure highly accurate reliability estimation.  

Though the non-normal to normal transformation makes it possible and easy to calculate 

the probability of failure analytically (without simulations), the transformation generally 

increases the nonlinearity of a limit-state function because the transformation in Eq. (4) is 

nonlinear. For example, if a limit-state is a linear function of non-normal random variables, after 

the transformation using Eq. (4), it will become a nonlinear function of standard normal random 

variables. If the approximation to the limit-state function at the MPP in u-space cannot capture 
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the nonlinearity well, the accuracy of the probability approximation will become unacceptable. 

To reduce the accuracy loss to the minimum extent, we need to avoid or reduce the chance of 

increasing the nonlinearity due to the transformation of random variables. In other word, we may 

consider approximating a limit-state function in the original x-space or avoid unnecessary 

transformation as much as possible.  

To address the aforementioned concerns, we propose the First Order Saddlepoint 

Approximation Method (FOSPA) to improve the accuracy of reliability analysis while 

maintaining the same efficiency as FORM. In FOSPA, the limit-state function is linearized in the 

original random space at the so-called Most Likelihood Point (MLP) if all the random variables 

are tractable, then the Saddlepoint Approximation can be directly applied. If some of the random 

variables do not have CGF, they are transformed into other random variables that have CGF 

before the linearization. In the following, we will discuss the FOSPA in three cases: 1) all the 

random variables are tractable, 2) some of the random variables are tractable, and 3) none of the 

random variables is tractable. Strictly speaking, by tractable we mean that a random variable has 

a closed-form of CGF; otherwise, we call the random variable intractable. At the end of this 

section, we will present a general procedure and computational aspect of FOSPA 

implementation. 

 

A. Case 1 – All the Random Variables Are Tractable 

 The limit-state function ( )g X  is first linearized at some point *x , namely, the interval 

boundary of Eq. (3) is approximated by a hyper plane at *x . Similar to the concept of the MPP, 

the expansion point *x  is chosen such that the joint PDF of X is at its maximum value on the 

boundary of the limit-state ( ) 0g =X ; this point is called the Most Likelihood Point (MLP). In 
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other words, the MLP is the point on the boundary ( ) 0g =X , which has the highest contribution 

to the probability of failure 
( ) 0

= ( )f
g

p f d
<
∫ x
x

x x .  

 The following model is used to identify the MLP *x , 

 1

max   ( )                      

subject to ( ) 0                

n

i i
i

f x

g
=




 =

∏x

x
 (20) 

 The linear form of ( )g X  at *x  is  

 * *( ) ( )( )g ≈ ∇ −X x X x  (21) 

 Then the CGF of ( )g X  is given by 

 
1

( ) ( )
n

i
i

K t K t
=

= ∑  (22) 

where ( )iK t  is the CGF of * *( )( )i i i∇ −x X x . 

 The first and second derivatives of ( )K t  are 

 '

1
'( ) ( )

n

i
i

K t K t
=

=∑  (23) 

and 

 ''

1
"( ) ( )

n

i
i

K t K t
=

=∑  (24) 

respectively. 

 According to Eq. (25), the saddlepoint t is identified by the solution to the following 

equation  

 '

1
'( ) ( ) 0

n

i
i

K t y K t y
=

− = − =∑  (25) 
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 Once the saddlepoint t is identified, the probability { ( ) }P g y≤X  can be calculated from 

Eq. (16) with the following equations  

 [ ]{ }
1/ 2

1/ 2

1
( ) 2 ( ) ( ) 2 ( )

n

i
i

w sign t ty K t sign t ty K t
=

  = − = −    
∑ , (26) 

and 

 { }
1/ 2

1/ 2 ''

1
"( ) ( )

n

i
i

v t K t t K t
=

 = =  
 
∑  (27) 

 The CGFs of some common distributions are listed in Table 1. For more details, please 

refer to Ref. 32. 

Table 1 CGF of Some Distributions 

Distribution PDF CGF 

Normal  
2

2
( )

21( )
2

x

f x e
µ
σ

πσ

−
−

=  2 21( )
2

K t t tµ σ= +  

Exponential  ( ) xf x e ββ −=  ( ) ln 1 tK t
β

 
= − − 

 
 

Uniform  
1( )f x

b a
=

−
 ( ) ( ) ( )( ) ln ln lnbt atK t e e b a t= − − − −  

Type I Extreme 
Value (Gumbel) 

1( ) exp
x x

f x e e
µ µ

σ σ

σ

− −
− − 

= − 
 

 ( ) log (1 )K t t tµ σ= + Γ −  

2χ   
1

/ 2 1 2
/ 2

1( )
( / 2)2

xn
nf x x e

n
−−=

Γ
 ( )1( ) ln 1 2

2
K t n t= − −  

Gamma  1( )
( )

xf x x e
α

α ββ
α

− −=
Γ

 ( ) ( ){ }( ) ln nK t tα β β= − −  

 
 

B. Case 2 – Some of the Random Variables Are Tractable 

 Some random variables may not have a closed-form (i.e., intractable) CGF, for example, 

Weibull distribution and lognormal distribution. There are two ways to approach intractable 

CGF: 1) Approximate the CGF using polynomial expansions33 or 2) transform the random 
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variable into another random variable with tractable CGF.  The later approach is adopted in this 

paper for the purpose of simplicity. One possible transformation is similar to the one used in 

FORM and SORM as shown in Eq. (4) which is the transformation from a random variable with 

intractable CGF to a standard normal variable.  In general, any distribution with tractable CGF 

can be used for the transformation. 

 Let the set of variables which have tractable CGF be Xt = { t
iX ; i = 1, 2, …, nt} and the 

set of variables without tractable CGF be X~t = { ~t
jX ; j = 1, 2, …, n~t}.  After the non-normal – 

normal transformation, X~t is transformed into a set of standard normal variables U = { jU ; j = 1, 

2, …, n~t}. Then, the formulation for searching the MLP { }* *,  tx u  becomes 

 

~

, 1 1

max   ( ) ( )                      

subject to ( ,  ) 0                          

t t

t i

n n
t

i j
i j

t

f x u

g

f
= =




 =

∏ ∏
x u

x u
 (28) 

 After linearization, the limit-state function at the MLP { }* *,  tx u  is given by 

 ( ) ( ) ( )
~

* * * *

* *

=1 =1, , 

( ) ,  =
t t

t t

n n
t t t

i i j jt
i ji j

g gg q X x U u
x u
∂ ∂

≈ − + −
∂ ∂∑ ∑

x u x u

X X U  (29) 

 Because the limit-state in Eq. (29) is a linear combination of tractable random variables, 

the saddlepoint approximation method in Eqs. (22) - (27) can be applied in conjunction with Eq. 

(29) to evaluate the probability of failure. 

 

C. Case 3 – None of the Random Variable Is Tractable 

 When all random variables are intractable, they must be transformed into selected 

tractable random variables such as standard normal variables. If all the random variables are 
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transformed into standard normal variables, after the transformation, the model of searching the 

MLP becomes 

 1

max  ( )                      

subject to ( ) 0                

n

i
i

u

g

φ
=




 =

∏u

u
 (30) 

which is equivalent to the model in Eq. (8) for the MPP search. Therefore, the solution *u to the 

model in Eq. (30) is exactly the MPP defined in the model in (8). At the MLP, the linearization 

of the limit-state function is given by 

 
*

*

1

( ) ( )
n

i i
i i

gg U u
u=

∂
= −

∂∑
u

X  (31) 

 Appendix 1 shows that the calculated probability of failure from Saddlepoint 

Approximation based on Eq. (31) is the same result as that of FORM.  In other words, FORM is 

identical to FOSPA when all random variables are transformed into standard normal variables. 

Therefore, FORM is a special case of FOSPA. 

 

D. The General Procedure and Computation Implementation of FOSPA 

 The procedure of FOSPA is summarized as follows. 

a. Determine whether a random variable has tractable or intractable CGF and form two 

sets of random variables, one set with tractable CGF, Xt, and the other set without 

tractable CGF, X~t. Transform the later set into standard normal variables U. 

b. Solve the model in Eq. (28) to identify the MLP { }* *,  tx u . 

c. Linearize the limit-state function at the MLP as shown in Eq. (29). 

d. Formulate the saddlepoint equation and solve it to obtain the saddlepoint t. 

e. Use Eqs. (15)-(19) to find the probability of failure. 
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It is noted that if all the random variables are tractable, X~t will be an empty set and the 

problem belongs to Case 1 and if none of the random variables is tractable, Xt  will be an empty 

set and the problem belongs to Case 3 where the same result as FORM will be obtained. 

 To make the numerical computation process of FOSPA more stable, several practical 

measures may be considered and some of them are briefly discussed here. The variables in Eqs. 

(20) and (28) for MLP search are normalized by the means and standard deviations of the 

random variables. This normalization makes the design variables in the same scales. Note that 

this normalization is a linear transformation and will not affect the nonlinearity of the limit-state 

function but will help the convergence of the iterative process of finding the MLP. To avoid the 

objective functions of MLP search in Eqs (20) and (28) becoming too small, one may choose to 

use the natural logarithm of the objective functions. To avoid singularities in Eqs. (18) and (19), 

one may use the reverse sign of the limit-sate function when a square root of a negative value 

occurs. 

Considering that there is a strong need to minimize the number of limit-state evaluations 

so that the technique is practical for computationally expensive engineering simulation models 

(e.g., Finite Element Analysis and Computational Fluid Dynamics), we compare the efficiency of 

the methods by counting the number of function evaluations of limit-state function. Since 

FOSPA uses similar optimization formulation to find the MLP as FORM for the MPP, and uses 

less nonlinear constraint functions, the computational effort (measured by the number of function 

evaluations) of FOSPA is less than or at most the same as that of FORM. 
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IV. Numerical Examples 

 In this section, two examples are used to demonstrate the effectiveness of the proposed 

method. The first example is associated with a linear limit-state function and the other with a 

nonlinear limit-state function. We will compare the accuracy and efficiency among FOSPA, 

FORM, and SORM. If no theoretical solution exists, we will use the result of Monte Carlo 

simulation with a relatively large sample size as a reference. In the following examples, the first 

order and second order derivatives are evaluated numerically with finite difference method.  

Because of this finite difference calculation, SORM, which requires second order derivative 

information, has an inherent inefficiency in terms of the number of limit-state evaluations. 

 

A. Example 1: Linear Limit-State Function 

 A linear limit-state function is given by a sum of independent random variables11 as 

follows 

 
1

( ) ( )
n

i
i

g n a n X
=

= + −∑X  (32) 

where a is a constant and iX  are n independent random variables.  

Case 1: all random variables are tractable 

Let each of the random variables follows a standard exponential distribution with CDF 

 ( ) 1 exp( )i iF x x= − −  (33) 

For this specific example, the theoretical solution can be found. The probability of failure 

{ ( ) 0}fp P g= <X  is listed in Table 2 and depicted in Fig. 1 for n = 2. 
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Table 2 Probability { ( ) 0}fp P g= <X for n = 2 
a FORM SORM FOSPA Exact 

0.0001 0.3166 0.3612 0.4068 0.4060 
0.5 0.1795 0.2301 0.2482 0.2474 
1.0 0.0990 0.1393 0.1459 0.1452 
1.5 0.0536 0.0816 0.0835 0.0831 
2.0 0.0286 0.0466 0.0469 0.0466 
2.5 0.0152 0.0262 0.0260 0.0258 
3.0 0.0079 0.0145 0.0142 0.0141 
3.5 0.0041 0.0079 0.0077 0.0076 
4.0 0.0021 0.0043 0.0041 0.0041 
4.5 0.0011 0.0023 0.0022 0.0022 
5.0 .0006 0.0012 0.0012 0.0012 
5.5 0.0003 0.0007 0.0006 0.0006 
6.0 0.0001 0.0003 0.0003 0.0003 

 
 

Insert Fig. 1 here 
 

Fig. 1 Probability of failure when n=2 

 Fig. 1 shows the probability of failure for different values of a. The probability of 

failure changes in the range roughly between 0.4 and 0 as a varies. The curves of FOSPA and 

the exact solution almost overlap each other over the whole range of the probability. This 

indicates that FOSPA is evenly good over the range of probability of failure. SORM is more 

accurate than FORM, but when the probability of failure is high (for example 0.4), SORM is 

not accurate as shown in Fig. 1. The accuracy of solution from SORM increases as the 

probability of failure becomes lower. This phenomenon conforms to the fact that SORM is 

only accurate at the tail of a distribution due to its asymptotic approximation to the probability 

integration11.  In this example with linear limit-state function and tractable CGF random 

variables, the results show that FOSPA is the most accurate method.   

Fig. 2 shows that when a = 3.5, the original linear limit-state function becomes highly 

nonlinear after the transformation to standard normal distributions required by both FORM 

and SORM. The linear approximation of FORM is far away from the transformed nonlinear 
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limit-state function in u-space and even the quadratic approximation in SORM cannot very 

well capture the nonlinearity of the transformed limit-state function. Therefore, both FORM 

and SORM are not as accurate as FOSPA in this example. Since FOSPA uses the original 

linear limit-state function without the increase of nonlinearity and Saddlepoint Approximation 

results a high accuracy approximation.  That is, the overall accuracy of FOSPA is superior to 

FORM and SORM. 

Insert Fig. 2 here 
 

Fig. 2  Limit-state function in x and u spaces 

 The result for higher dimension with n=10 is listed in Table 3 and depicted in Fig. 3. 

The result still shows that the FOSPA is much more accurate than FORM and SORM. The 

related detailed equations used in this example are given in Appendix 2. 

Table 3 Probability { ( ) 0}fp P g= <X for n=10 
a FORM SORM FOSPA Exact 

0.0001 0.1429 0.4683 0.4580 0.4579 
0.5000 0.0628 0.3392 0.2810 0.2809 
1.0000 0.0253 0.2131 0.1554 0.1554 
1.5000 0.0094 0.1195 0.0786 0.0786 
2.0000 0.0033 0.0610 0.0369 0.0369 
2.5000 0.0011 0.0288 0.0162 0.0162 
3.0000 0.0004 0.0127 0.0067 0.0067 
3.5000 0.0001 0.0053 0.0027 0.0027 
4.0000 0.0000 0.0021 0.0010 0.0010 
4.5000 0.0000 0.0008 0.0004 0.0004 
5.0000 2.85e-6 2.96e-4 1.29e-4 1.29e-4 
5.5000 8.03e-7 1.05e-4 4.43e-5 4.44e-5 
6.0000 2.22e-7 3.63e-5 1.47e-5 1.47e-5 

 
 

Insert Fig. 3 here 
 

Fig. 3 Probability of failure when n=10 
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Case 2: Some random variables are not tractable 

In the following case, we choose X3 to follow a Weibull distribution which does not have 

a closed-form CGF. The distribution information is shown in Table 4. 

Table 4 Information of random variables 
Variable Parameter 1 Parameter 2 Distribution 

X1 1.2 – Exponential a 
X2 1.2 – Exponential 
X3 2 1.5 Weibull b 

a For an exponential distribution, Parameter 1 is the mean. 
b For a Weibull distribution, Parameters 1 and 2 are parameters a and b, respectively, in the PDF 
of a Weibull distribution 1( )

bb axf x ab x e− −= . 
 

 Since X3 is not tractable, it is transformed into a standard normal variable before the 

Saddlepoint Approximation is applied. Monte Carlo Simulation (MCS) is employed and its result 

is used as a reference for comparison of the accuracy of other methods. The number of 

simulations in the Monte Carlo is 106.  The calculated probability of failure is shown in Table 5. 

It is noted that FOSPA is the most accurate method and SORM is more accurate than FORM. 

With FORM and SORM, the transformation of { }1 2 3,  ,  X X X  into a standard normal variable 

{ }1 2 3,  ,  U U U  makes the original linear limit-state function become nonlinear in terms of 

{ }1 2 3,  ,  U U U .  On the other hand, FOSPA only involves the transformation of X3 into a standard 

normal variable U3.  That is, the original limit-state is only nonlinear in terms of U3  and the 

remaining terms of X1 and X2 are kept linear. As a result of the minimum increase of nonlinearity 

of the limit state, FOSPA is more accurate than FORM and SORM. The numbers of function 

evaluations used by FOSPA, FORM, and SORM (including finite difference calculation and 

iterations to find MLP/MPP) are 25, 37, and 57, respectively. In this case, the minimum increase 
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of nonlinearity also helps FOSPA to be the most efficient method for finding the MLP while 

SORM is the least efficient method for this specific case.   

Table 5 Probability of failure for case 2 
 a FORM SORM FOSPA MCS 

{ ( ) 0}P g <X  4.3 1.224×10-4 3.025×10-4 2.770×10-4    2.289×10-4    
Na  25 37 25 106 

a Number of function evaluations 

Case 3: All the random variables are not tractable 

 In the following case, all random variables follow Weibull distributions as shown in 

Table 6. Since a Weibull distribution does not have tractable CGF, the transformation from 

{ }1 2 3,  ,  X X X to a standard normal variable { }1 2 3,  ,  U U U  is required.  

 Table 6 Information of random variables 
Variable Parameter 1 Parameter 2 Distribution 

X1 2 1.5 Weibull 
X2 2 1.5 Weibull 
X3 2 1.5 Weibull 

 
 

As expected, FOSPA has the same result as FORM as shown in Table 7. The MLP from 

FOSPA and the MPP from the FORM are identical, i.e., 

{ } { } { }1 2 3 1 2 3,  ,  ,  ,  1.2887, 1.2887, 1.2887 MLP MLP MLP MPP MPP MPPx x x x x x= = . In this case SORM is the 

most accurate method because the second order approximation in SORM provides a better 

approximation to the limit-state function in u-space.  

Table 7 Probability { ( ) 0}P g <X  for case 3 
 a FORM SORM FOSPA MCS 

{ ( ) 0}P g <X  0.5 0.0026     0.0038 0.0026 0.0040     
N  21 27 21 106 
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B. Example 2: Nonlinear Limit-State Function  

 Consider the limit-state function of a shaft in a speed reducer defined as  

  
2 2

2
3

32( )
16

F Lg S T
Dπ

= − +X  (34) 

where S is the material strength, D is the diameter of the shaft, F is the external force, T is the 

external torque, and L is the length of the shaft. The limit-state function represents the difference 

between the strength and the maximum stress. 

 The variable information is given in Table 8. 

Table 8 Distributions of Random Variable 
Variables Parameter 1 Parameter 2 Distribution 

Diameter D 39 mm 0.1 mm Normal a 
Span L 400 mm 0.1 mm Normal 
External force F 1500 N 350 N Gumbel b 
Torque T 250 Nm 35 Nm Normal 
Strength S 70 MPa 80 MPa Uniform c 
a For normal distribution, Parameters 1 and 2 are mean and standard deviation respectively. 
b For Gumbel distribution, Parameters 1 and 2 are mean and standard deviation respectively. 
c For a uniform distribution, Parameters 1 and 2 are lower and upper bounds respectively 

 

This problem belongs to Case 1 where all the random variables are tractable. The results 

of probability of failure as compared with MCS (106 simulations) are shown in Table 9. 

Referenced to MCS, FOSPA generate the most accurate solution with the least computational 

demand. 

Table 9 Probability { ( ) 0}P g <X  

 FORM SORM FOSPA MCS 
{ ( ) 0}P g <X  7.007×10-7 4.3581×10-7 6.1754×10-4 7.850×10-4 

N 1472 1514 102 106 
 

 The above result indicates that FOSPA provides accurate CDF estimate at the right tail of 

the distribution of the limit-state function. To illustrate the accuracy of FOSPA over the whole 
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distribution range, the CDF of the limit-state function at the left tail and near the median are also 

calculated and given in Tables 10 and 11, respectively. From Tables 9 and 10, it is noted that 

FOSPA is also superior to FORM and SORM at both tails in terms of accuracy and efficiency.  

Table 11 shows that FOSPA also produces reasonably accurate CDF estimate around the median 

of the distribution while both FORM and SORM have very large errors. This example 

demonstrates that FOSPA is evenly accurate over the whole distribution and therefore beneficial 

for generating a complete distribution of a performance (limit-state function). 

Table 10 Probability at the tails of distribution 

 FORM SORM FOSPA MCS 
7{ ( ) 4.5 10 }P g < ×X  0.96798 0.97406 0.99927 0.99938 

N 212 254 55    106 
 

Table 11 Probability near the median 

 FORM SORM FOSPA MCS 
7{ ( ) 2.48 10 }P g < ×X  0.1538 0.1406 0.4825 0.5038 

N 93 135 43 106 
 

 

V. Discussion 

 In this section, we summarize the proposed FOSPA method with detailed discussion on 

its accuracy and efficiency in comparison to FORM and SORM. Based on the discussion, 

recommendations for selecting the reliability analysis methods under various circumstances will 

be provided in the next section. 

Saddlepoint approximation is an accurate method for estimating CDF of a random 

variable if its CGF is known. The central idea of the proposed FOSPA is to approximate the CGF 

of a general limit-state function through linearization of limit-sate function. The linearization is 
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conducted at the Most Likelihood Point (MLP)—the point where the joint PDF of the random 

variables is at its maximum value for a given limit-state value. If a random variable does not 

have a closed form CGF (intractable), it is transformed to another random variable with a 

tractable CGF before the linearization. In this paper, an intractable random variable is 

transformed to a standard normal variable. It is worthwhile noting that other types of random 

variables with tractable CGF can also be used for the transformation. Once the limit-state 

function is in the form of a linear combination of tractable variables, the CGF of the limit-state 

function is easily obtained. The saddlepoint is the solution to the equation of the first derivative 

of the CGF equal to the limit-state value.  Thereafter, the saddlepoint approximation solution is 

used to approximate the probability of failure or the reliability.  

 In contrast to FORM that conducts linearization of the transformed standard normal space 

(which imposes nonlinear transformations), FOSPA linearizes the limit-state function in the 

original space of tractable random variables.  As a consequence to minimizing random variable 

transformation, FOSPA reduces the chance of increasing the nonlinearity of the limit-state 

function. Therefore, the linearization of the limit-state function in FOSPA gives a more accurate 

approximation than that of FORM. Generally, FOSPA is more accurate than FORM except in the 

following cases where they are equivalent 1) all random variables have intractable CGF and they 

are transformed into standard normal variables; 2) all tractable random variables are normally 

distributed and all the intractable random variables are transformed into standard normal 

variables; and 3) all random variables are normally distributed. In the aforementioned three 

cases, the MLP from FOSPA is identical to the MPP from FORM and, therefore, both methods 

have the same accuracy. In this sense, FORM is a special case of FOSPA.  
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 It is generally recognized that SORM is more accurate than FORM although there are 

few counterexamples; however, there is no such direct conclusion about the comparison between 

FOSPA and SORM in terms of their accuracy. One method is more accurate than the other 

depending on the problem under consideration. Generally speaking, when the limit-state function 

is less nonlinear in terms of original random variables or the non-normal to normal 

transformation increases nonlinearity of the limit-state function significantly, FOSPA may have a 

higher accuracy than SORM.  

 The search of the MLP needs an iterative process where the limit-state function is 

evaluated repeatedly. Since searching an MLP is a similar task as searching an MPP, it is 

expected that FOSPA has at most the same order of magnitude of computational demand as that 

of FORM. In many cases, searching the MLP is more efficient than searching the MPP since the 

constraint function in the optimization model of the MLP is more linear than that of the MPP.  It 

should be noted that the search of the saddlepoint does not consume any limit-state function 

evaluations. Because SORM needs the second order derivative of a limit-sate function, it is 

generally much less efficient when the derivative is evaluated numerically. 

 Considering the same computational effort and higher accuracy of FOSPA compared to 

FORM, one may choose FOSPA for a reliability analysis. When higher accuracy is needed, one 

should also consider the fact that depending on the linearity of the limit-state and random 

distribution, SORM is not always better than FOSPA in terms of accuracy. The computational 

efficiency, accuracy, and implementation simplicity of the proposed method make it attractive 

for real world reliability analysis.  One of the authors has extensively applied the proposed 

method to various computationally intensive simulation models used in automotive engine 

design (for example, Hoffman et al.34). As indicated in the Example 2, FOSPA can also be used 
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to generate accurate CDF associated with a range of limit-state values.  This is accomplished by 

enumerating the limit-state values, perform linearization at all MLP's associated with the limit 

state values, and then calculate the probability using Eq. (16) or (17). Using this approach, 

FOSPA can accurately calculate the CDF at both tails as well as around the median (or mean) of 

a distribution.   

 To further improve the accuracy, the Second Order Saddlepoint Approximation can be 

considered and the key to the new development is how to identify the CGF of second order 

approximation of a limit-state function.  

  

VI. Conclusion 

In summary, the proposed First Order Saddlepoint Approximation method for reliability 

analysis is an attractive alternative to the existing reliability analysis methods FORM and 

SORM. One may consider the following facts when selecting the reliability methods: FORM is a 

special case of FOSPA and the later is more accurate than the former with less or at most the 

same computational effort. If the limit-state function in the original space is less nonlinear than 

that of standard normal transformed space, FOSPA may be more accurate than SORM. SORM is 

less efficient (i.e., it requires more function evaluations) than FOSPA and FORM. 

 

Appendix 1: FORM is a Special Case of FOSPA 

If none of the random variables is tractable, FORM produces the same result as FOSPA 

when standard normal transformation is employed. After a limit-state function ( )g X  is 

approximated by a linear function in Eq. (31), the CGF of ( )q U  is given by 
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and its derivative is 
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 The saddlepoint is obtained from  ' ( ) 0K t =  
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 The CGF at the saddlepoint becomes 
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and its second order derivative with respect to the saddlepoint is given by 
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 Substituting (A4) and (A5) into Eqs. (18) and (19) yields 
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and 
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respectively. 

 Combining Eqs. (A6), (A7), and Eq. (16) results in 

 { }0 ( )P g β< = Φ −  (A8) 

which is the same result of FORM. 

 

Appendix 2: Case 1 of Example 1 

1) FOSPA 

 The CGF of the limit-state function of Example 1 is given by 

 ( ) ln(1 ) ( )K t n t n a n t= − − − +  (A9) 

and its derivatives are 

 ' ( ) ( )
1

nK t n a n
t

= − +
−

 (A10) 

and 

 
2

'' ( )( ) n a nK t
n

+
=  (A11) 

respectively. 

Solving ' ( ) 0K t =  produces the saddlepoint 

 0a nt
n a n

= >
+

 (A12) 

Combining Eqs. (A9) through (A12), we obtain 
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 { }1/ 2'' ( )v t K t a= =  (A14) 

and the probability of failure 
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where 
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2) FORM 

The MPP { }* * ,  1,  2, iu i n= =u   is given by   

 * 1 expi
n a nu

n
−
  +

= −Φ −     
 (A17) 

and the reliability index is calculated by 

 *
inuβ =  (A18) 

Then, the probability of failure is 

 ( ) ( )*
f ip nuβ= Φ − = Φ −  (A19) 

3) SORM 

 The probability of failure by SORM is given by  
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