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SUMMARY 

 

Robust design seeks an optimal solution where the design objective is insensitive to 

the variations of input variables while the design feasibility under the variations is 

maintained. Accurate robustness assessment for both design objective and feasibility 

usually requires an intensive computational effort. In this paper, an accurate robustness 

assessment method with a moderate computational effort is proposed. The numerical 

Gauss-Hermite integration technique is employed to calculate the mean and standard 

deviation of the objective and constraint functions. To effectively use the Gauss-Hermite 

integration technique, a transformation from a general random variable into a normal 

variable is performed. The Gauss-Hermite integration and the transformation result in 

concise formulas and produce an accurate approximation to the mean and standard 

deviation. This approach is then incorporated into the framework of robust design 

optimization. The design of a two-bar truss and an automobile torque arm is used to 

demonstrate the effectiveness of the proposed method. The results are compared with the 

commonly used Taylor expansion method and Monte Carlo simulation in terms of accuracy 

and efficiency. 
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1. INTRODUCTION 
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Deterministic optimization has been widely and successfully applied to engineering 

design. However, deterministic approaches do not consider the impact of unavoidable 

uncertainties associated with design parameters and design variables in any engineering 

system. Hence deterministic optimal solutions may be infeasible or conservative with the 

presence of uncertainty. Examples of uncertainty include variations in loading, material 

properties, modeling parameters, and fluctuations in design variables caused by various 

reasons, such as manufacturing processes, operating conditions, and computational errors. 

Robust design is one of the powerful tools that assist designers to make reliable decisions 

under uncertainty [1, 2]. Robust design [1], originally proposed by Taguchi, improves 

product quality through minimizing the effect of causes of variation without eliminating the 

causes. With the introduction of the nonlinear programming framework to robust design, 

both the robustness of design objectives and the robustness of design constraints (call 

design feasibility) are considered. Robust design optimization makes the objective inert to 

the variations of design variables and design parameters and satisfies design constraints 

under variations simultaneously [3]. 

Despite the benefits of robust design, one of the most challenging issues is the 

trade-off between efficiency and accuracy [4]. To accurately capture the probabilistic 

characteristics of the response variables, a number of deterministic analyses are required, 

which are usually very computationally intensive in practice. Many methods have been 

developed in modeling robust design problems. Chen et al. [5] developed a robust design 

procedure by using a response surface method to model a decision support system. They 

used Taylor expansion to approximate the mean and variance of a response variable and 
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employed the worst case scenario to formulate a constraint function. Ramakrishnan and 

Rao [6] formulated the robust design problem as a nonlinear optimization problem with 

Taguchi's quality loss function in which an objective function and constraint function are 

constructed with the mean and variance. Sundaresan et al. [7] incorporated a sensitivity 

index into the optimization procedure to determine a robust design solution. They defined 

an objective function as a weighted linear combination of the mean of a response function 

and a sensitivity index. Jung and Lee [3] developed a simple and efficient approach where 

an objective function is defined as a performance index related to a probability function, 

and probabilistic constraints are evaluated with the advanced first-order second moment 

method.  

To improve the efficiency of robust design optimization, another type of method 

that separates the deterministic optimization from uncertainty analysis has been developed.  

Parkinson et al. [8] proposed a two-step robust design optimization method. The first step is 

to solve the deterministic optimization problem and obtain the nominal optimum, and then 

the robust optimal solution is acquired by considering the variations and using the nominal 

optimum as a starting point. Du and Chen [9] developed a probabilistic design strategy with 

sequential single loops of deterministic optimization and uncertainty assessment.  

Previous work has mainly focused on modeling a robust design problem. Few 

computational tools have been developed for implementation. The first order Taylor 

expansion is widely used, and it is efficient but inaccurate. Monte Carlo simulation is 

another choice, and it is accurate but inefficient. The aim of this work is to develop an 

accurate and efficient computational method for robust design. In this method, the Gauss-

Hermite numerical integration technique is used to calculate the mean and variance (or 
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standard deviation) of the objective and constraint functions (response variables). Two 

engineering examples are used to demonstrate the effectiveness of the proposed method. 

The results are compared with those from deterministic optimization, Taylor expansion 

method, and Monte Carlo simulation in terms of accuracy and efficiency. 

 

 

2. ROBUSTNESS ASSESSMENT AND ROBUST DESIGN OPTIMIZATION  

 

In this section, we will review approximation methods for robustness assessment 

and the common model of robust design optimization.  

 

2.1 Deterministic optimization and robust design optimization models 

A typical optimization problem is modeled as  

minimize    ( , )   

subject to   ( , ) 0, 1, 2, ,

, 1, 2, ,
i
L U
j j j

f

g i l
x x x j n

≥ = ⋅⋅⋅

≤ ≤ = ⋅⋅⋅

x
x p

x p                                            (1) 

where [ ]T1, , nx x⋅ ⋅ ⋅x =  is a vector of design variables which are to be determined in the 

optimization process, and [ ]T1, , mp p⋅ ⋅ ⋅p =  is  a vector of design parameters whose values 

are known as part of the problem specifications. L
jx and U

jx are the upper and lower bounds 

of the design variables, respectively. This deterministic approach does not consider 

variations in the design variables and design parameters. Because variations are ubiquitous 
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in real engineering environments, the solution to a deterministic design may be infeasible or 

conservative due to those variations.  

In robust design optimization, both design variables and parameters are considered 

as random variables. Robust design optimization minimizes the mean and the variation of 

the objective function simultaneously while satisfying probabilistic constraints [3]. 

Therefore, a robust design problem is essentially a multi-objective optimization problem. 

How to deal with multi-objective problems is beyond the scope of this paper, though there 

exists a vast amount of literature for multi-objective optimization. Herein we only consider 

the commonly used weighting factor method that can sufficiently demonstrate our 

computational method. With the weighting factor method, a robust design problem is 

modeled as a single objective optimization problem [4, 9, 10] given by 

1 2* *

( , ) ( , )
minimize     

subject to     ( , ) ( , ) ( , ) 0, 1, 2, ,

  , 1, 2, ,
i i

f f

f f

i g g

L U
j j j

w w

G k i l

j n

m s
+

m s

= m − s ≥ = ⋅⋅⋅

m ≤ m ≤ m = ⋅⋅⋅

Xμ

X P X P

X P X P X P             (2) 

where 1w  and 2w  are weight factors, and 1 2 1w w+ = ; Xμ are the mean values of random 

design variables X; P is the vector of random design parameters. *
fm  is the best achievable 

(ideal) optimal solution for the mean of the objective function, fm ,  when 1 1w =  and 

2 0w = . *
fs  is the best achievable (ideal) optimal solution for the standard deviation of the 

objective function, fs , when 1 0w =  and 2 1w = . 
igm and 

igs are the mean and standard 

deviation of constraint function ig , respectively. k is a constant which represents the 

probability of the constraint satisfaction. For example, k = 3 indicates that the constraint 
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will be satisfied with a probability of 99.87% under the assumption that the constraint 

function is normally distributed. In this paper, the following symbol convention is mainly 

used. An uppercase letter denotes a random variable or parameter, a lowercase letter 

denotes an observation (or a realization) of a random variable, or a deterministic variable; 

and a bold letter denotes a vector. For instance, X stands for a random variable; x stands for 

a realization of X; X stands for a vector of random variables, [ ]T, , , ;1 2 nX  X  X⋅ ⋅⋅  and x is an 

observation of X. 

 

2.2 Typical methods for robustness assessment 

As shown in the previous section, a robust design requires the mean and standard 

deviation of the objective and constraint functions. Let a random variable Y be a response 

variable that serves either an objective function or a constraint function, and let the function 

be in the form of ( , )Y y= X P . The mean Ym  and variance 2
Ys  of Y are then given by 

 ,[ ( , )] ( , ) ( , )Y E y y f d d
∞

−∞
m = = ∫ X PX P x p x p x p          (3) 

and 

 [ ]22 2 2 2
,σ [ ] μ ( , ) ( , ) μY Y YE Y y f d d

∞

−∞
= − = −∫ X Px p x p x p  (4) 

respectively. In the above equations, ,fX P is the joint probability density function of the 

random variables X and parameters P. Practically, it is very difficult or even impossible to 

obtain an exact solution to Equations (3) and (4) because of the complicated integrand and 

the high dimensionality.    
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Various methods have been developed to approximate the mean and variance. A 

comprehensive review is provided by Du and Chen [4]. The commonly used methods 

include Taylor expansion approximation and Monte Carlo simulation. Taylor expansion 

approximation is a simple approach which uses the first order approximation of Y at the 

mean values ( , )X Pμ μ . The approximations of the mean and variance of Y are given by 

 μ ( , )Y y≅ X Pμ μ                                                            (5) 

and 

 

2 2

2 2 2

1 1, ,

σ σ σ
i k

n m

Y X P
i ki k

y y
X P= =

   ∂ ∂   ≅ +
   ∂ ∂   

∑ ∑
X P X Pμ μ μ μ

  (6) 

respectively.  

Monte Carlo simulation method gives very straight formulations as 

 
1

1μ ( , )
N

Y i i
i

y
N =

≅ ∑ x p   (7) 

and 

 [ ]22

1

1σ ( , ) μ
1

N

Y i i Y
i

y
N =

≅ −
− ∑ x p   (8) 

respectively, where N is the number of simulations (samples); ,i ix p  are the samples of 

random variables, which are drawn from the distributions of X and P. 

Taylor expansion approximation provides an efficient solution to the means and 

variances. However, its accuracy may not be good enough when the response functions are 

highly nonlinear and the variations are large. Moreover, it requires accurate gradient 

calculations that can impose additional restrictions such as the differentiability of the 
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functions and the accurate numerical differentiation methods. Monte Carlo simulation is 

suitable for any function forms and is dimension-independent; but in order to ensure an 

acceptable accuracy, it needs a sufficiently large number of simulations (often thousands of 

function evaluations). Thus, Monte Carlo simulation is not practical for engineering 

applications.   

Point estimate method, originally proposed by Rosenblueth [11], is another method 

for estimating statistical moments and has been used in engineering applications [12, 13]. 

The point estimate methods use the first few moments of each of random variables for 

obtaining the points and weights for each random variable to compute the moments of a 

response. The points and weights are different for different random variables. 

In this paper, we use Gauss-Hermite integration technique to develop a simple 

point-estimate-type method for accurately and efficiently evaluating the means and 

variances of response functions, in which abscissas (points) and weights are fixed for all 

random variables. This approach is then incorporated into the framework of the robust 

design optimization to achieve an accurate robust solution. 

 

3. ROBUSTNESS ASSESSMENT AND ROBUST DESIGN USING GAUSS -

HERMITE INTEGRATION 

 

3.1 Gauss -Hermite integration 

For convenience, we use a vector Z to represent the vector of all the random 

variables X and P, namely, [ ]T,=Z X P . Gauss-Hermite integration (GHI) [14] is a 
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numerical method for estimating integrals. For a one-dimensional integration, it 

approximates an integral by summing up some items of weighted integrand evaluated at so-

called Gauss points (abscissas) as follows: 

 
2

1

( ) ( )I

r
z

I I
I

y z dz w e y z
∞

−∞
=

≅∑∫  (9) 

where r is the quadrature order (equal to the number of abscissas),  zI are abscissas (Gauss 

points), and wI are weights (Gauss weights).  

The GHI formula for an n-dimensional integral is given by 

 
1 2 2

1

1 1

1

1 1
1 1

( , , ) ( , , )
n

I In

n n

n

rr
z z

n n I I I I
I I

y z z dz dz w w e y z z
∞ ∞ +⋅⋅⋅+

−∞ −∞
= =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑∫ ∫  (10) 

where 1, , nr r⋅ ⋅ ⋅ denote the quadrature order (the number of abscissas) used in the 1, , nz z⋅ ⋅ ⋅  

directions, 
1

( , , )
nI Iz z⋅ ⋅ ⋅ are the Gauss points, and 

1
, ,

nI Iw w⋅ ⋅ ⋅ are the corresponding weights. 

The weights and abscissas for the GHI, for r = 1, 2, 3 and 4, are listed in Table I. 

For the weights and abscissas of higher quadrature orders, refer to [15].  

 

Table I. Weights and abscissas for Gauss -Hermite integration. 

Order (r) Abscissa (zI) Weight (wI) 
1 0 1.772453 

2 ±0.707107 0.886227 

3 0 1.181635 
 ±1.22474 0.295409 

4 ±0.524648 0.804914 
 ±1.65068 0.081312 
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3.2 Transformation of random variables 

Before applying Gauss-Hermite integration to Equations (3) and (4) to calculate the 

mean and variance, we propose to transform all the random variables into a set of identical 

normal variables. Rosenblatt transformation [16] has been widely used in statistics, 

structural reliability, and uncertainty analysis. By Rosenblatt transformation, dependent, 

non-normal random variables are converted into mutually independent and standard normal 

variables [4, 16-18]. In this paper, adopting the same principle as Rosenblatt transformation, 

we transform all the random variables to the normal variables that follow a distribution of 

10,
2

N  
 
 

 (with a mean of 0 and a variance of 1
2

), instead of the standard normal 

distribution ( )0,1N in Rosenblatt transformation.  

Without loss of generality, assume that  ( 1,2, , )iZ i m n= + are independent. The 

proposed transformation is given by 

 11( ) ( ) , 1, 2, ,
2 ii i iu t z F z i m n−  = = F = +  Z   (11) 

where [ ]1−F ⋅ is the inverse function of the cumulative density function (CDF) of the 

standard normal distribution, ( )
iZ iF z is the CDF of random variable iZ ,  iz  is a realization 

of iZ , and ui is a realization of the normal variable .iU   The probability density function 

(PDF) of Ui  is given by 

 
21( ) , 1, 2, ,i

i

u
U if u e i m n

π
−= = +   (12) 

and the CDF of Ui is 
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 ( ) ( 2 ), 1, 2, ,
iU i iF u u i m n= F = +   (13) 

For example, if iZ ~ ( )2,
i iZ ZN m s , the transformation between ui and zi is 

( )
2

i

i

i Z
i i

Z

z
u t z

−m
= =

s
. 

It should be pointed out that if iZ ’s are dependent, there is a slightly difference in 

Equations (11) and (13) [17-18].  

The reasons for using this transformation are multifold. First, as shown in Table I, 

all abscissas are small values around zero. To efficiently and accurately estimate mean and 

variance, GHI requires that the PDF of the random integration variables should not be equal 

or very close to zero at the abscissas. The proposed approach can satisfy such a requirement. 

For illustration, Figure 1(a) gives the PDF of X ~ ( )10,1N , which has the 

PDF
( )210

21( )
2

x

Xf x e
π

−
−

= and is almost equal to zero when X takes the abscissas given in 

Table I. After the transformation, the PDF of U is not equal to zero when U takes the 

abscissas, as shown in Figure 1(b).  
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Figure 1. An example of the PDF curves before and after the transformation. 

 

If the PDFs of integration variables are equal or very close to zero when the 

integration variables take the abscissas, GHI cannot provide an efficient and accurate 

estimation of the mean and variance. To demonstrate this, let us use GHI to approximate 

the mean of the response variable Y =X, X ~ ( )10,1N  with four abscissas. As given, the 

exact mean of X is 10. However, without the transformation, according to Equations (3) and 

(9), GHI estimates the mean of X as  
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( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

2 2

2

2
2

2
2

2

10 104
2 2

1

1.65068 10
1.65068 2

0.524648 10
0.524648 2

0.524648

1 1μ ( )
2 2

10.081312 1.65068
2

10.804914 0.524648
2

0.804914 0.52

I

I

x x
x

Y X I I
I

xf x dx x e dx w e x e

e e

e e

e

π π

π

π

− −
∞ ∞ − −

−∞ −∞
=

− −
−−

− −
−−

 
 = = =
  

 
 = −
  
 
 + −
  

+

∑∫ ∫

( )
( )

( ) ( ) ( )
( )

2

2
2

0.524648 10
2

1.65068 10
1.65068 -162

14648
2

10.081312 1.65068 5.9502 10 10
2

e

e e

π

π

−
−

−
−

 
 
  
 
 + = × ≠
  

                       

(14) 

GHI fails to approximate the mean.  The reason is that the ( )Xf x in the integrand is 

almost equal to zero at each of the abscissas (see Figure 1 and Table I). After the 

transformation, GHI approximates the mean of Y as 

( ) ( ) ( )

( ) ( )

2 22
4

1

4

1

1 1μ 2 10 ( ) 2 10 2 10

1 12 10 10 2 0.804914 0.081312 10.0

I Iu uu
Y U I I

I

I I
I

u f u du u e du w e u e

w u

π π

π π

∞ ∞ −−

−∞ −∞
=

=

 = + = + = +  
 = + = × × × + =  

∑∫ ∫

∑
      

(15) 

which is identical to the exact value. Therefore, the transformation ensures that GHI 

provides an accurate estimation.  

The second reason for the transformation is that non-normal random variables can 

be converted into dependent, mutually independent normal variables. This makes our 

approach suitable to random variables with any distributions.   
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The third reason is that this specific transformation results in a concise GHI formula 

for estimating means and variances because the two exponential items are cancelled: one is 

from GHI in Equation (9) or (10) and the other is from the PDF of the normal random 

variables given in Equation (12). This cancellation reduces a complex expression into a 

more concise one as shown in Equation (15). This will be further demonstrated in the next 

subsection. 

Using the inverse function of the proposed transformation function given in 

Equation (11), Equations (3) and (4) can be rewritten as  

 1μ ( ) ( )Y y t f d
∞ −

−∞
 =  ∫ Uu u u   (16) 

and 

 { }22 1 2σ ( ) ( ) μY Yy t f d
∞ −

−∞
 = − ∫ Uu u u   (17) 

respectively, where  

T1 1 1 1
1 2( ) ( ), ( ), , ( )m nt t u t u t u− − − −

+ =  u                                        (18) 

in which 1( )it u−  is the inverse function of the transformation function which is given by 

Equation (11); ( )fU u is the joint probability density function of U and is given by  

 
1

( ) ( )
i

m n

U i
i

f f u
+

=

=∏U u   (19) 

 

 

 

 



 15 

3.3 Estimating the mean and variance of a function by GHI  

(a) Y is a function of one random variable Z 

 As indicated in Equation (16), after transformation, the mean of Y can be calculated 

as 

 1μ ( ) ( )Y Uy t u f u du
∞ −

−∞
 =  ∫  (20) 

Using Equation (9), Equation (20) becomes 

{ }1

1
μ ( ) ( )I

r
u

Y I I U I
I

w e y t u f u−

=

 ≅  ∑                                           (21) 

Substituting Equation (12) into Equation (21) yields 

1

1

1μ ( )
r

Y I I
I

w y t u
π

−

=

 =  ∑                                                   (22) 

As shown in Equation (17), the variance of Y reads 

 { }22 1 2σ ( ) ( ) μ
YY Uy t u f u du

∞ −

−∞
 = − ∫                                         (23) 

Applying Equation (9) to the integral term in Equation (23) obtains 

 { }22 1 2

1
σ ( ) ( ) μI

r
u

Y I I U I Y
I

w e y t u f u−

=

 ≅ − ∑                                  (24) 

Plugging Equation (12) into Equation (24) yields 

{ }22 1 2

1

1σ ( ) μ
r

Y I I Y
I

w y t u
π

−

=

 = − ∑                                       (25) 

where uI and wI are  the abscissas and weights of Gauss-Hermite integration, respectively, 

and r is the number of Gauss points (or the quadrature order) used. 
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(b) Y is a function of multiple random variables  ( 1, 2, , )iZ i n=   

Using the same procedure as in (a), the mean and variance of Y can be computed as 

1

1 1

1

1 1

1 1

1μ [ ( ), , ( )]
n

n n
n

n rr

Y I I I I
I I

w w y t u t u
π

− −

= =

 ≅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ 
 

∑ ∑                                 (26)    

and        

 { }
1

1 1

1

22 1 1 2

1 1

1σ [ ( ), , ( )] μ
n

n n
n

n rr

Y I I I I Y
I I

w w y t u t u
π

− −

= =

 ≅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ − 
 

∑ ∑  (27) 

respectively, where 1, , nr r⋅ ⋅ ⋅ denote the quadrature order (the number of abscissas) used in 

the 1, , nu u⋅ ⋅ ⋅  directions; 
1

( , , )
nI Iu u⋅ ⋅ ⋅ are Gauss points; and 

1
, ,

nI Iw w⋅ ⋅ ⋅ are the corresponding 

weights.  

 Generally, the accuracy of GHI approximation improves as the quadrature order r of 

each integration variable (the number of the abscissas for each integration variable) 

increases. However, increasing the quadrature order r also results in the increase of the total 

number of function (integrand) evaluations, because the number of function evaluations is 

(n+m)r, where n+m is the total number of random variables involved in the function, and r 

is the number of abscissas used for each random variable or parameter.  Therefore, there is 

a trade-off between accuracy and efficiency. GHI gives an exact result for the mean if the 

function [ ]y ⋅  in Equation (22) or (26) is a polynomial of degree 2r -1 or less, where r is the 

quadrature order [14]. GHI provides an exact result for the variance only if [ ]y ⋅  is a 

polynomial of degree r-1 or less, due to the involvement of the square of [ ]y ⋅  in Equation 

(25) or (27). For most problems in structural or mechanical engineering, it is good enough 

to take r = 3 or 4.  
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The following example shows the accuracy and efficiency of the proposed method. 

The response variable is given by 1 2Y Z Z= . Both Z1 and Z2 are normal random variables, 

1Z ~ (40, 4)N  and 2Z ~ (70, 4)N .  The quadrature order 2 (two abscissas) is used for both Z1 

and Z2. Table II gives the results of different methods. The result of Monte Carlo simulation 

(MCS) is considered as an accurate reference since a large number of simulations (108) are 

performed. 

 

Table II. Comparison of mean and variance from three methods. 

Mean ( μY ) Variance ( 2σY ) 
Taylor GHI MCS  Taylor GHI MCS 
2800 2686 2686  26000 155583 155561 

 

The above results indicate that the GHI method provides good approximations to 

both mean and variance and is much more accurate than the Taylor expansion method.  In 

the Taylor expansion method, if the evaluations of two partial derivatives of the function Y 

are evaluated numerically by forward finite difference method, totally 3 function 

evaluations are taken. Since the quadrature order for both X1 and X2 is 2, hence the number 

of function evaluations used in GHI is 4. In this mathematical problem, the Taylor 

expansion method is slightly better than the GHI method in terms of efficiency, but the 

latter is much more accurate than the former. 
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3.4 Robust design optimization using Gauss-Hermite integration 

 Considering the desirable features of the proposed method, it is very promising to 

incorporate the proposed method into robust design optimization to achieve accurate and 

efficient solutions. The procedure of the proposed robust design optimization is depicted in 

Figure 2. The optimizer calls the proposed method repeatedly to evaluate the mean and 

standard deviation of the objective and constraint functions when updating the design 

variables.  

 

Figure 2. Flowchart of the robust design optimization using GHI. 
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4. NUMERICAL EXAMPLES 
 

  
In this section, two engineering problems are used to demonstrate the proposed 

method compared with the Taylor expansion method and Monte Carlo simulation (MCS). 

Both design variables and design parameters are considered as random variables that follow 

normal distributions. For the Taylor expansion method, the forward finite difference 

approach is used to calculate the first order derivatives of objective and constraint functions.  

An identical number of abscissas are used for every random variable in each case for the 

proposed GHI method. 

 
 
4.1. A two-bar truss  
 

Figure 3 shows a structure of a two-bar truss [6]. Design variables [ ]T1 2X , X=X are 

the cross-sectional area of the truss and the half distance between the two bottom rollers. 

Design parameters [ ]T, S,Qρ=P  consist of the density of the bar material ρ  , the bar 

material's maximum allowable tensile strength S , and the magnitude of the external force Q 

applied on the top of the truss. The design is to minimize the weight of the two-bar truss 

subjected to the two strength constraints about the axial stress in each bar.  
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Figure 3. Two-bar truss. 

 
 

The deterministic optimization design model of this problem is given by 
 

, 

1

2

minimize  ( ) 1  

5 8 1subject to    ( ) 1.0 1 0
65

5 8 1( ) 1.0 1 0
65

0.2 20, 0.1 1.6

1 2

2
1 2 1 2X X

2
1 2 2

1 1 2

2
1 2 2

1 1 2

1 2

f X ,X ρX + X

Qg X ,X + X
X X XS

Qg X ,X + X
X X XS

X X

=

 
= − + ≥ 

 
 

= − − ≥ 
 

≤ ≤ ≤ ≤

            (28) 

 
where [ ]T 4 3 T[10 / ,1050 ,800 ], S,Q kg m MPa kNρ= =P for the deterministic case. 
 

In the robust design optimization, 1 2, ,X X , Sρ , and Q are considered as random 

variables. A normal distribution is associated with each of the random variables. 

Distributions of design parameters are given in Table III. The means and standard 

deviations of design variables are unknowns. The means of design variables are to be 

X2 (m) X2 

X1 (cm2) 
Cross-sectional 
area 1.0 m 

Qy  

Qx  

X1 

Q  
Qy = 8Qx 



 21 

determined, and the standard deviations of the design variables are set to be 2% of the mean 

values.  

 
Table III. Distribution information of design parameters. 

 
Design parameter Mean Standard deviation 

ρ 10,000 kg/m3 2,000 kg/m3 
Q 800 kN 200 kN 
S 1050 MPa 250 MPa 

 

The robust design optimization model is given by 

1 2

1 1

2 2

1

2

1 2* *, 

1

2

minimize   + 

subject to  ( ) 0

( ) 0

                 0.2 20

                 0.1 1.6

X X

f f

f f

1 2 g g

1 2 g g

X

X

w w

G X ,X ,Q,S k

G X ,X ,Q,S k

m m

m s

m s

= m − s ≥

= m − s ≥

≤ m ≤

≤ m ≤

                                             (29) 

where the constant k is chosen to be 3, which is equivalent to a reliability of 0.9987; and w1 

= w2 = 0.5 is used. 

Table IV. Results from different methods for the two-bar truss. 
 

Method Design variables (
1Xm , 

2Xm ) 

Deterministic  (5.3791, 0.3770) 
Taylor  (10.9602, 0.3769) 
GHI 2-abscissa (11.7127, 0.3770) 

 3-abscissa (12.3913, 0.3770) 

 4-abscissa (12.6579, 0.3771) 
MCS N =103 (11.7566, 0.3772) 

 N =104 (12.8132, 0.3770) 
 N =105 (13.1514, 0.3772) 

N – The number of Monte Carlo simulations 
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Table IV shows the optimal results from the deterministic optimization, the Taylor 

expansion method, MCS, and the proposed method (GHI). The result of MCS is considered 

as an accurate reference when a large number of simulations (105) are used for calculating 

the means and standard deviations. It is noted that the solutions of the proposed method are 

very close to those of MCS. The deterministic optimal solution is far from the results of 

MCS. The result from the Taylor expansion method has a considerable error compared with 

the accurate result. The proposed method produces more accurate solutions than the Taylor 

expansion method, and the approximate results get better as the number of the GHI 

abscissas increases from 2 to 4, which confirms the fact that the accuracy of GHI increases 

as the number of the abscissas increases. It is seen that the result of 2-abscissa case is close 

to that of MCS with 1000 simulations and the result of 3-abscissa case is better than the 

solution of MCS with 1000 simulations. The high accuracy of the proposed method relies 

in the accurate estimation of means and standard deviations from the GHI technique.  

To demonstrate the accuracy of the proposed method further, the mean and standard 

deviation of the objective and constraint functions calculated at the respective optimal 

points (10.9602, 0.3769) from the Taylor expansion method and (12.3913, 0.3770) from the 

proposed method are also listed in Table V. Under the heading of (10.9602, 0.3769) from 

the Taylor expansion method, the first column displays the means and standard deviations 

calculated by the Taylor expansion method, and the second column displays those 

calculated by MCS with 105 simulations. The means and standard deviations from both the 

proposed method (3-absissa) and MCS with 105 simulations are also displayed under the 

heading of (12.3913, 0.3770) from GHI. The results calculated by Monte Carlo simulation 

are considered as accurate solutions. The table shows that the proposed method is more 
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accurate than the Taylor expansion method.  Because of the large error, a feasible constraint 

in the Taylor expansion method may not be actually feasible. For example, at the optimal 

point from the Taylor expansion 

method,
1 11( ) 0.5091 3 0.1697 = 01 2 g gG X ,X ,Q,S k= m − s = − ×  is active and feasible when 

the robustness assessment is based on the Taylor expansion method. However, if the 

accurate mean and standard deviation from MCS are used to calculate the constraint again, 

the constraint function will be 
1 11( ) 0.4744 3 0.2248 = 0.21 2 g gG X ,X ,Q,S k= m − s = − × − , 

which is no longer feasible. 

 

Table V. Means and standard deviations at the two optima in Table IV. 
 

Optimal solution (
1Xm , 

2Xm ) (10.9602, 0.3769) (12.3913, 0.3770) 
Taylor MCS GHI (3-abscissa) MCS 

Mean mf  (kg)  11.7131 11.7153 13.2432 13.2454 
Standard deviation σf  (kg) 2.3544 2.3511 2.6626 2.6582 
Mean 

1gm  0.5091 0.4744 0.5360 0.5351 
Standard deviation 

1gs  0.1697 0.2248 0.1786 0.1798 
Mean 

2gm  0.7536 0.7363 0.7671 0.7667 
Standard deviation 

2gs  0.0852 0.1127 0.0897 0.0997 
 

In the 2-abscissa case, 8 function evaluations are used to calculate the mean and 

standard deviation of the objective function, and 16 function evaluations are used to obtain 

the mean and standard deviation of each constraint function. In the 3-abscissa case, 27 and 

81 function evaluations are used to get the mean and standard deviation of the objective 

function and each constraint function, respectively.  The Taylor expansion method needs 4 

function evaluations to calculate the mean and standard deviation of the objective function, 
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5 function evaluations to calculate the mean and standard deviation of each constraint 

function. Even though Taylor expansion method is more efficient than the proposed method, 

its accuracy is much lower. It is worthwhile to mention that more than four abscissas for 

each variable may be used to achieve higher accuracy in GHI. The disadvantage of more 

abscissas used is that it will result in a higher computational cost (more function 

evaluations) for estimating mean and variance, because the total number of function 

evaluations increases exponentially with the number of abscissas, as previously discussed. 

 

4.2. An automobile torque arm 
 

An automobile torque arm [19] is shown in Figure 4. This design problem has four 

design variables, [ ] [ ]T T
1 2 3 4 1 2, ,X , , ,  ,  X X X a d d l= =X . The design parameters include the 

yield stress Sy, Young’s modulus E, and the external force Q. The distributions of the 

random variables are listed in Table VI. The volume is to be minimized with strength and 

buckling constraints. 

 
Figure 4. Automobile torque arm. 

Q a 

d1 
d2 

l 

A 

A 
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Table VI. Distribution information of design variables and parameters. 

 
Variable Mean Standard deviation 
X1 (a) - 0.05 mm 
X2 (d1) - 1.5 mm 
X3 (d2) - 2.5 mm 
X4 (l) - 6.0 mm 
Q 5500 N  900 N 
Sy 170 N/mm2  30 N/mm2  
E 2.1×1011 N/mm2  2.0×1010 N/mm2  

 
 

The volume is given by 

          
2

22 1 2
1 2( , , , ) 2( )

4 2 2
d d df a d d l a l aπ

= + − −  (30)                                                           

The first constraint is related to the yield failure at section A-A and is given by 

           2 2
1 1 2

(2 )( , , , ) 1 0
4 y

Q l d dg a d d l
IS
−

= − ≥    (31) 

where  

 ( )22 4
2

2 6
a d a aI

−
= +   (32) 

The second constraint is related to the buckling failure at the two connecting rods 

and is given by 

            
2 4

2 1
2 1 2 2

1 2

( , , , ) 1 0
3(2 )

Ea d dg a d d l
l d d Ql
π −

= − ≥
− −

 (33) 

In robust design optimization, 1 2, , , , , ya d d l Q S and E  are considered as random 

variables. The robust design optimization model is 
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1 2 3 4
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≤ m ≤

≤ m ≤

≤ m ≤

                             (34) 

 
where the constant k is chosen to be 3, which corresponds a reliability of 0.9987; and the 

weighting factors are set to w1 = w2 = 0.5.  

Table VII gives the results from four different methods. The result of MCS with a 

large number of simulations (105) is again considered as an accurate solution for the 

comparison. According to the results, the proposed method provides the closest solution to 

the accurate solution when 4 abscissas are used for each random variable. Also the 

accuracy of the proposed method improves as the number of abscissas increases from 2 to 4. 

This phenomenon confirms again the fact that the accuracy of GHI improves as the number 

of the abscissas increases. The result of the Taylor expansion method is better than 

deterministic case in terms of robustness, but it is far away from the accurate robust 

solution.  
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Table VII. Comparisons of results from different methods. 
 

Method 
Design variables  

  (
1Xm ,

2Xm 3
,Xm 4Xm ) (mm) 

Deterministic   (8.135, 55.000, 55.000, 110.000) 
Taylor  (14.999, 47.204, 64.999, 134.367) 
Proposed 2-abscissa (12.510, 49.156, 65.000, 146.276) 
 3-abscissa (13.518, 49.295, 65.000, 157.986) 
 4-abscissa (13.674, 49.321, 65.000, 159.686) 
MCS N = 1000 (12.693, 45.000, 65.000, 141.897) 
 N = 5000  (14.259, 49.274, 65.000, 167.396) 
 N = 105  (13.708, 49.330, 65.000, 160.342) 

 

Similar to Example 1, to demonstrate the accuracy of the proposed method further, 

the mean and standard deviation of the objective and constraint functions calculated by 

both the Taylor expansion method and the proposed method (3-abscissa) at their respective 

optimal points are listed in Table VIII. The results are compared with those from the MCS 

with 105 simulations. The results indicate again that the proposed method is more accurate 

than Taylor expansion method in estimating the mean and standard deviation.   

 

Table VIII. Means and standard deviations at the two optima in Table VII 
 

Optimal solution 
 (

1Xm , 
2Xm ,

3Xm ,
4Xm )  

(14.999, 47.204 , 64.999, 134.367) (13.518, 49.295, 65.000, 157.986) 
Taylor MCS (105) GHI (3-abscissa) MCS (105) 

Mean mf  (mm3)  8.4980×104 8.5064×104 8.1784×104 81782×104 
Standard deviation σf (mm3) 4.2700×103 3.9889×103 3.5465×103 3.5352×103 

Mean 
1gm  0.6303 0.6164 0.4471 0.4478 

Standard deviation 
1gs  0.0952 0.1049 0.1490 0.1495 

Mean 
2gm  3.4408×107 1.4411×108 4.2839×107 4.2691×107 

Standard deviation 
2gs  1.1372×107 4.7866×107 1.3753×107 1.3821×107 
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5. DISCUSSION AND SUMMURY 

 
 

 In order to achieve an accurate and efficient robust design solution, a new 

robustness assessment technique is proposed. In this method, the random variables are 

transformed to the normal variable that follows a distribution 10,
2

N  
 
 

.  The numerical 

Gauss-Hermite integration technique is then employed to calculate the mean and standard 

deviation of the response functions. A concise formula that only sums up a sequence of 

products of weights and response values is constructed for estimating the mean and 

standard deviation of response functions. As demonstrated in the examples, this method is 

more accurate than the widely used Taylor expansion approach and is more efficient than 

Monte Carlo simulation. Since there is no need for derivatives, the proposed method is 

suitable to the situations where the derivatives of a response function are difficult to obtain, 

or the derivatives do not exist. This method can be easily implemented in the framework of 

robust design. 

It should be noted that, similar to other numerical integration techniques, the 

efficiency of the proposed method will decrease when the number of random variables 

increases. When the number of random variables is large, before the robust design, 

sensitivity analysis [17, 20, 21] may be performed to screen out the random variables which 

are not important to the objective and constraint functions.  Design of Experiments [22], 

and response surface method [5, 23] can also be used for this purpose. During the robust 

design process, those random variables that are not of significance will be fixed at their 
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mean values. Another strategy is to use different number of abscissas for different random 

variables [12] to reduce the number of function evaluations.  
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