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Abstract 

Uncertainty analysis, which assesses the impact of uncertainty of input random variables 

on performance functions, is an important and indispensable component in engineering design 

under uncertainty. In this paper, a Saddlepoint Approximation based simulation method is 

proposed to accurately and efficiently estimate the distribution of a response variable. The 

proposed method combines both simulation and analytical techniques and involves three main 

steps: (1) sampling on input random variables, (2) approximating the cumulant generating 

function of the response variable with its first four cumulants, and (3) estimating the cumulative 

distribution function and probability density function of the response variable using Saddlepoint 

Approximation. This method provides more computationally efficient solutions than the general 

Monte Carlo simulation while maintaining high accuracy. The effectiveness of the proposed 

method is illustrated with a mathematical example and two engineering analysis problems. 

 

Keywords: uncertainty analysis; Saddlepoint Approximation; reliability analysis; Monte Carlo 

simulation; cumulant generating function 
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1 Introduction 

The reliability of any engineering system is directly affected by various uncertainties, 

such as variations in loading, material properties, physical dimensions of parts, model structure, 

and operation conditions. With ever increasing demand of higher product reliability as well as 

the pressure of cost reduction, the effects of uncertainty on reliability must be carefully 

addressed. With the aid of uncertainty analysis in design stage, reliability issues can be addressed 

early to prevent the occurrence of failure events that may lead to significant quality losses or 

even catastrophic consequences. While the use of uncertainty analysis has gained significant 

adoption in industrial practices, to date, a major obstacle for performing all-inclusive uncertainty 

analysis is the unaffordable computational burden. The evaluation of the probabilistic 

characteristics of system performances can present severe mathematical and numerical 

difficulties. A full-scale uncertainty analysis may require hundreds or thousands of deterministic 

engineering analyses where expensive simulations, such as finite element analysis (FEA) and 

computational fluid dynamics, are usually involved.  

Suppose a performance function is modeled as 

                                                                    ( )Y g= X ,                                                                   (1)  

where X is the vector of input random variables, [ ]T1 2,   ,...,  dX X X=X , and Y is the response 

(performance) variable. In the area of structural reliability, the function ( )g X  is also referred to 

as a limit-state function. The main task of uncertainty analysis is to obtain the cumulative 

probability function (cdf) and probability density function (pdf) of the response Y, given the 

distribution of input variables X . Theoretically, the cdf of Y can be calculated by a 

multidimensional integral, 
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( )

( ) { }  ( )Y
g y

F y P Y y f d
≤

= ≤ = ∫ X
X

x x ,                                                 (2) 

where ( )fX x  is the joint pdf of  random variables X.  A close-form solution to Eq. (2) rarely 

exists due to the high dimensionality, the complicated integrand ( )fX X , and the nonlinear 

integration boundary ( )g y=X .    

Many practitioners adopt approximation methods such as the First Order Reliability 

Method (FORM) and the Second Order Reliability Method (SORM).  These approximation 

methods rely on the approximation of the model at the so-called Most Probable Point (MPP) 

(Haldar and Mahadevan, 2000; Hohenbichler, Gollwitzer, Kruse and Rackwitz, 1987). The 

search of the MPP involves an optimization problem and therefore needs an iterative process 

where a number of deterministic analyses are required. When the number of random variables is 

small or moderate and when the performance function is sufficiently approximated with a low 

order polynomial (i.e. the first and second order in FORM and SORM, respectively), MPP-based 

approaches are computationally efficient and can provide satisfactorily accurate results.  

However, their computational efficiency decreases significantly when the number of random 

variables increases. The reason is that the typical MPP search requires numerical evaluations of 

derivatives of the response, and the number of such evaluations is approximately proportional to 

the number of random variables (Adhikari and Langley, 2002; Wu, 1998). In addition, due to the 

first or second order approximation, neither FORM nor SORM may be accurate enough for a 

highly nonlinear response. To improve accuracy, Tvedt (1988) used Saddlepoint Approximation 

as an alternative to SORM. After the MPP is identified and the performance function is 

approximated in a quadratic form in terms of standard normal variables, the cumulant generating 

function (cgf) of the performance is readily available, and then the Saddlepoint Approximation is 
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applied to calculate the reliability. Compared to SORM, the Saddlepoint Approximation method 

provides more accurate results. However, the method requires the MPP search and needs the 

second order derivatives at the MPP in order to obtain the quadratic approximation. When the 

number of random variables is large, the computation is still intensive.  Furthermore, none of 

these MPP-based methods (Breitung, 1984; Du and Chen, 2000; Du and Chen, 2001; Du, 

Sudjianto and Chen 2004; Hohenbichler, Gollwitzer, Kruse and Rackwitz, 1987; Rackwitz, and 

Fiessler, 1978; Tvedt, 1988) is suitable for distribution estimation (cdf and pdf curve generation). 

Other uncertainty analysis methods (Isukapalli, Roy and Georgopoulos, 1998; Jin, Du and Chen, 

2003; Zou, Mourelatos, Mahadevan and Tu, 2003) are based on Design of Experiments (DOE). 

Computationally cheap surrogate models are created from DOE to replace the original models 

during uncertainty analysis. The indicator response surface–based simulation method (Zou, 

Mourelatos, Mahadevan and Tu, 2003) is one representative method, which can be used to 

estimate reliability at both component and system levels efficiently and accurately when the 

dimension of the problems is not high; it can also deal with the multiple MPPs where FORM or 

SORM is not applicable.  DOE-based methods require a large number of function evaluations to 

construct surrogate models when the number of random variables is large. A typical approach to 

improve efficiency for large scale problems is the use of variable reduction methods (Adhikari 

and Langley, 2002; Mohanty and Wu, 2001; Wu, 1998). According to the sensitivities of random 

variables to the performance response, “unimportant” variables are removed from the uncertainty 

analysis. Although this method improves efficiency significantly, screening out variables and 

neglecting the interaction between “removed variables” and “remaining variables” may result in 

an unknown accuracy loss (Wu, 1998).  
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Point-estimate method (Seo and Kwak, 2002; Zhao, Alfredo and Ang, 2003) is another 

uncertainty analysis method which uses approximated statistical moments to estimate the 

reliability. The computational demand (the number of performance function evaluations) is equal 

to sd, where s is the number of points for each variable and d is the number of random variables. 

It is not appropriate for a large scale problem because the computational demand increases 

exponentially with the number of random variables.  

 Monte Carlo simulation (MCS) is easy and flexible to use and does not exhibit the 

limitations shared by analytical and surrogate methods. However, directly applying MCS is 

usually not a practical alternative because running computer simulation is an expensive exercise 

and the probability of failure is typically very small for a high reliability product.  Some variants 

of MCS (Dey and Mahadevan, 1998; Moarefzadeh and Melchers, 1999; Rubinstein, 1981), such 

as importance sampling and adaptive importance sampling, have been developed to address rare 

events with small probability.  Several other methods have also been proposed to improve the 

efficiency of the basic MCS. McKay et al. (1979) introduced the use of Latin Hypercube 

Sampling (LHS) for computer experiments. Owen (1997) showed that, for finite samples, LHS is 

not worse than MCS.  

Recently, the First Order Saddlepoint Approximation (FOSPA) method has been reported 

(Du and Sudjianto, 2004). It is more accurate and efficient than FORM and in some cases more 

accurate than the general SORM and the saddlepoint-based SORM (Tvedt, 1988). However, 

FOSPA is still expensive when the problem dimension is high, because the MPP search is 

required. 

Considering the above challenges, there is a need to develop general, accurate and 

efficient uncertainty analysis methods which are especially suitable for large scale problems. In 
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this paper, taking the advantage of the accuracy of Saddlepoint Approximation (SPA) and the 

dimension-independent feature of MCS-type methods, we propose a Saddlepoint Approximation 

Based Simulation (SABS) method. This method provides a solution to the tradeoff between 

accuracy and efficiency. It inherits the good features from both MCS and SPA and gives an 

accurate estimate for the cumulative distribution function (cdf) and probability density function 

(pdf) of a response while only needing a moderate number of simulations. Consequently, it is 

especially suitable and beneficial to uncertainty analysis for large scale problems that involve a 

large number of random variables.    

The remaining of the paper is organized as follows. Section 2 gives an overview of 

Saddlepoint Approximation, which serves as a theoretical foundation of the SABS method. In 

Section 3, the details of the SABS method are presented. In Section 4, a mathematical example 

and two engineering problems are used to illustrate the SABS method in comparison with FORM, 

SORM, and MCS. Section 5 is the closure of this paper. 

 

2 Saddlepoint Approximation 

Saddlepoint Approximation has become a powerful tool to estimate the pdf and cdf since 

it was first introduced by Daniels (1954). During the last two decades, research in this area has 

vastly increased (Goutis and Casella, 1999). Next, we will give a brief introduction to 

Saddlepoint Approximation. 

Let Y (a response variable) be a random variable with a pdf ( )Yf y , and then the moment 

generating function of Y is given by  

( ) ( ) .ty
Yt e f y dy

∞

−∞

f = ∫                                                               (3) 

The cumulant generating function (cgf) K(t)  of Y is defined as  
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[ ]( ) ( ) ,K t log t= φ                                                                  (4) 

where log is  the natural logarithm. 

The pdf of Y can be restored from K(t) by the inverse Fourier transformation 

[ ( ) ]1 1( ) ( )
2 2

i
ity K t ty

Y
i

f y e it dt e dt
∞ ∞

− −

−∞ − ∞

= f =
π π∫ ∫ ,                                           (5) 

where 1i = − (the pure imaginary quantity).  

Differentiating the integrand in Eq. (5) and letting the result equal zero yields the 

following equation 

' ( ) ,K t y=                                                                        (6) 

where ' ( )K ⋅ is the first  order derivate of the cgf. 

The solution to Eq. (6) is called the saddlepoint and is denoted by ts. Then the integrand 

is approximated at the saddlepoint and an integration path passing through the saddlepoint of the 

integrand is selected. Since the saddlepoint is an extreme point as shown in Eq. (6), the function 

value of the integrand falls away rapidly as we move from this point. Thus, the influence of 

neighboring points on the integral is diminished (Goutis and Casella, 1999; Huzurbazar, 1999). 

Based on the above idea, Daniels (1954) used the exponential power series expansion to 

estimate the integral in Eq. (5) and derived the following equation for pdf estimation,  

1
2

[ ( ) ]
''

1( )
2 ( )

s sK t t y
Y

s

f y e
K t

− 
=  π 

,                                                  (7) 

where '' ( )K ⋅  is the second order derivative of the cgf . Lugannani and Rice (1980) provided a 

concise formula for calculating cdf,   

1 1( ) { } ( ) ( )YF y P Y y w w
w v

 = ≤ = F + − 
 

φ ,                                           (8) 
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where F(∙) and f(∙) are the cdf and pdf of a standard normal distribution, respectively, 

[ ]{ }1/ 2
( ) 2 ( )s s sw sgn t t y K t= −                                                 (9) 

 and 

1/ 2'' ( ) , =  s sv t K t                                                              (10) 

where ( )ssgn t = +1, -1, or 0, depending on whether ts is positive, negative or zero.  

Briefly speaking, the central idea of SPA is that the probability integration is 

approximated through the saddlepoint where the integrand has the highest contribution to the 

integration. For the complete methodology, interested readers can refer to Huzurbazar (1999), 

Jensen (1995), and Lugannani and Rice (1980). 

Saddlepoint Approximation has several excellent features. (1) It yields extremely 

accurate probability estimation, especially in the tail area of a distribution where probability 

calculation for high reliability system is needed (Daniel, 1987; Jensen, 1995). (2) It requires only 

a process of finding one saddlepoint without any integration. 3) It provides the estimations of 

both cdf and pdf simultaneously. Hence, there is no need of taking numerical derivative of cdf to 

obtain pdf or performing numerical integration of pdf to obtain cdf.  

Even though Saddlepoint Approximation has widespread applications in statistics (Daniel, 

1987; Kolassa, 1991; Kuonen, 2001), its applications in engineering design and simulation has 

not been well studied (Du and Sudjianto, 2004). The integration of Saddlepoint Approximation 

with SORM (Tvedt, 1988) has demonstrated its potential use in engineering fields. A recent 

attempt is the First Order SaddlePoint Approximation (FOSPA) for reliability analysis (Du and 

Sudjianto, 2004). With FOSPA, the performance function is linearized at the MPP in the original 

space without any nonlinear transformation from non-normal random variables to standard 

normal random variables. Therefore, the chance of increasing the nonlinearity of the 
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performance function is eliminated. However, the search of the MPP is an iterative process and 

needs a number of performance function evaluations. Because of the computational cost, FOSPA 

may not be applicable for a large scale problem. To alleviate the computational demand, this 

research work develops an efficient Saddlepoint Approximation based simulation method by 

taking advantages of the desirable features of Saddlepoint Approximation and Monte Carlo 

simulation. Details of the proposed method are given in the following section.  

 

3 Saddlepoint Approximation Based Simulation  

 As discussed previously, the first order Saddlepoint Approximation method is accurate 

but inefficient when the number of random variables is high. On the other hand, the accuracy of 

Monte Carlo simulation (MCS) is independent of the problem dimension, but MCS is inefficient 

for rare events. The proposed Saddlepoint Approximation based simulation (SABS) method 

combines both methods and provides accurate solutions with moderate computational cost. 

 

3.1 General procedure  

The SABS method consists of simulation and analytical processes (simulation and 

Saddlepoint Approximation). As discussed in the preceding section, the use of Saddlepoint 

Approximation rests on the cgf of the performance function ( )Y g= X , which is usually a 

nonlinear function of the random variables X. Except for special cases, a close-form cgf of 

( )Y g= X  cannot be obtained analytically. In this work, a sampling based method is used to 

estimate the first four statistical cumulants.  The cgf of the performance function is then 

approximated with the empirical cumulants. Finally, Saddlepoint Approximation is applied to 

estimate the pdf and cdf of the performance function.  Figure 1 outlines the procedure involved in 
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the SABS method, and the details of each step of the procedure are presented in the following 

subsections. 

 

Figure 1 Procedure of the SABS method 

 

 

3.2 Sampling on random variables and evaluating performance function 

 Random variable sampling requires the generation of n samples of a random vector 

consisting of all of the d random variables, [ ]T1 2,  ,...,  .dX X X=X  If variable Xj follows a 

distribution 
jXF , the samples are generated using Quantile-Quantile transformation from i.i.d 

samples, v, uniformly distributed on u[0, 1) d, 

( )1
j .

jj Xx F v−=                   (11) 

Sampling on random variables 

Evaluating performance function 

Computing cumulants 

Solving the saddlepoint 

Estimating pdf & cdf 

Simulation process 

Analytical process 

Approximating cgf 
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McKay et al. (1979) introduced the use of Latin Hypercube Sampling (LHS) for 

computer experiments where the samples are drawn by 

( )1
( 1,..., ),

i
j ji

j

i w
v i n

n
π − +

= =                                                        (12) 

where jπ is a uniform permutation of 0,…, n-1, and i
jw is a random observation from u[0,1).  

i
jv  can also be obtained by the widely used median version  

( )1 0.5
.ji

j

i
v

n
− +

=
π

                                                    (13) 

Because LHS exhaustively stratifies across the whole range of each sampled variable, it 

provides an efficient way for sampling the entire range of each variable in accordance with the 

assumed probability distribution. Thus, it mitigates the problem of random sampling for which 

important intervals with low probability but high consequences may be missing from the 

samples. LHS requires fewer samples than the Monte Carlo sampling with the same accuracy 

and produces more stable results (Ding, Zhou and Liu, 1998; Helton and Davis, 2003; Owen, 

1997).  

After n samples of X are drawn, the corresponding n samples of the performance function 

Y are then obtained through substituting the samples of X into the performance function  

1 2( , ,..., ) ( 1,..., ),i i i i
dy g x x x i n= =                                                (14) 

where ( )1 2, ,...,i i i
dx x x is the ith sample (xi) of X. 

 

3.3 Estimating cumulants 

Cumulants, 1 2, ,..., ,rκ κ κ  of a random variable are theoretically derived from the power 

expansion of its cgf (Kendall and Stuart, 1958) 
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2
2

1( ) .
2! !

r
rt tK t t
r

κ κ
= κ + +⋅⋅⋅+ +⋅⋅⋅                                                         (15) 

The rth cumulant rκ  (r = 1, 2,…) is generated by   

[ ]
0

( ) .
r

r r
t

d K t
dt

=

κ =                                                                (16) 

Cumulants have been used to estimate pdf. The representative method is the cumulant-

neglect closure for dynamics problems which involve stochastic differential equations 

(Wojtkiewicz, Spencer and Bergman, 1996; Wu and Lin, 1984). In this work, we use cumulants 

of the response variable to estimate its cgf. We first estimate the cumulants and then use the 

cumulants to approximate the cgf of the performance function as shown in Eq. (15).  

Once a set of samples of the performance  ( ) 1, 2,...,iy i n=  are generated, the cumulants 

of the performance function are computed using the following equations (Fisher, 1928): 

1
1

2
2 1

2

3 2
1 1 2 3

3

4 2 2 2
1 1 2 2 1 3 4

4

( 1)
2 3

( 1)( 2)
6 12 3 ( 1) 4 ( 1) ( 1) ,

( 1)( 2)( 3)

s
n
ns s
n n
s ns s n s
n n n
s ns s n n s n n s s n n s

n n n n

κ =


−κ = −
 − +κ =
 − −


− + − − − + + +κ = − − −

                  (17)                                    

where n is the sample size; ( 1, 2,3and 4)rs r = are the sums of the rth powers of the sample 

values of the performance function, namely, 

1
( ) .

n
i r

r
i

s y
=

=∑                                                                   (18) 

 For higher order of cumulants, one can refer to Fisher (1928). 

 



 13 

3.4 Approximating cumulant generating function  

As suggested in Eq. (15), the cgf can be expressed with an infinite series of powers of t 

( in an interval of [-h, h] for some small h > 0):  

1
( )

!

j

j
j

tK t
j

∞

=

= κ∑ .                                                            (19) 

 An approximation formula could be obtained by constructing a series up to a certain 

order. In practice, only the first four cumulants in the above power expansion are used, and then 

the Saddlepoint Approximation technique is applied. This approximation can yield remarkable 

results (Canty and Davison, 1996; Gatto and Ronchetti, 1996; Wang, 1992). In this work, up to 

the fourth cumulant items, 1 2 3, ,κ κ κ and 4 ,κ are used to approximate the cgf. 

 

3.5 Evaluating pdf and cdf 

Once an analytical formulation of the cgf for the performance function is obtained, the 

use of Saddlepoint Approximation becomes straightforward. The analytical formulation of the 

cgf is in a polynomial form in terms of variable t, and it is easy to obtain an analytical solution of 

the saddlepoint and the derivatives of the cgf. According to Eqs. (6) and (15), the equation for the 

saddlepoint is derived as 

1
'

1
2

( ) .
( 1)!

jr

j
j

tK t y
j

−

=

= κ + κ =
−∑                                              (20) 

Solving the above equation yields the saddlepoint ts.   

The cgf and its second order derivative at the saddlepoint ts are then given by 

1
( )

!

ir
i s

s
i

tK t
i=

κ
=∑                                                         (21) 

and 
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2
''

2
3

( ) ,
( 2)!

−

=

= +
−∑
jr

s
s j

j

tK t
j

κ κ                                             (22) 

respectively. 

Thereafter, pdf and cdf are then calculated by Eqs. (7) and (8), respectively.   

 

4 Examples 

In this section, a mathematical example and two engineering problems are used to 

illustrate our proposed method (SABS). Up to the fourth cumulant items are used to solve the 

saddlepoint. The performance of SABS is compared with that of MCS, FORM, and SORM, 

whenever necessary.  For FORM and SORM, the sequential quadratic programming is employed 

to search the MPP.  

 

4.1 A mathematical problem 

Consider a performance function with d independent random variables (Du and Sudjianto, 

2004) given by 

1( ) ,
X

d

j
j

d
Y g

d
=

−
= =

∑
X                                                        (23) 

where d is the number of random variables, and Xj   are  random variables following the standard 

exponential distributions with pdf 

 X ( ) .j

j

x
jf x e−=                                                                    (24) 

This example is selected because a theoretical solution exists. FORM, SORM, and SABS 

are used to evaluate the cdf and pdf of the performance function in a range of [ ]3.5, 4.5− . The 

results from FORM, SABS and exact solutions are depicted in Figures 2 and 3 for d = 10.  It is 
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noted that the proposed method is much accurate than FORM while only 250 samples are used. 

SORM gives better solutions than FORM in the most of the range, but they are still much less 

accurate than SABS. Singularity occurs in the left tail of the distribution when SORM is used, 

and therefore the results from SORM are not included in the figures. 

 

Figure 2 cdf when d = 10, the sample size of SABS n = 250 
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Figure 3 pdf when d = 10, the sample size of SABS n = 250 

 

As indicated in Du and Sudjianto (2004), the reason that FORM and SORM are not 

accurate is due to the nonlinear transformation from a non-normal distribution to a normal 

distribution. Note that the performance function in Eq. (23) is linear in the original random 

variable space. However, after the random variable transformation from an exponential 

distribution into a standard normal distribution, the performance function becomes highly 

nonlinear. Both FORM and SORM fail to accommodate such nonlinearity. Figure 4 

demonstrates this situation when d = 2. 
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Figure 4  Performance function before and after the transformation 

 

 

We further investigate a higher dimension with d = 100. The cdf and pdf of the 

performance function for this large scale case are plotted in Figures 5 and 6, respectively. It is 

noted that the results from SABS and the exact solution are very close. The error of FORM is 

unacceptably large. At 1.0g = − , the exact cdf is less than 20%, but FORM gives a cdf more than 

95%. Only 250 samples are used in SABS for this large scale problem. Figures 2, 3, 5 and 6 

demonstrate that SABS is evenly accurate over the whole range [ ]3.5, 4.5− .  

 Note that this problem involves a summation of a large number of random variables. 

According to the central limit theorem, when the number of random variable is large, the 

distribution of the performance variable approaches a normal distribution. The pdf curves from 

the exact solution and SABS are in agreement with the central limit theorem while this is not the 

case with FORM due to its poor approximation of the performance function in the transformed 

U-space.  
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Figure 5 cdf when d = 100, the sample size of SABS n = 250 

 

Figure 6 pdf when d = 100, the sample size of SABS n = 250 
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4.2 A composite beam problem 

In what follows, we present an example where the engineering model has an analytical 

form.  Consider a composite beam with 20 independent random variables.  The beam with 

Young’s modulus Ew and A mm wide by B mm deep by L mm long, has an aluminum plate with 

Young’s modulus Ea and a net section C mm wide by D mm high securely fastened to its bottom 

face, as shown in Figure 7. Six external vertical forces, P1, P2, P3, P4, P5 and P6 are applied at six 

different locations along the beam, L1, L2, L3, L4, L5, and L6 from the left end. The allowable 

tensile strength is S.  

 

Figure 7 A composite beam 

 P1 P2 P3 P4 P5 

O1 B 

D 

L 

M – M cross-section 

P6 

L1 
L2 L3 

L4 
L5 

L6 

M 

O2 

A 

C 

M 

 

 

In this problem, the twenty random variables are 

[ ] [ ]T T
1 20 1 2 3 4 5 6 1 2 3 4 5 6 a wX ,...,X A, B, C, D, L , L , L , L , L , L , L, P , P , P , P , P , P , E , E , S= =X . 

Details of these random variables are given in Table 1. 

The maximum stress occurs in the middle cross-section M-M and is then given by 
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6
2

1
3 1 2 1 2 3 2

max 2
2 2

3 3

0.5 ( )( )
( ) ( )

0.5 ( ) 0.5 (
1 10.5 0.5

12 12

a
i i

i w

a

w

a a

w a a w

a w w

w

EAB DC B DP L L
EL P L L P L L EL AB DC

E

E EAB DC B D AB DC B
E E E EAB AB B CD CD D BE E EAB DC

E

=

   + +−   
  − − − −
   +
     σ =

  + + +    + − + + + − 
  +
    

∑

2 .
)

a

w

D

EAB DC
E

  +     
  +
    

 

     (25) 

The maximum stress maxσ  should be less than the allowable strength S.  The performance 

function of the beam is defined by 

 max( ) .Y g S σ= = −X                                                       (26) 

  Table 1 Random variables of the beam reliability problem 

Variable No. 

 

Variable Parameter 1* Parameter 2+ Distribution type 

1 A 100 mm 0.2 mm Normal 
2 B 200 mm 0.2 mm Normal 
3 C 80 mm 0.2 mm Normal 
4 D 20 mm 0.2 mm Normal 
5 L1 200 mm 1 mm Normal 
6 L2 400 mm 1 mm Normal 
7 L3 600 mm 1 mm Normal 
8 L4 800 mm 1 mm Normal 
9 L5 1000 mm 1 mm Normal 
10 L6 1200 mm 1 mm Normal 
11 L 1400 mm 2 mm Normal 
12 P1 12 kN 18 kN Uniform 
13 P2 12 kN 18 kN Uniform 
14 P3 12 kN 18 kN Uniform 
15 P4 12 kN 18 kN Uniform 
16 P5 12 kN 18 kN Uniform 
17 P6 12 kN 18 kN Uniform 
18 Ea 70 GPa 7 GPa Normal 
19 Ew 8.75 GPa 0.875 GPa Normal 
20 S 20  MPa 2.0 MPa    Normal 

*Parameter 1 is the mean for normal distribution and is the lower bound for uniform distribution 
+Parameter 2 is the standard deviation for normal distribution and is the upper bound for uniform 
distribution.  
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The estimated cdf of Y and computational cost from each method are given in Table 2. 

The sample sizes of SABS and MCS are 500 and 1,000,000, respectively. FORM and SORM 

require the MPP search at each realization value of Y listed in the first column of Table 2. The 

numbers of function evaluations used by FORM and SORM are provided in the parentheses.  

The result of MCS is considered accurate because of the large number of runs. It is noted that 

both SORM and SABS provide accurate results compared to that of MCS. SORM is more 

accurate than FORM, and SABS is the most efficient method since it consumes only 500 

function evaluations for the entire distribution generation. FORM and SORM are extremely 

inefficient since they need to search the MPP at each point of the performance function. The total 

numbers of function evaluations of FORM and SORM are 16,890 and 20,670, respectively. The 

probability results are plotted in Figure 8.  

 

Table 2 The estimated probability of Y y≤ (MPa) and computational cost  

y (MPa) FORM SORM SABS MCS 
0.0 0.0014        (882) 0.0008       (1134) 0.0010 0.0009 
1.0 0.0058      (1220) 0.0036       (1472) 0.0042 0.0039 
2.0 0.0188      (1102) 0.0131       (1354) 0.0147 0.0142 
3.0 0.0511        (885) 0.0392       (1137) 0.0424 0.0424 
4.0 0.1164      (1672) 0.1008       (1924) 0.1026 0.1033 
5.0 0.2253        (768) 0.2113       (1020) 0.2097 0.2120 
6.0 0.3755      (1302) 0.3711       (1554) 0.3650 0.3678 
7.0 0.5473      (1216) 0.5474       (1468) 0.5477 0.5493 
8.0 0.7106      (1342) 0.7197       (1594) 0.7217 0.7215 
9.0 0.8397      (1210) 0.8555       (1462) 0.8553 0.8534 
10.0 0.9241      (1185) 0.9374       (1437) 0.9375 0.9352 
11.0 0.9697      (1114) 0.9780       (1366) 0.9779 0.9761 
12.0 0.9899        (999) 0.9936       (1251) 0.9937 0.9928 
13.0 0.9972        (853) 0.9985       (1105) 0.9986 0.9982 
14.0 0.9994      (1140) 0.9997       (1392) 0.9997 0.9996 
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Figure 8 The cdf of Y for the beam problem 

 

4.3 A steel truss bridge  

 In the previous example, the performance function is in an analytical form. Next, we will 

demonstrate the use of SABS for a performance function that involves a back-box model, which 

is obtained from finite element analysis (FEA). A truss bridge with applied constraints and loads 

is shown in Figure 9.  

 

Figure 9 A steel truss bridge with constraints and loads 

 

Fx 

Fy Fy Fy Fy 

4m 4m 4m 4m 4m 

4m 
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There is one fixed support in the horizontal and vertical directions at the bottom left end, 

and one fixed support in the vertical direction at the bottom right end. The total span of the 

bridge is 20 m. Four external forces Fy are applied at the four locations (with 4 m distance in 

between) to represent the dead loads throughout the deck. A horizontal force Fx is applied at the 

top left corner to represent the wind load acting on the bridge. The height of the bridge is 4 m. 

Five random variables are Fx, Fy, the truss’ cross-sectional area A, Young’s modulus E, and the 

material’s strength S. Their distributions are given in Table 3. Figure 10 illustrates the deformed 

shape and stress plot from one ANSYS FEA simulation. 

 

Table 3 Random variables of the steel truss bridge problem 

Variable Mean Standard deviation Distribution type 

Fx 1000 N 100 N Normal 
Fy 45000 N 4500 N Normal 
A 0.0011 m2 0.00011 m2 Normal 
E 200 GPa 20 GPa Normal 
S 200 MPa 20 MPa Normal 

 

Figure 10 The deformed shape and stress plot of one FEA simulation 
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The performance function of the truss bridge is given by 

max ,Y S σ= −                                                       (26) 

where S is the strength of the material and maxσ is the maximum tensile stress in the trusses that 

is calculated from FEA simulation.  

 The probability of failure is defined as the probability that the strength is less than the 

maximum stress, i.e. { }0 .fp P Y= ≤ Table 4 shows the estimated probability of failure fp  and 

the computational cost by SABS and MCS. It is seen that the result of SABS is close to that of 

MCS. SABS is much more efficient than MCS since it only uses 500 simulations while MCS 

uses 10,000 simulations. The finite element analyses are performed with ANSYS 9.0 on an HP 

workstation x4000 with Intel(R) Xeon(TM) CPU 1.70GHz  and Microsoft Windows XP 

professional operating system. SABS takes 14 minutes and 39 seconds for the 500 simulations 

while MCS takes 4 hours 50 minutes and 57 seconds for the 10,000 simulations.  

 

Table 4 Probability of 0 (MPa)Y ≤  and computational costs by SABS and MCS 
 
Method { }0P Y ≤  n  (No. of simulations) 

SABS 0.0039 500 
MCS 0.004 10,000 

  

5 Conclusion 

The proposed Saddlepoint Approximation based simulation method is an attractive 

alternative approach to uncertainty analysis, especially for large scale problems. It incorporates 

both simulation and analytical techniques. The simulation is performed for generating the cgf of 

a performance function, and the analytical technique is used for approximating the cdf and pdf. 

With a moderate sample size, SABS can produce accurate results for which a large number of 
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Monte Carlo simulations are needed. This feature especially benefits the large scale problems 

with high reliability. If FORM or SORM is used for the same large scale problem, much more 

computational effort is required because the computational demand is proportional to the 

dimension. Since SABS estimates both cdf and pdf directly, there is no need of taking derivative 

of cdf to get pdf or taking integration of pdf to acquire cdf. In addition, SABS does not have the 

limitations shared by FORM and SORM, such as the requirement of the differentiability of the 

performance function and the need of a unique MPP. It should be pointed out that, due to the use 

of finite cumulants (first four cumulants), SABS may not be applicable for multimodal 

distributions. 

The error of SABS comes from the errors of moment estimation, cgf approximation, and 

Saddlepoint Approximation. The statistical error of moment estimation can be established from 

the general MCS. The error of the estimation of Saddlepoint Approximation can be obtained 

analytically (Goutis and Casella, 1999). The error of the approximation of the cumulant 

generating function is similar to that of Taylor series expansion. The overall error estimation 

needs a further investigation and will be our future work. 
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