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Abstract 

Uncertainty analysis, which assesses the impact of the uncertainty of input variables on 

responses, is an indispensable component in engineering design under uncertainty, such as 

reliability-based design and robust design. However, uncertainty analysis is an unaffordable 

computational burden in many engineering problems. In this paper, a new uncertainty analysis 

method is proposed with the purpose of accurately and efficiently estimating the cumulative 

distribution function (CDF), probability density function (PDF), and statistical moments of a 

response given the distributions of input variables. The bivariate dimension reduction method 

and numerical integration are used to calculate the moments of the response;   then Saddlepoint 

Approximations are employed to estimate the CDF and PDF of the response. The proposed 

method requires neither the derivatives of the response nor the search of the Most Probable Point 

(MPP), which is needed in the commonly used First and Second Order Reliability Methods 

(FORM and SORM) and the recently developed First Order Saddlepoint Approximation 

(FOSPA). The efficiency and accuracy of the proposed method is illustrated with three example 

problems. With the same computational cost, this method is more accurate for reliability 

assessment and much more efficient for estimating the full range of the distribution of a response 

than FORM and SORM. This method provides results as accurate as Monte Carlo simulation, 

with significantly reduced computational effort. 
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1.  Introduction 

  The quantitative assessment of the impact of the uncertainty of input variables on a 

response is now widely recognized as an important and indispensable component in engineering 

design under uncertainty, such as reliability based design [1-3], robust design [4-6], design for 

Six Sigma [7], and decision making under risk and uncertainty [8]. Consider a response Y, which 

is modeled as  

 ( ),Y g= X  (1) 

where the function, g, represents the model under study and is termed a performance function or 

response function; and X is a vector of the random input variables, i.e., [ ]1 2, , , nX X X= ⋅⋅⋅X . In 

this paper, 1 2, , , nX X X⋅ ⋅ ⋅  are assumed mutually independent. The main task of uncertainty 

analysis is to evaluate the cumulative distribution function (CDF), probability density function 

(PDF), and  the statistical moments (mean, variance, etc.) of Y, given the distributions of input 

variables X. Theoretically, the CDF of Y at y can be evaluated with a multi-dimensional integral, 

 
( )

( ) { }  ( ) ,Y
g y

F y P Y y f d
≤

= ≤ = ⋅⋅⋅∫ ∫ X
X

x x  (2) 

where ( )fX x is the joint PDF of X. In the field of structural reliability, ( )Y g= X is also referred 

to as a limit-state function, and y is treated as a limit state [1]. If the safety is defined by the event 

of Y y,≤  then Eq. (2) defines the reliability. Due to the nonlinear integration boundary, 

( ) ,g y=X  and the high dimensionality in Eq. (2), in practice it is very difficult or even 

impossible to obtain an analytical solution to the probability integration [5]. Difficulties in 

computing this probability have led to the development of various approximation methods.  

Traditionally, commonly used methods comprise three major categories: (1) analytical 

methods, (2) surrogate methods, and (3) simulation methods. Typical analytical methods include 
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the First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM) 

[9-11]. FORM or SORM achieves a solution to Eq. (2) by simplifying the performance 

function, ( ),g X  using first or second order Taylor series expansion at the Most Probable Point 

(MPP). Each of them requires an optimization (iterative) process to locate the MPP, which 

involves a nonlinear transformation from non-normal variables into standard normal variables, 

sensitivity analysis (gradient calculation), and a global optimal solution. Gradient-free methods, 

such as genetic algorithms, can also be used for MPP search; but the search process may become 

more expensive. The nonlinear transformation may increase the nonlinearity of the performance 

function [12]. Sensitivity analysis imposes a restriction on the smoothness of the performance 

function. Also, because a linear (in FORM) or quadratic (in SORM) approximation may not 

sufficiently capture the nonlinearity of the performance function, their accuracy may not be 

satisfactory if the nonlinearity of the performance function in the transformed normal space is 

high. Since SORM uses the curvature information at the MPP, it is generally more accurate but 

more expensive than FORM. It should be noted that SORM can also work in the original space 

without any transformation and it is asymptotically accurate as the estimated probability is close 

to 1. Moreover, neither FORM nor SORM is suitable for distribution estimation. The surrogate 

methods [13-15] use a simplified model, which is generally obtained from Design of 

Experiments or variable screening by means of sensitivity analysis. The accuracy of the 

surrogate methods is usually not satisfactory, though sometimes they can give a quick solution 

[16]. Both analytical and surrogate methods may have numerical difficulties because they are 

computationally expensive when the number of random input variables is large and when 

numerical methods for derivatives are involved. Simulation and sampling methods [17-20], such 

as direct Monte Carlo simulation, Quasi-Monte Carlo simulation, Latin hypercube sampling and 
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importance sampling, are easy and flexible to use and do not exhibit the limitations of analytical 

and surrogate methods. However, when the probability in Eq. (2) is high, simulation methods 

become too expensive [5]. 

 Point estimate methods [21-23] are another alternative approach to evaluate the moments 

and probability distribution of the response.  Usually, the first four moments of the response are 

predicted using a few points per variable, and then the distribution is described in terms of a 4-

parameter Beta or Lambda distribution. The computational effort of this approach increases 

exponentially with the number of random variables. For example, in Seo and Kwak’s work [23], 

three points per variable are applied; 3n function evaluations are required for calculating the 

probability in Eq. (2) when there are n random input variables in the response. Obviously, this 

approach becomes computationally unaffordable if n is larger than 10.  

Recently, a new uncertainty analysis method – First Order Saddlepoint Approximation 

(FOSPA), has been reported [12]. This method uses accurate Saddlepoint Approximations [24] 

resulting in more accurate and efficient solutions than FORM, and in some cases than SORM. It 

focuses only on reliability analysis and does not cover response distribution estimation. In 

FOSPA, the response function is linearly approximated by its first order Taylor expansion at the 

Most Likelihood Point (MLP) in the original space, and the Cumulant Generating Function (CGF) 

of the response is then analytically obtained from the linearly approximate function.  Since this 

method also falls into the aforementioned Category 1, similar to FORM or SORM, its main 

drawbacks are the need for derivatives of the response and the reliance on the existence of a 

unique MLP, which, in general, may not be the case. Additionally, it may still cause high 

computational demand when the problem dimension becomes large.  
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 The objective of this work is to develop an efficient and accurate method for uncertainty 

analysis to estimate the complete distribution of a response, given the distributions of random 

input variables. In the proposed method, all random variables are transformed into a specific 

normal distribution; and the bivariate dimension reduction and the Gauss-Hermite quadrature 

techniques are then used to calculate the statistical moments of the response; the CGF of the 

response is then expressed in a form of power expansion, whose coefficients (cumulants) are 

associated with the moments from the dimension reduction numerical integration; the accurate 

Saddlepoint Approximations are finally employed to calculate the CDF and PDF of the response. 

An overview of the proposed method is presented in Section 2, followed by moment calculation 

with dimension reduction numerical integration in Section 3 and Saddlepoint Approximations for 

PDF and CDF in Section 4. Three examples are used to demonstrate the effectiveness of the 

proposed method in Section 5. Section 6 presents the conclusions.  

 

2. Overview of the Proposed Method  

The central principle of the proposed method is to use the accurate Saddlepoint 

Approximations to estimate the PDF and CDF of a response Y. The only requirement for using 

the Saddlepoint Approximations is that the Cumulant Generating Function (CGF) of Y, YK ,  has 

to be known. Since Y is a general function of random variables X, YK  will not be readily 

available. However, YK  can be estimated with the moments of Y.  Therefore, the procedure of 

the proposed method is composed of two steps: (1) moment calculation of Y, and (2) CDF and 

PDF estimation. In Step 1, in order to estimate the moments of Y with high efficiency and 

accuracy, we adopt a recently developed dimension reduction method [25,26] to compute 

statistical moments with the following modifications:  
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(1) A transformation from general random variables into normal variables with mean of 0 

and variance of 0.5, in order to ensure the applicability of any continuous distributions and ease 

of the moment estimation; and 

(2) The direct use of Gauss-Hermite integration (GHI) to calculate statistical moments.  

In Step 2, the CGF of the response Y, YK , is estimated in a power expansion of the 

statistical cumulants, which are derived from the moments obtained in Step 1; and Saddlepoint 

Approximations are then used to accurately estimate the CDF and the PDF of the response. 

Figure 1 outlines the procedure. Details of each step are presented in the following sections. 

 

Insert Figure 1 here.  

 

3. Calculation of Moments Using Dimension Reduction Numerical Integration 

 The purpose of Step 1 is to estimate the moments of response Y, given the distributions of 

X. The strategy of a newly developed dimension reduction numerical integration [26] with 

modifications will be used to fulfill the task. 

 

3.1 Moments about Zero 

The jth moment about zero, ' ,jµ  of Y = g(X) is defined as 

 { }' [ ( )] [ ( )] ( )j j
j E g g f dµ

∞ ∞

−∞ −∞
= = ⋅⋅⋅∫ ∫ XX x x x ,  (3) 

where
1 1( ) ( ) ( )

nX X nf f x f x= ⋅⋅⋅X x in which ( )
iX if x is the PDF of Xi, and E represents the 

expectation operator.  Equation (3) can also be written as 

  { }
1

'
1 1 1[ ( )] [ ( , , )] ( ) ( )

n

j j
j n X X n nE g g x x f x f x dx dxµ

∞ ∞

−∞ −∞
= = ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫X .  (4)                                                  
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Practically, such an integral cannot be evaluated analytically because of the high 

dimensionality and the complicated integrand. Direct numerical integrations, such as Gauss-

Legendre or Gauss-Hermite quadrature [27], can be applied but are not economically feasible 

when the number of random variables is larger than three or four [25]. Monte Carlo simulation is 

another technique to solve the problem, but generally requires a large number of function 

evaluations to accurately estimate higher-order moments. In this paper, a transformation from 

general random variables into normal variables of 10,
2

N  
 
 

 is employed, and a recently 

developed function approximation method of dimension reduction for multi-dimensional 

integration [26] is used to approximate the function, 1[ ( , , )] j
ng x x⋅ ⋅ ⋅ , in Eq. (4). The central idea 

of the dimension reduction method is to approximate the integral in Eq. (4) by a summation of a 

series of lower-dimensional integrals.   

 

3.2 Transformation of Random Variables 

Rosenblatt transformation [28] has been widely used in statistics, reliability analysis, and 

uncertainty analysis [2,5,29,30]. By Rosenblatt transformation, a non-normal variable is 

transformed to a standard normal variable ( )0,1N . In this paper, adopting the same idea of 

Rosenblatt transformation, we employ a transformation of a random variable to a normal variable 

that follows a distribution of 10,
2

N  
 
 

. The reasons for this transformation are:  (1) to make all 

the random variables have the same distribution of 10,
2

N  
 
 

and therefore ensure a symmetry 

about zero, which is required by the dimension reduction method [26]; (2) to make the proposed 

method suitable to any continuous distributions; and (3) to obtain a concise formula of Gauss-
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Hermite integration (GHI) for the moment estimation, since two exponential items will be 

cancelled – one is from GHI and the other is from the PDF of a normal variable that follows 

10,
2

N  
 
 

. The concise formula will be shown in Section 3.4. 

The proposed transformation function between the original random variable 

 ( 1, , )iX i n=  and the normal variable 10,
2iU N  

 
 

  is expressed as 

 11( ) ( )
2 ii i i X iu T x F x−  = = F   ,  (5) 

where [ ]1−Φ ⋅ is the inverse function of the CDF of a standard normal variable; ( )
iX iF x is the CDF 

of random variable iX ;  ix  is a realization of iX ; and  ui is a realization of the normal variable, 

10, .
2iU N  

 
 

  The PDF of Ui is given by 

 
21( ) i

i

u
U if u e

π
−= ,  (6) 

and the CDF of Ui is given by 

 ( ) ( 2 ).
iU i iF u u= F   (7) 

For example, if ( )2,
i ii X XX N µ σ , the transformation between Ui and iX  is 

( )
2

i

i

i X
i i i

X

x
u T x

−µ
= =

σ
. 

Using the inverse transformation of Eq. (5), Eq. (4) can be rewritten as  

                  { } { }1[ ( )] ( ) ( ) ,
j' j

jμ E g g T f d
∞ ∞ −

−∞ −∞
 = = ⋅⋅⋅  ∫ ∫ UX u u u                                 (8) 

where  
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 1 1 1 1
1 1 2 2( ) ( ), ( ), , ( )n nT T u T u T u− − − − =  u  ,  (9) 

in which 1( ) ( 1, , )iT i n− ⋅ = ⋅⋅⋅ is the inverse function of the transformation function in Eq. (5); 

( )fU u is the joint probability density function of U  and is given by  

 
1

( ) ( )
i

n

U i
i

f f u
=

=∏U u . (10) 

 

3.3 Dimension Reduction 

 Dimension reduction is a technique of function approximation for the purpose of moment 

estimation.  It approximates an n-dimensional function by the summation of a series of, at most, 

D-dimensional functions (D < n).  In this paper, the bivariate dimension reduction (D = 2) is 

used. Let ( ){ }1
1( ) ( , , )

j

nZ Z u u g T − = ⋅⋅⋅ =  u u in Eq. (8). By the bivariate dimension reduction 

method [26],  

  ( )
2

2
0

3( ) ( ) 1 i
i

i

n iZ Z Zi −
=

 + −≅ = −  
 ∑u u , (11) 

where  

0 (0, ,0),Z Z= ⋅⋅⋅⋅                                                          (12) 

1 (0, ,0, ,0, ,0) ( 1, , ),k

k

Z Z u k n= ⋅⋅⋅ ⋅ ⋅ ⋅ = ⋅⋅⋅∑                                            (13) 

and 

 
1 2

1 2

2 (0, ,0, ,0, ,0,  ,0, ,0) ,
k k

k kZ Z u u
<

= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑  (14) 

in which 1 2, 1, 2, ,k k n= ⋅⋅⋅  and 1 2.k k<  It is noted that 1Z is a summation of n one-dimensional 

functions and 2Z is a summation of ( )2
n two-dimensional functions. From Eqs. (11) through (14), 
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( )Z u is additively decomposed into functions of, at most, two variables; in other words, ( )Z u is 

approximated by a summation of functions of, at most, two variables. For example, 

if 1 2 3( ) ( , , ),Z Z u u u=u the bivariate dimension reduction approximation of ( )Z u is 



2 3 1 3 1 2 1 2 3( ) ( ) (0, , ) ( ,0, ) ( , ,0) ( ,0,0) (0, ,0) (0,0, ) (0,0,0)Z Z Z u u Z u u Z u u Z u Z u Z u Z≅ = + + − − − +u u
     (15) 

Xu and Rahman [26] have proved that ( )Z u in Eq. (11) is an accurate approximation of 

( )Z u by comparing the Taylor series expansions of both ( )Z u and ( )Z u  at 0. Their conclusion is 

that the second Taylor series expansion of ( )Z u at 0 is more accurate than the second order 

Taylor series expansion of ( )Z u at 0. Interested readers can refer to [26] for more details. 

Since ( )fU u  is the joint PDF of the n independent random variables of 10,
2

N  
 
 

, 

substituting Eq. (11) into Eq. (8) reduces the n-dimensional integral of Eq. (8) into a summation 

of, at most, two-dimensional integrals,  

{ } ( )

1 2 1 2 1 21 2

1 2

2

2
0

1

3[ ( )] 1 ( )

1 (0, ,0, ,0, ,0, ,0, ,0) ( ) ( )2

2( 1) (0, ,0, ,0, ,0) ( ) (0,1

k k

k k

k

i'
j i

i

k k U k U k k k

n

k U k k
k

n iμ E Z Z f di

n Z u u f u f u du du

n Z u f u du Z

<

∞ ∞

−−∞ −∞
=

∞ ∞

−∞ −∞

∞

−∞
=

 + −= ≅ − ⋅⋅ ⋅ 
 

 −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

 −+ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ 
 

∑ ∫ ∫

∑ ∫ ∫

∑∫

UU u u

,0).⋅ ⋅

              (16)       

It is noted that Eq. (16) only involves two- and one-dimensional integrals. The 

computational effort in numerically computing the two- and one-dimensional integrals in Eq. (16) 

is less than that in evaluating the n-dimensional integral in Eq. (4) or Eq. (8). The formulas for 

computational efforts will be given in Section 3.5.  

 

3.4 Calculation of Moments by Gauss -Hermite Integration 
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  As shown in Section 3.3, the moment calculation in Eq. (16) only involves one- and 

two-dimensional integrals. One term of the one-dimensional integrals in Eq. (16), without 

leading coefficients, is given by 

 1 (0, ,0, ,0, ,0) ( ) , [1, 2, , ]
kn k U k kZ u f u du k n

∞

−∞
= ⋅⋅⋅ ⋅ ⋅ ⋅ ∈ ⋅⋅⋅∫I . (17) 

Gauss-Hermite integration (GHI) approximates the one-dimensional integral in Eq. (17) 

by summing up some terms of the weighted integrand evaluated at, so-called, Gauss points 

(abscissas) as follows [27], 

 1
1 1

1(0, ,0, ,0, ,0) ( ) (0, ,0, ,0, ,0)I

k

r r
u

n I I U I I I
I I

w e Z u f u w Z u
= =

≅ ⋅⋅⋅ ⋅ ⋅ ⋅ = ⋅⋅⋅ ⋅ ⋅ ⋅∑ ∑I
π

,  (18) 

where r is the quadrature order (the number of abscissas); and Iu  and Iw  are abscissas (Gauss 

points) and weights (Gauss weights), respectively, which are listed in Table 1 (for r = 1, 2, 3 and 

4). For more weight and abscissa information of higher quadrature orders, refer to [31].  

 

Table 1 Weights and abscissas for Gauss-Hermite integration 

Order (r) Abscissa (uI) Weight (wI) 
1 0 1.772453 

2 ±0.707107 0.886227 

3 0 1.181635 
 ±1.22474 0.295409 

4 ±0.524648 0.804914 
 ±1.65068 0.081312 

 

Similarly, the GHI formula for a two-dimensional integral in Eq. (16), without the 

leading coefficients, is given by     
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1 2 1 2 1 21 2

1 2

1 2 1 2

1 2

2

2

1 1

(0, ,0, ,0, ,0, ,0, ,0) ( ) ( )

1 (0, ,0, ,0, ,0, ,0, ,0),

k kn k k U k U k k k

r r

I I I I
I I

Z u u f u f u du du

w w Z u u

∞ ∞

−∞ −∞

= =

= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 ≅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

∫ ∫

∑ ∑

I

π

 (19) 

where 1 2,r r denote the quadrature order (the number of abscissas) used in the 
1 2
,k ku u  directions; 

1 2
( , )I Iu u are Gauss points; and 

1 2
,I Iw w are the corresponding weights.  

 

3.5 Computational Effort  

             As mentioned previously, Eq. (16) is a summation of a series of one- and two-

dimensional integrals. The computational effort in computing all the one- and two-dimensional 

integrals in Eq. (16) is generally much less than that in evaluating the original n-dimensional 

integrals in Eq. (4) or Eq. (8). In this paper, three Gauss points per variable are employed for the 

numerical integration. When the bivariate dimension reduction method is used, there are ( )2
n  

two-dimensional integrals and ( )1
n one-dimensional integrals in Eq. (16), and the computational 

effort can be measured by the number of function evaluations, which is given by  

 ( )( ) ( )( ) ( )2 9 1
3 3 1 3 1.2 1 2

n nn nCE n
−

= + + = + +  (20) 

 For a performance function with 10 random input variables, the total number of function 

evaluations is 436. This is significantly less than that of the direct GHI, which is 310 = 59049. It 

should be noted that after the moments are obtained, the following Saddlepoint Approximations 

for estimating CDF and PDF do not need to evaluate the performance function any more. 

Therefore, Eq. (20) gives the total computational cost of the proposed method. 

 



MD-05-1025 Huang and Du 14 

4. Saddlepoint Approximations 

Saddlepoint Approximations, originally introduced in the statistics literature by Daniels 

[24], is an important and powerful tool for obtaining accurate PDF and CDF [32,33]. Discussions 

and explanations of their applications for a range of distributional problems are given by Reid 

[34], Goutis and Casella [35], and Huzurbazar [36]. Although the theory of Saddlepoint 

Approximations is quite complex, simple formulas for calculation of CDF and PDF have been 

derived; consequently, its use is fairly straightforward [36].  

 

4.1 Cumulant Generating Function 

Saddlepoint Approximations for estimating the CDF and PDF of Y rely on the Cumulant 

Generating Function (CGF) of Y, which is defined as  

 ( ) ( ) ,ty
Y YK t log e f y dy

∞

−∞

 =   ∫   (21)       

where log is the natural logarithm, and ( )Yf y is the PDF of the random response Y. In 

engineering practice, it is very difficult, or even impossible, to obtain the exact CGF of a 

performance function from Eq. (21), due to the complicated response function Y = g(X) and the 

unknown density function ( ).Yf y   Du and Sudjianto [12] proposed a method to estimate the CGF 

of Y by approximating the g(X) using first order Taylor expansion at the Most Likelihood Point 

(MLP). Their method relies on a unique MLP. If there are multiple MLPs, their method may not 

give an accurate result. 

 In the proposed method, the power expansion of the CGF of Y is used. The power 

expansion is given by [37]   

1
( ) ,

!

j

Y j
j

tK t
j

∞

=

=∑κ                                                  (22)   



MD-05-1025 Huang and Du 15 

where jκ  are jth cumulant of Y. Wang [32] and Gatto and Ronchetti  [38] proposed to use up to 

the fourth cumulant item, and showed that the approximate form can yield remarkably good 

results. In our work, the first four moments are calculated by the dimension reduction numerical 

integration method, described in Section 3; and the first four cumulants are then obtained 

through the relations between the cumulants and moments as follows [37],  

'
1 1

' '2
2 2 1

' ' ' '3
3 3 2 1 1

' ' ' ' 2 ' '2 '4
4 4 3 1 2 2 1 1

3 2

4 3 12 6

κ µ

κ µ µ

κ µ µ µ µ

κ µ µ µ µ µ µ µ

 =


= −


= − +
 = − − + −

                                               (23) 

where '  (   1,  2,  3 and 4)i iµ =  are the first four moments about zero. For higher order cumulants, 

refer to [37]. The first four cumulant items, 1 2 3κ , κ , κ and ,4κ are then used to approximate the 

CGF of Y in Eq. (22), and finally, the Saddlepoint Approximations are applied to obtain the CDF 

and PDF of Y. 

 

4.2 Saddlepoint Approximations for Calculation of CDF and PDF                                 

Once the CGF of Y is obtained, it is easy to approximate the CDF and PDF of the 

performance function. Daniels [24] developed a simple formula for computing the PDF of the 

random variable Y, 

 

1
2

[ ( ) ]
"

1( )
2 ( )

Y s sK t t y
Y

Y s

f y e
K t

− 
=  
 π

, (24)                                    

where ( )YK ⋅ is the CGF of Y; " ( )YK ⋅  is the second order derivative of the CGF of Y; and ts is the 

saddlepoint, which is the solution to the equation, 

 ' ( ) ,YK t y=  (25) 
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where ' ( )YK ⋅ is the first order derivative of the CGF. 

 Luannani and Rice [39] gave a very concise formula for calculating the CDF of Y,   

 1 1( ) { } ( ) ( )YF y P Y y w w
w v

 = ≤ = F + − 
 

φ , (26) 

where F(∙) and φ(∙) are the CDF and the PDF of the standard normal distribution, respectively, 

 [ ]{ }1/ 2
( ) 2 ( )s s Y sw sgn t t y K t= − ,  (27) 

 and 

 
1/ 2'' ( )s Y sv t K t =   , (28) 

where ( )ssgn t = +1, -1 or 0, depending on whether the saddlepoint, ts, is positive, negative or 

zero. 

 When r cumulant terms are used, according to Eq. (22), the CGF of Y is given by 

 
2

2
1( )

2! !

r
r

Y
t tK t t

r
κ κκ= + + ⋅⋅⋅+ . (29) 

 Since an analytical formulation of CGF for the performance function exists, as in Eq. 

(29), the use of Saddlepoint Approximations becomes straightforward. Because the CGF is in a 

polynomial form in terms of variable t, an analytical solution of the saddlepoint and the 

derivatives of the CGF can be easily obtained. From Eqs. (25) and (29), the equation for the 

saddlepoint is derived as 

 
1

'

2
( ) .

( 1)!

jr

Y 1 j
j

tK t κ κ y
j

−

=

= + =
−∑  (30) 

Solving Eq. (30), we obtain the saddlepoint ts.   

The CGF and its second order derivative at the saddlepoint ts are then given by 
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1

( )
!

rr
r s

Y s
i

tK t
r
κ

=

=∑ ,   (31) 

and 

 
2

''
2

3
( ) ,

( 2)!

jr
s

Y s j
j

tK t
j

κ κ
−

=

= +
−∑   (32) 

respectively. 

Thereafter, PDF and CDF can be calculated by Eqs. (24) and (26), respectively.   

During the numerical calculations, two problems may arise. One is that Eq. (30) 

possesses r-1 roots and the saddlepoint solution may have multiple real values. This problem was 

properly considered by Wang [32], who proposed a simple modification to Eq. (30) to ensure 

that the approximate ' ( )YK t  is monotonically increasing. The other problem is the singularity 

problem, when a square root of a negative value occurs in Eqs. (27) and (28). This problem can 

be overcome by reversing the sign of the performance function. 

 

5. Examples  

In this section, one mathematical example and two engineering problems are presented to 

demonstrate the effectiveness of the proposed method. For the two engineering problems, the 

bivariate dimension reduction method is employed to approximate the performance function for 

calculating moments, and three Gauss points per variable are used for numerical integration of 

moment generation after the dimension reduction. Comparisons are made with FORM, SORM 

and MCS to evaluate the accuracy and efficiency of the proposed method, whenever necessary. 

 

Example 1: A Mathematical Problem 

Consider a performance function with n independent random variables [10] given by 
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i

1( )

n

i
n

Y g
n

X
=

−
= =

∑
X , (33) 

where Xi   are  random variables following standard exponential distributions with the PDF, 

  
i
( ) ix

X if x e−= . (34) 

This example is selected because Y is gamma-distributed, hence a theoretical solution 

exists. FORM, SORM, and the proposed method are used to estimate the CDF of the 

performance function, Y = g(X), over a range of [-3.5, 4.0] for two cases: n = 4 and n =20. The 

results from FORM and the proposed method, and the exact theoretical solutions are depicted in 

Figs. 2 and 3, respectively. SORM encountered singularity in the left tail of the distribution; 

therefore, the results from SORM are not included here. For both cases, the results of the 

proposed method match the exact solution uniformly over the whole range of [-3.5, 4.0]. The 

accuracy of FORM is not acceptable. The inaccuracy comes from the fact that after the 

transformation from exponential variables to standard normal variables, the original linear 

function in Eq. (33) becomes a highly nonlinear function [12].  

 

Insert Figure 2 here.  

 

Insert Figure 3 here.  

 

 Since, for this simple problem, analytical (closed-form) solutions are available for the 

MPP, the cumulents, and the saddlepoint, no comparison is made for the efficiency. We will 

compare the efficiency in the following two engineering examples. 
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Example 2: Burst Margin of Disk 

The burst margin, Mb, of a disk is defined as [40] 

 

( )( )
2

3 3
0 0

( )
23 385.82
60

b
f SY M g

N R R R Rπδ
= = =

 × − − 
 

X  , (35) 

where T
0 = [ ,  , , ,  ,  ] ;f S N R RδX  and in which f is the material utilization factor, S is the 

ultimate tensile strength, δ is the density, N is the rotor speed, R is the outer radius, and R0 is the 

inner radius. Their distributions are shown in Table 2. 

Table 3 shows the estimated moments about zero, { }[ ( )] , 1, 2,3 and 4,' j
jμ E g j= =X  of 

the performance function from the dimension reduction technique used in the proposed method 

and MCS with 1,000,000 simulations. The results indicate that the proposed method provides 

very accurate estimations. 

 

Table 2 Distribution details of random variables 

Variable Distribution Parameter 1 Parameter 2 
F Weibull 0.958  25.508 
S Normal 220000 lb/in2 5000 lb/in2 
δ Uniform 0.28 lb/in3 0.30 lb/in3 
N Normal 21000 rpm 1000 rpm 
R Normal  24 in 0.5 in 
R0  Normal  8 in  0.3 in 

    * Parameter 1 is the scale parameter for Weibull distribution, the mean for normal  
 distribution, and the lower bound for uniform distribution, respectively. 
  + Parameter 2 is the shape parameter for Weibull distribution, the standard deviation for 
 normal distribution, and upper bound for uniform distribution, respectively. 
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     Table 3 Estimated moments about zero of Mb from the proposed method and MCS 

Moment Proposed method Monte Carlo simulation 
1st  2.50788×10-5 2.50796×10-5 
2nd  6.32468×10-10 6.32518×10-10 
3rd 1.60399×10-14 1.60419×10-14 
4th  4.09072×10-19 4.09148×10-19 

 

Table 4 and Table 5 give the probabilities of Mb < 3.2×10-5 and Mb < 2.6×10-5, 

respectively, and the corresponding computational effort of FORM, SORM, the proposed 

method, and MCS. Since a sufficiently large number of simulations is used, the result of MCS is 

considered an accurate reference. The number of function evaluations used by FORM and 

SORM include the finite difference derivative calculation and the MPP search.  For this problem, 

FORM, SORM and the proposed method provide accurate results for the case of Mb < 3.2×10-5. 

However, for the case of Mb < 2.6×10-5, where the estimated probability is smaller, FORM and 

SORM are much less accurate than the proposed method. SORM is more accurate than FORM 

because SORM uses curvature information at the MPP.  This phenomenon from Tables 4 and 5 

conform to the fact that SORM is asymptotically accurate [10]. The proposed method is more 

efficient than FORM and SORM, since the number of function evaluations is less than that of 

FORM or SORM. 

 

Table 4 Probability of Mb < 3.2×10-5 and computational effort 

 FORM SORM Proposed method MCS 
P{Mb < 3.2×10-5} 0.99932 0.99941 0.99948 0.99940 
Function evaluations 262 297 154 1,000,000 
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Table 5 Probability of Mb < 2.6×10-5 and computational effort 

 FORM SORM Proposed method MCS 
P{Mb < 3.2×10-5} 0.68808 0.69369 0.69947 0.69954 
Function evaluations 264 299 154 1,000,000 

 

 

Insert Figure 4 here.  

 

 Figure 4 shows the CDFs of Mb obtained from the proposed method and from MCS with 

1,000,000 simulations.  It is noted that the two CDF curves are nearly identical to each other over 

the entire range.  The curves of the corresponding PDFs of Mb are also almost indistinguishable 

as shown in Fig. 5.  

 

Insert Figure 5 here.  

 

 If FORM or SORM were used to generate the CDF or PDF curve, the MPP at each 

realization of Y (each of the dot points in Fig. 4 or Fig. 5) would be identified first. Assuming 

that the computational cost were the same at each point as that at point y = 3.2×10-5, which is 262 

or 297 (see Table 4) for FORM or SORM, respectively, since there are 41 points in Fig. 4 or Fig. 

5, the total number of function evaluations by FORM or SORM would be 262×41=10742 or 

297×41=12177, respectively. Therefore, the proposed method is much more efficient than 

FORM or SORM, in generating CDF and PDF curves. 
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Example 3: An I Beam  

An I beam [40], depicted in Fig. 6, is used to further demonstrate the effectiveness of the 

new method.   

 
Insert Figure 6 here.  

 
 

 
The performance function is given by 

 max( )Y g S= = σ −X , (36) 

where 

 max
( )
2

P a L a d
L I

σ −
= , (37) 

and 

 
3 3( )( 2 )

12
f f w fb d b t d t

I
− − −

= . (38) 

The eight random variables are T = [ ,  ,  ,  , , ,  ,  ]  .f w fP L a S d b t tX  Table 6 provides 

the distribution information of all eight random variables. 

 

Table 6 Distribution information of random variables 

Variable Type Mean Standard deviation 
P  Normal 6070 200 
L  Normal 120 6 
a  Normal 72 6 
S  Normal 170000 4760 
d  Normal 2.3 1/24 

fb  Normal 2.3 1/24 
wt  Normal 0.16 1/48 
ft  Normal 0.26 1/48 
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 Table 7 shows the estimated moments about zero, { }' [ ( )] , 1, 2,3 and 4,j
j E g jµ = =X  from 

the proposed method and from MCS with 1,000,000 simulations. It is noted that all four 

moments calculated by the proposed method are very close to those from MCS.  

 
Table 7 Estimated moments about zero of Y 

 
Moment Proposed method MCS 

1st  -1.98188×104 -1.98176×104 
2nd  7.13728×108 7.14110×108 
3rd  -2.74970×1013 -2.75457×1013 
4th  1.30143×1018 1.30720×1018 

 
 

Table 8 gives the probability Y < 0.0 (the reliability) and the computational effort of 

FORM, SORM, the proposed method, and MCS.  Again, the result of MCS is considered an 

accurate reference, since a sufficiently large number of simulations (106) is used.  The results in 

Table 8 indicate that the proposed method provides a more accurate solution than FORM or 

SORM. 

 

Table 8 Probability of Y < 0.0 and computational effort 

 FORM SORM Proposed method MCS 
P{Y < 0.0} 0.8558 0.8658 0.8716 0.8711 
Function evaluations 171 225 277 1,000,000 
 

 

 The estimated CDF and PDF curves of Y are shown in Fig. 7 and Fig. 8, respectively.  

The proposed method provides CDF and PDF results as accurate as those from MCS.  

 
 

Insert Figure 7 here.  
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Insert Figure 8 here.  

 

 

6. Conclusions 

 The method of dimension reduction integration and Saddlepoint Approximations 

estimates a response distribution function through the CGF of the response with the first four 

moments, whose accuracy and efficacy is the key to overall performance of the proposed method. 

To achieve an accurate and efficient approximation, the proposed method involves a dimension 

reduction numerical integration technique for calculating moments of a response and Saddlepoint 

Approximations for estimating CDF and PDF of the response. This method does not have many 

of the restrictions that existing methods have, such as the existence and search of the unique 

MPP, and gradient calculation. The new method can provide very accurate moments as well as 

PDF and CDF curves over the whole range of the distribution. In the two engineering example 

problems, the method produced accurate results with significantly reduced computational costs 

compared to MCS with a large number of simulations (106). Results also indicate that the 

proposed method is generally more accurate than FORM and SORM, and much more efficient 

for distribution generation. Since there is no need for derivative information, the proposed 

method is suitable to the situation where the derivative of a response function is difficult to 

obtain or the derivative does not exist. Because of its good features, the proposed method is an 

alternative to FORM or SORM when: 1) the performance function does not have a derivative, 2) 

the MPP is hard to identify, 3) there are multiple MPPs, or 4) the probability is close to the 
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median where FORM or SORM cannot provide accurate solutions. The method can also replace 

MCS when: 1) the CDF (or reliability) is extremely high, or 2) the number of random variables is 

not large. It should be noted that the computational costs will increase when the number of 

random variables, n, becomes large, since the total computation cost is ( )9 1
3 1

2
n n

n
−

+ +  (Eq. 

(20)). In this case, MCS may be the method of choice if the CDF to be evaluated is not high. To 

improve the efficiency of the proposed method when there are many variables, variable-

screening by Design of Experiments can be used to eliminate unimportant random variables.   

Finally, the accuracy of the proposed method can be further improved with increased cost, such 

as applying higher-variate dimension reduction [26] or higher-order Gauss-Hermite quadrature.  
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