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Abstract 

Robust design ensures the product performance be insensitive to various uncertainties 

and therefore results in high quality and productivity. Robustness assessment, which 

evaluates the variability of the performance, is an important and indispensable component 

of robust design. An accurate and efficient robustness assessment is essential for 

obtaining a real robust solution.  The aim of this paper is to investigate features of the 

existing model-based methods for robustness assessment in terms of accuracy, efficiency, 

and reliability. Recommendations on the use of those methods are provided based on the 

comparison study through example problems.  
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1. Introduction 

Robust design, pioneered by Dr. Taguchi (1987, 1993), is a powerful design tool 

for high quality and productivity. By assessing the variations that a product experiences 

during design, manufacture, and operation, robust design ensures that a product perform 

its intended function regardless of these variations or uncertainties. Examples of 

uncertainties include variations in loading, material properties, and part dimensions. They 

are caused by various reasons such as imprecision in manufacturing processes, random 

operation conditions, and computational errors.  

The fundamental principle of robust design is to improve product quality or 

stabilize a system performance by minimizing the effects of variations without 

eliminating their causes (Chen et al. 1996).  As a result, robust design (Phadke 1989) 

1) allows the use of low grade materials and components since the product 

performance is insensitive to the variations in material properties; 

2) reduces labor and material cost since the effects of manufacturing variations 

are minimized; 

3) improves the reliability and reduces operation cost since the product 

performance is inert to environmental uncertainties; and 

4) ensures the high productivity because of the structured and systematic process 

of the development process. 

Traditional robust design (Taguchi’s method) is conducted through statistical 

experiments (Fowlkes and Creveling 1995, Taguchi et al. 1999, Montgomery 2005). 

With the availability of the CAE (Computer Aided Engineering) simulations and the 

introduction of the nonlinear programming to robust design, robust design has also been 
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performed through model-based optimization (Chen et al. 1996, Santner et al. 2003, Frey 

et al. 2005). To distinguish the experiment-based robust design from the model-based 

robust design, we use the term of analytical robust design to represent the latter. The 

analysis that assesses the robustness under the  analytical robust design framework is 

therefore called analytical robustness assessment in this paper. We focus our discussions 

on analytical robust design and analytical robustness assessment herein. For an overview 

of robust design, interested readers may refer to Park et al. (2006). 

 In analytical robust design, both the robustness of design objectives and the 

robustness of design constraints (called design feasibility) are considered. Under the 

optimization framework, the objective of robust design is to optimize the mean 

performances and minimize the variations of the performances simultaneously.  The 

design constraints should be also satisfied in the presence of uncertainty.   

How to model robust design problems has been widely investigated in the 

literature. The modeling methods address four main issues:  

(1) Mathematical models, which formulate a robust design problem as an 

optimization problem with stochastic nonlinear programming (probabilistic approach) 

(Sundaresan et al. 1995, Lee et al. 1996, Chen and Yuan 1999, Du and Chen 2000, Jung 

and Lee 2002, Huang and Du 2006a) or deterministic programming (Belgundu and 

Zhang 1992, Badhrinath and Rao 1994, Gunawan and Azarm 2004, 2005);  

(2) Objectives handling, which converts multi-objectives into a single objective, 

such as the single-to-noise ratio (Taguchi 1987, Phade1989), the weighting-sum method ( 

Du and Chen 2000, Lee and Park 2001), quality utility (Chen et al. 1999), and physical 

programming (Chen et al. 2000);  
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(3) Solving strategies, which achieve efficient and quick convergence in the 

optimal design, such as sequential procedures (Parkinson et al. 1993, Du and Chen 2004), 

re-weighting scheme (Fu and Sahin 2004), and metamodeling or response surface 

methods (Simpson et al. 2001,  Jin et al. 2004); and 

(4) Robustness assessment, which estimates the variations (dispersions) of 

objective and constraint functions under uncertainties (Du et al. 2004, Thaweepat et al. 

2004, Montgomery 2005, and Frey et al. 2005).  

The probabilistic formulation with the consideration of the variations in both 

objective and constraints is widely used. In real-world complex engineering problems, 

the challenge of using this formulation is the costly computation for robustness 

assessment. To accurately capture the statistical dispersion of the performance functions 

(objective and constraint functions), a number of deterministic analyses are required.  A 

good balance between efficiency and accuracy is the major consideration of choosing a 

robustness assessment method.  

Although various methods have been developed for robustness assessment, their 

characteristics in terms of accuracy, efficiency, and reliability are not yet fully 

investigated. The aim of this paper is to investigate the accuracy, efficiency, and 

limitations of existing robustness assessment methods and then provide recommendations 

for the use of those methods. For the investigation of the feasibility robustness of design 

constraints, one may also refer to Du and Chen (2000). 

The rest of this paper is organized as follows. In Section 2, two models of 

robustness assessment, variance formulation and percentile difference formulation, are 

discussed. Methods for evaluating variance and percentile difference are reviewed and 
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discussed in Sections 3 and 4, respectively. Section 5 presents three examples to 

demonstrate the features of various methods. The comparison summary and 

recommendations are made in Section 6. 

 

2. Robustness Assessment Modeling  

Robustness of a performance reflects the dispersion of the performance from its 

mean. There are two ways to measure the robustness: the traditional variance and the 

recently proposed percentile difference. We will discuss how to model the robustness in 

this section and then discuss how to evaluate robustness in the next section.  

2.1 Model Robustness by Variance 

Traditionally, robustness has been measured by the variance (or standard 

deviation) of the performance. Let a random variable Y be a response variable that 

represents a performance in robust design. The performance could serve as either an 

objective or a constraint. Let Y be in the form of  

( )Y g= X ,                                                                                                                         (1) 

where X is the vector consisting of n input random variables of the model. The elements 

of X can be design variables that are controllable by a designer or the noise factors that 

are uncontrollable. In this paper, we consider the situation where the random variables X  

are mutually independent. 

Theoretically, the variance 2
Yσ  of Y is evaluated by  

( ) 222σ ( ) ( )Y Y YE Y g f dµ µ
∞

−∞
   = − = −   ∫ Xx x x ,                                                               (2) 
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where Yµ  is the mean of Y, which is calculated by 

[ ] ( ) ( )Y E Y g f dµ
∞

−∞
= = ∫ Xx x x .                                                                                           (3) 

In the above equations, fX  is the joint probability density function (PDF) of the random 

variables X.  

2.2 Model Robustness by Percentile Difference 

Recently, Du et al. (2004) proposed a new robustness measure called percentile 

difference, which is the difference between the performances at both tails of the 

distribution. The percentile difference is defined as 

2 2 1

1
y y yα α α
α∆ = − ,                                                                                                                (4) 

where 1yα  and 2yα are two values of Y given by (Bain and Engelhardt 1991) 

Prob{ }i
iY yα α≤ =   (i = 1, 2).                                                                                           (5) 

α1 is the cumulative distribution function (CDF) of Y at the left tail, and its value 

can be taken as 0.05 or 0.1. α2 is the CDF of Y at the right tail, and its value can be taken 

as 0.95 or 0.99.   

Figure 1 illustrates the concept of the percentile difference. As shown in the 

figure, reducing the percentile difference is equivalent to shrinking the dispersion of the 

distribution of Y when the distribution of Y is unimodal. 
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Fig. 1   Illustration of the percentile difference 

 

2.3 Comparison of the Two Measures 

Variance (or standard deviation) is the conventional measure for robustness and is 

widely used in engineering. It is easy to understand and is applicable to any distributions 

such as unimodal and multimodal distributions. Percentile difference is not as 

straightforward as the standard deviation, but it has several advantages. One major 

advantage is that a percentile is related to the probability at the tail areas of a performance 

distribution; it therefore carries more information than the standard deviation, such as the 

skewness of a distribution. The standard deviation only captures the dispersion around 

the mean value. From the percentile difference, we know to what extent or at what 

confidence level the design robustness is achieved. This confidence level is given by 

12 αα − .  The other major advantage is that the percentile difference can be obtained 

from the well-developed reliability analysis methods such as the First Order Reliability 

Method (Hasofer and Lind 1974, Breitung 1984, Ayyub and Haldar 1984, Hohenbichler 

et al. 1987, Tu and Choi 1999, Youn et al. 2003, Du et al. 2004, Du 2006). However, 

percentile difference may not be applicable to multimodal distributions which may be 

rare in design applications.  

PDF of Y 

 y yα2 yα1 

Percentile difference  
2

1
yα
α∆  

Yµ  

Area = 1-α2 Area = α1 
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In general, if the performance follows a unimodal distribution, reducing the 

standard deviation is equivalent to reducing the percentile difference. Therefore, either 

measure could be used, depending upon the computational convenience. In the next 

sections, we discuss how to computationally evaluate the two measures. 

 

3. Methods for Estimating Variance  

In this section, we provide an extensive review on the existing methods for 

estimating variance. As shown in Eqs. (1) to (3), calculating variance is a 

multidimensional integration problem. For a real-world engineering system, it is very 

difficult or even impossible to obtain a closed-form solution to Eq. (2) because of the 

complicated integrand and the high dimensionality.  Various simulation and 

approximation methods have been developed. Existing methods can be categorized into 

three types: Taylor series expansion methods, simulation methods, and point estimate 

methods. 

3.1 Taylor Series Expansion Methods 

 Taylor series expansion methods (Robinson 1998, Putko et al. 2002, Du and Chen 

2000, Jung and Lee 2002) are the simple and efficient approaches which employ Taylor 

series approximation of the performance function ( )Y g= X  at the mean values, Xμ , of 

X. When the first order Taylor series expansion of Y is used, the variance of Y is given by   

2

2 2

1
σ σ

i

n

Y X
i i

g
X=

 ∂ ≅
 ∂ 

∑
Xμ

.                                                                                                       (6) 

When the second order Taylor series expansion is applied, the variance of Y can 

be calculated by  



 10 

22
2

2 2

1 1 1

1σ σ
2!i i j

n n n

Y X X X
i i ji i j

g g
X X X

σ σ
= = =

  ∂ ∂  ≅ +
 ∂  ∂ ∂    

∑ ∑∑
X Xμ μ

.                                                   (7) 

The second order Taylor series expansion method is generally more accurate than 

the first order Taylor series expansion method, but the former is more computationally 

expensive than the latter. If the derivatives are computed with the forward or backward 

finite difference technique (Dennis and Schnabel 1983), the total number of function 

evaluations is n+1 and 1 ( 1) 1
2

n n + +  for the first and second order Taylor series 

expansion methods, respectively. Both methods require the differentiability of the 

performance function. In addition, it is should be pointed out that if the mean-value point  

Xμ  is a stationary point of the performance function (e.g. all first-order partial derivatives 

equal zero at Xμ ) , the first order Taylor series expansion method gives inaccurate 

results. For instance, for the one-dimensional performance function ( )Y g= X , where 

[ ]x=X , in the three cases as shown in Fig. 2, as x varies with the distribution shown, the 

performance function ( )Y g= X has a zero variance while the true variance is obviously 

nonzero. The result provided by the second order Taylor series expansion method is also 

not accurate for Case (c).  
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Fig. 2   Mean-value points at a stationary point of the performance function 

 

3.2 Simulation Methods 

 Simulation methods (Rubinstein 1981, Law and Kelton 1982) give a very straight 

formulation as 

 
22

1

1σ ( ) μ
1

N
j

Y Y
j

g
N =

 ≅ − − ∑ x ,                                                                                           (8) 

where 

1

1μ ( ) ( 1,2,..., ),
N

j
Y

j
g j N

N =

≅ =∑ x                                                                                     (9) 

and jx  are the samples of random vector X, which are drawn from the distributions of X.  

The samples can be obtained by different sampling techniques. There are three 

commonly used sampling techniques: random sampling, Latin hypercube sampling, and 

Hamersley sequence sampling. 

3.2.1 Random Sampling (RS) 

Random sampling (RS) (Rubinstein 1981), also called Monte Carlo sampling, is 

the simplest sampling procedure.  Random variable sampling requires the generation of N 

0 x 

g(x) 

μX 

(a) 

0 x 

g(x) 

μX 

(b) 

0 x 

g(x) 

μX 

(c) 

First order 
approximation 

First order 
approximation 

First order 
approximation 
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samples of a random vector consisting of all of the n random 

variables, [ ]T1 2,  ,...,  .nX X X=X  With random sampling for uncorrelated variables, if 

each variable Xi follows a CDF 
iXF , the component N samples j

ix  are independently 

generated using Quantile-Quantile transformation from the N samples j
iv , which are 

uniformly distributed on [0, 1), [ )0,1U , 

( ) ( )1 1, 2,..., ; 1, 2,..., ,
i

j j
i X ix F v i n j N−= = =                                                                  (10) 

where ( )1
iXF − ⋅ is the inverse CDF of Xi.   

Then,    

( )1 2, ,..., 1, 2,..., .j j j j
nx x x j N = = x                                                                              (11) 

3.2.2 Latin Hypercube Sampling (LHS) 

LHS, first introduced by McKay et al. (1979), is a stratified sampling technique in 

which the uniformly distributed samples j
iv  ( )1,2,...,j N= are drawn by 

( ) ( )1
1,2,..., ; 1, 2,..., ,

j
i ij

i

j w
v i n j N

N
π − +

= = =                                                 (12) 

where iπ is a uniform permutation of 0,…, N-1, and j
iw is a random observation from 

[ )0,1U  . j
iv  can also be obtained by the widely used median version of Eq. (12)  

( ) ( )1 0.5
1,2,..., ; 1, 2,..., .ij

i

j
v i n j N

N
π − +

= = =                                                      (13) 

Then, 

( ) ( )1 1, 2,..., ; 1, 2,..., .
i

j j
i X ix F v i n j N−= = =                                                                (14) 
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The N values thus obtained for X1 are paired at random (equally likely 

combination) without replacement with the N values of X2. These N pairs are combined in 

a random manner without replacement with the N values of X3 to form N triplets. This 

process continues until N n-tuplets are formed. The N n-tuplets may be contained in an 

N×n sample matrix, in which each row corresponds to one sample of X. Totally there are 

N samples of X in a matrix. 

Because LHS exhaustively stratifies across the whole range of each sampled 

variable, it mitigates the problem that important intervals with low probability but high 

consequences are likely to be missed (Owen 1997). Compared to random sampling, LHS 

requires fewer samples for a similar accuracy. It is more efficient for estimating statistical 

moments (mean, variance, etc.) and produces more stable results than random sampling 

(Helton and Davis 2003). However, the main shortcoming of LHS stratification scheme is 

one-dimensional and does not provide good uniform properties on a multidimensional 

unit hypercube (Diwekar 2003). LHS provides no significant practical advantage over 

random sampling if the performance function is highly nonlinear (Manteufel 2000, 

Guiunta 2003). 

3.2.3 Hamersley Sequence Sampling (HSS) 

HSS employs a quasi-random sequence that is uniformly distributed in the unit 

hypercube [0, 1)n.  The sequence is generated using the following expansion of a 

nonnegative integer j (Hamersley 1960, Kalagnanam and Diwekar 1997) 

2
0 1 2 ,r

rj a a p a p a p= + + + ⋅⋅⋅+                                                                                        (15) 

where p is a prime number and ai (i = 0,1,…, r)  are nonnegative integer coefficients 

smaller than p.  p and ai are then used to generate a number between 0 and 1 by  
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0 1 2
, 2 3 1 .r

j p r

a a a au
p p p p += + + + ⋅⋅⋅+                                                                                       (16) 

When  takes values from 1,2,...,j N , any sequence of n-1 different prime 

numbers, 1 2 1, ,..., np p p − , leads to N Hamersley points in the unit hypercube [0, 1)n as 

follows: 

( )
1 2 11 2 , , ,

0.5, ,..., , , ,..., , 1, 2,..., .
n

j j j j
n j p j p j p

jv v v u u u j N
N −

−  = = =    
v                             (17) 

After the N Hamersley points are acquired, the N samples of X can then be 

obtained through Eq. (10).  

A variant of HSS is the Halton sequence sampling (Halton 1960, Reichert et al. 

2002), in which N Halton points in the unit hypercube [0, 1)n are given by  

1 21 2 , , ,, ,..., , ,..., , ( 1, 2,..., ),
n

j j j j
n j p j p j pv v v u u u j N  = = =   v                                            (18) 

where 1 2, ,..., np p p  are  a sequence of n different prime number.  

Compared with LHS and HSS, Halton sequence sampling has the advantage that 

the sample size can be easily increased by adding some new sampling points without 

modifying the old sampling points. Using some test problems, Kalgnanam and Diwekar 

(1997) demonstrated that HSS has low-discrepancy and good space filling properties and 

converges at 3-100 times faster than LHS and random sampling. Figs. 3(a) – (c) illustrate 

the space filling properties of random sampling, LHS, and HSS. It is evident that HSS are 

much more uniformly distributed than random sampling and LHS.  However, when the 

dimensionality is high, the uniform property of HSS deteriorates, such as the aliasing 

problem (Crow 1977, Lau 1995). For instance, the points tend to line up in slanting lines 
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on a 2D plane when the prime numbers 13 and 17 are used, which is illustrated in Fig. 3 

(d).   

 

Fig. 3   Sample points (250) on a unit square using different sampling techniques  

 

3.3 Point Estimate Method 

Point estimate methods, originally proposed by Rosenblueth (1975), are another 

type of methods for estimating statistical moments and have been used in engineering 

applications (Zhao and Hon 2000, 2003; Wang 2004). The point estimate methods use 

the first few moments (mean, standard deviation, etc) of each  random variable to obtain 

the points and weights for each random variable to compute the moments of the response 

variable (performance function). The points and weights are different for different 

random variables. 
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3.3.1 Taguchi’s Method 

The experimental design method for variance estimation in robust design is 

generally attributed to Taguchi (1978). He chose μ
i iX Xσ± for a two-level design, and 

3 3μ ,μ ,andμ
2 2i i i i iX X X X Xσ σ− + for a three-level design (Yu and Ishii 1998). To apply 

the three-level method, the performance function Y is evaluated at all N = 3n 

combinations. And then the variance is computed with the N values of Y by using Eqs. (8) 

and (9).  Taguchi’s method is very straightforward and easily understandable to engineers 

and scientists.  

 

3.3.2 Quadrature-Based Methods  

Quadrature-based methods (D’Errico and Zaino 1988, Seo and Kwak 2002, Frey 

et al. 2005) are another kind of estimate for statistical moments. In these methods, a few 

points and corresponding weights for every random variable are chosen for calculating 

the variance of the performance function. Different methods use different ways to choose 

the points and weights. D’Errico and Zaino (1988) modify Taguchi’s method through 

using three different points { } { }1 2 3, , 3 , , 3
i i i i ii i i X X X X Xx x x = µ − σ µ µ + σ and the three 

corresponding weights { }1 2 3 1 4 1, , , ,
6 6 6i i iw w w  =  

 
 for every variable Xi. Seo and Kwak 

(2002) extend the work of D’Errico and Zaino for non-normal distributions and propose a 

three-point method which has the three points { }1 2 3, ,i i ix x x  and three weights { }1 2 3, ,i i iw w w   

for the random variables Xi. The points and weights are determined by 
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{ }

T

1 2 3

4 3
2 2

, ,

4 3
2 2

i i i

i i i

i

i i i

i i i

X X X
X X X

i i i X

X X X
X X X

x x x

 β σ σ µ + − γ − β
 
 = µ
 
 β σ σ µ + + γ − β  

,                                                     (19)     

{ }

( ) ( )
( )( )

( ) ( )
( )( )

T

1 2 3

4 3 4 3

2 4 3

1
, ,

4 3 4 3

2 4 3

i i i i i

i i i i

i i

i i

i i i i i

i i i i

X X X X X

X X X X

X X
i i i

X X

X X X X X

X X X X

w w w

 γ − β + β γ − β 
 γ − β γ −β 
 γ −β −
 =

γ −β 
 
 γ − β − β γ − β
 
 γ − β γ −β 

,                                                   (20)    

where , , , and 
i i i iX X X Xµ σ β γ   are the mean, standard deviation, skewness, and kurtosis of 

Xi, respectively.     

The formulation for variance is then given by                                   

( )1 1

1

3 3 22 2
1 1

1 1
σ ,..., μn n

n

I II I
Y n n Y

I I
w w g x x

= =

 ≅ ⋅⋅⋅ ⋅ ⋅ ⋅ − ∑ ∑ ,                                                                 (21) 

where  

( )1 1

1

3 3

1 1
1 1

μ ,...,n n

n

I II I
Y n n

I I
w w g x x

= =

= ⋅⋅⋅ ⋅ ⋅ ⋅∑ ∑ .                                                                             (22) 

Recently, Huang and Du (2006a) propose a method in which the Gauss points and 

Gauss weights in Gauss-Hermite quadrature (Davis and Rabinowitz 1983) are directly 

used. In this method, all the random variables X are first converted to the normal 

variables Z that follow a distribution of 10,
2

N  
 
 

 (with a mean of 0 and a variance of 1
2

) 

as follows:  
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( )11( ) ( ) 1,2,..., ,
2 ii i i X iz t x F x i n−  = = F =                                                                  (23) 

where ( )1F− ⋅ is the inverse CDF of the standard normal distribution and ( )
iXF ⋅   are the 

CDFs of Xi. 

Then the variance is given by 

{ }
1

1 1

1

22 1 1 2
1 1 1

1 1

1σ [ ( ),..., ( )] μ ,
n

n n

n

n rr
I II I

Y n n n Y
I I

w w g t z t z
π

− −

= =

 ≅ ⋅⋅⋅ ⋅ ⋅ ⋅ − 
 

∑ ∑                                         (24) 

in which  

 
1

1 1

1

1 1
1 1 1

1 1

1μ [ ( ),..., ( )]
n

n n

n

n rr
I II I

Y n n n
I I

w w g t z t z
π

− −

= =

 = ⋅⋅⋅ ⋅ ⋅ ⋅ 
 

∑ ∑ ,                                                    (25) 

where 1,..., nr r denote the quadrature order (the number of abscissas) used in the 1,..., nz z  

directions; 1
1( ,..., )nII

nz z are Gauss points; and 1
1 ,..., nII

nw w are the corresponding Gauss 

weights. The points and weights are provided in Beyer (1991). 1( )it
− ⋅  is the inverse 

function of that given in Eq. (23). Generally, the accuracy of the direct Gauss-Hermite 

quadrature approximation improves as the number of the abscissas for each integration 

variable increases. However, increasing the number of the points also results in the 

increase of the total number of performance function evaluations, because the number of 

function evaluations is rn where n is the total number of random variables, and r is the 

number of abscissas used for each random variable. GHI provides an exact result for the 

variance only if ( )y ⋅  is a polynomial of degree r-1 or less (Davis and Rabinowitz 1983, 

Frey et al. 2005). For most problems in structural or mechanical engineering, it may be 

good enough to take r = 2, 3 or 4 (Huang and Du 2006a). 
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 In sum, D’Errico and Zaino’s method is only applicable to the situation that all 

random variables are normally distributed. Seo and Kwak’s method is suitable to normal 

as well as non-normal distributions, and D’Errico and Zaino’s method is a special case of 

Seo and Kwak’s method. Huang and Du’s method is also applicable to any distributions. 

D’Errico and Zaino’s method and Seo and Kwak’s method both need 3n function 

evaluations where n is the number of random variables. The computational cost of Huang 

and Du’s method is rn, where r is the number of abscissas used for each random variable 

and n is the number of random input variables. Therefore, Huang and Du’s method has a 

variable computational cost, depending on the number of abscissas used for each random 

variable.   

As indicated above, the aforementioned quadrature-based methods are expensive 

when the number of random variables is large since their computational cost grows 

exponentially with the number of random variables. Very recently, a bivariate dimension 

reduction integration (BDRI) method (Xu and Rahman 2004, Huang and Du 2006b) is 

proposed for statistical moments (including variance) estimation with less computational 

efforts. In BDRI, the ( ) 2
g  z and ( )g z  in Eqs. (24) and (25), respectively, are 

approximated by a summation of a series of two- and one-dimensional functions as 

follows:  

1 2

1 2 1

2( ) (0,...,0, ,0,...,0, ,0,...,0) ( 1) (0,...,0, ,0,...,0)1

1 (0,...,0),2

k k

n

k k k
k

ng g z z g z

n g

< =

 −≅ + −  
 

 −+  
 

∑ ∑z

                      (26) 
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[ ] [ ]

[ ]

1 2

1 2

22 2

1

2

2( ) (0,...,0, ,0,...,0, ,0,...,0) (0,...,0, ,0,...,0)1

1 (0,...,0) .2

k k

n

k k k
k

ng g z z g z

n g

< =

 − ≅ −     

 −+  
 

∑ ∑z

                (27) 

The variance is then calculated based on the above two approximation functions 

and the use of Gauss-Hermite integration. The procedure of Gauss-Hermite integration 

(GHI) is not repeated here. For more details, refer to Huang and Du (2006a). The 

computational effort in computing the integration of all the one- and two-dimensional in 

Eqs. (26) and (27) is generally much less than that in evaluating the original n-

dimensional integration in Eqs. (21), (22), (24) and (25). The total computational effort 

(CE) can be measured by the number of function evaluations, which is given by 

( )( ) ( )( )2 1,2 1
n nCE r r= + +                                                                                              (28) 

where r is the number of Gauss points used for each random variable, n is the number of 

random variables. For a performance function with 10 random variables and three points 

are used for each random variable, the total number of function evaluations is 436. It is 

significantly less than that of the direct GHI approach, which is 310 = 59049. It should be 

mentioned that BDRI can achieve high efficiency when the number of random variables 

is high. However, when the number of random variables is low, say four or less, BDRI 

may not be more computationally efficient than other quadrature-based methods without 

applying bivariate dimension reduction.  

 

4.  Percentile Difference Approach 

As described in Eqs. (4) and (5), the percentile difference requires calculating two 

percentiles of the performance function. Percentiles can be solved by various methods 
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such as Monte Carlo simulation. The inverse first order reliability method (FORM) (Tu 

and Choi 1999) is an efficient method to calculate the percentiles of the performance 

function. Three steps are involved in inverse FORM to calculate an α percentile of Y, yα . 

(1)Transformation: Rosenblatt transformation is used to convert all the random 

variables X in the performance function ( ) g X  into independent and standard normal 

variables Z. If all random variables X are mutually independent, the transformation is 

given by 

( )1 ( ) 1, 2,..., ,
ii X iz F x i n−  = F =                                                                                     (29) 

where ( )1F− ⋅ is the inverse CDF of the standard normal distribution, ( )
iXF ⋅   are the CDF 

of Xi. After the transformation, the performance function  ( )g X  in the original space 

becomes another function ( )g Z  in the transformed normal space.   

(2) Inverse Most Probable Point (MPP) search:  MPP is formally defined in the 

standard normal space as the point that is on the boundary g( ) = 0Z  and has the 

minimum distance to the origin (Breitung 1984, Du and Chen 2001). The distance 

between the MPP and the origin represents the reliability or probability of g( ) 0Z ≤ . The 

inverse MPP search problem is to find the minimum of g( )Z  and the corresponding z, 

satisfying the given the reliability requirement. For more details about the inverse MPP, 

refer to Tu and Choi (1999) and Du et al. (2004). Therefore, the inverse MPP search is a 

minimization problem. The model for the inverse MPP, MPPz , is given by 

  
1

Minimize: g( )

Subject to: ( ),αF
z

z

z −




=
                                                                                            (30) 
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where ⋅  stands for the norm operator, 1( )F− ⋅ is the inverse CDF of the standard normal 

distribution. 

(3) Percentile evaluation: The percentile value can be evaluated at MPPz in the 

transformed normal space,       

( ).MPPy g gα α z= =                                                                                                          (31)  

 

5. Examples and Comparison Study 

In this section, three examples are used to investigate the effectiveness of 

different methods of robustness assessment. The computational cost is measured by the 

number of performance function evaluations. For the Taylor series expansion methods, 

derivatives are computed with the forward finite difference approach. The results of the 

percentile difference method are also given. The computational effort of the percentile 

difference method also includes the number of performance function evaluations used for 

the MPP search. 

 

5.1 Example 1: A Beam Structure 

A statically indeterminate beam (Seo and Kwak 2002) is depicted in Fig. 4.  

 

Fig. 4   Statically indeterminate beam and concentrated force 

E, I 

 5m 2.5m 

P 
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The performance function represents the failure mode of the deflection of the 

beam and is given by  

( ), , 78.125 ,Y g P E I EI P= = −                                                                                       (32) 

where E is the Young’s Modulus of the beam material, I is the moment of the inertia, and 

P is the external vertical concentrated force. Three random variables are involved in this 

problem. E and I are normally distributed.  P follows a Gumbel distribution. The 

distribution information of all random variables is listed in Table 1.  

 

Table 1   Distribution information of random variables for the indeterminate beam 

Random variable Distribution  Mean (μ) Standard deviation (σ) 
P Gumbel  4 kN  1 kN 
E Normal  2 ×107 kN/m2  0.5×107 kN/m2 
I Normal  1.0×10-4 m4 0.2×10-4  m4 

  

 Figure 5 shows the standard deviations of Y calculated by random sampling (RS), 

Latin hypercube sampling (LHS) and Hamersley sequence sampling (HSS) techniques 

using ten different sampling sizes (100, 250, 500, 750, 1000, 2500, 5000, 10000, 100000, 

1000000). It is noted that LHS and HSS is more stable than RS. When sample sizes are 

100 and 250, LHS provides better results than HSS and RS. HSS results approach to the 

accurate solution asymptotically and earlier than the other two methods.     
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Fig. 5   Standard deviations from different sampling techniques (beam) 

 

Table 2 gives the estimated standard deviations by the first and second order 

Taylor series expansion methods, the result (3-Point) from Seo and Kwak (2002), 

bivariate dimension reduction integration (BDRI) method, and HSS simulation method. 

The result of HSS with 1,000,000 samples is considered the accurate result. It is seen that 

the Taylor series expansion methods are the most efficient methods since the first order 

Taylor series expansion method only uses 4 function evaluations and the second order 

Taylor series expansion method uses 11 function evaluations. The second order Taylor 

series expansion method is more accurate than the first order Taylor series expansion 

method. Both BDRI and 3-Point methods provide almost the same results as the accurate 

result from HSS with 1,000,000 samples. BDRI is more efficient than 3-Point method 
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since BDRI only uses 19 function evaluations while the 3-Point method uses 27 function 

evaluations.   

 

Table 2 Standard deviation estimated and computational effort (beam) 

 Taylor  Point estimate HSS 
 first second 3-Point BDRI 1,000 10,000 1,000,000 

Yσ  645.06 652.76 652.77 652.75 644.35 651.47 652.74 
CE 4 11 27 19 1,000 10,000 1,000,000 

Note: CE – computational effort in terms of the number of function evaluations; the 3-
Point result is from Seo and Kwak (2002). 
 

The results from the percentile difference method, with α1 = 0.05 and α2 = 0.95, 

are given in Table 3. The total number of performance function evaluations is 132, which 

is higher than Taylor series expansion methods and the point estimate methods. The 

result of percentile difference provides the robustness confidence level, 

95% 5% 90%− = . In other words, the probability of the performance being between 

812.81 and 2936.60 is 90%. 

 

Table 3   Results of percentile difference (beam) 

0.05y  0.95y  0.95
0.05y∆  Total CE 

812.81 2936.60 2123.79 132 

 

5.2 Example 2: A Two-Bar Structure  

 A two-bar structure system (Jin et al. 2003) is illustrated in Fig. 6.  
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Fig. 6   A two-bar structure 

 

The performance function is the buckling stress in the two bars, which is given by 

( ) ( )
( )

2 2 22 2

2 2
, , , , ,

2 8

E T DF B HY g F E T B H D
TDH B H

π

π

++
= = −

+
.                                              (33) 

The problem involves six random variables. F is the external force, E is the Young’s 

modulus, T is the thickness of the cross section, H is the height of the two bar structure, 

and D is the inner nominal diameter of the cross section. F, E, T, H, and D are normally 

distributed, the distribution parameters are provided in Table 4.  

 

Table 4   Distributions of random variables for the two-bar structure 

Variable Distribution  Mean (μ) Standard deviation (σ) 
F Normal 150,000 N 30,000 N 
E Normal 210,000 N/mm2 21,000 N/mm2 
T Normal 2.5 mm 0.1 mm 
B Normal  750 mm 5 mm 
H Normal 720 mm 5 mm 
D Normal 40 mm 1 mm 

 

C 
C 

B B 

H 

Section C-C  

D 

F 
T 
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The standard deviations of Y estimated by three sampling techniques with ten 

different sample sizes are depicted in Fig. 7. It is noted that LHS and HSS is more stable 

than RS and that LHS provides better results than HSS and RS when sample size are less 

than or equal to 500. HSS results asymptotically approach to the accurate solution with a 

quicker rate.     

 

Fig. 7   Standard deviations from different sampling techniques (two-bar)  

 

Table 5 gives the estimated standard deviations by the first and second order 

Taylor series expansion methods, BDRI, the result (3-Point) of Seo and Kwak’s method 

(2002), and HSS simulation method. The result of HSS with 1,000,000 is considered the 

accurate result. It is seen that the Taylor series expansion methods are the most efficient 

methods since it uses the fewest function evaluations (7 and 22 function evaluations for 

the first and second order Taylor series expansion methods, respectively), but its results 
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are less accurate than those of BDRI and 3-Point methods. BDRI and 3-Point methods 

provide almost the same results as HSS with 1,000,000 samples. However, BDRI is more 

efficient than the 3-Point method since BDRI only uses 73 function evaluations while the 

3-Point method uses 729 function evaluations. 

 

Table 5   Standard deviation estimated and computational effort (two-bar) 

 Taylor  Point estimate HSS 
 first second 3-Point BDRI 1,000 10,000 1,000,000 

Yσ  84.95 86.87 85.21 85.19 83.94 85.05 85.20 
CE 7 22 729 73 1,000 10,000 1,000,000 

Note: CE – computational effort in terms of the number of function evaluations. 

 

Table 6 shows the results from the percentile difference method with α1 = 0.05 

and α2 = 0.95. The total number of function evaluations is 349, which is higher than 

Taylor series expansion methods and DBRI but is less than the 3-Point method and HSS.  

 

Table 6   Results of percentile difference (two-bar) 

0.05y  0.95y  0.95
0.05y∆  Total CE 

-187.71 101.25 288.96 349 

 

5.3 Example 3: An Overrunning Clutch  

An overrunning clutch, also called Fortini’s clutch,  (Greenwood and Chase 1990, 

Seo and Kwak 2002) , shown in Fig. 8, is used to further investigate the effectiveness of 

different methods. The performance function is the contact angle Y, which is given by  
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( )
( )

1 2 3

4 2 3

0.5
arccos ,

0.5
X X X

Y
X X X

 + +
=  − + 

                                                                                   (34) 

where 1X , 2X , 3X  and 4X are four dimensions of the clutch depicted in Fig. 8. 

 

Fig. 8   Overrunning clutch assembly 

  

The distribution information of the four random variables 1X , 2X , 3X  and 4X is 

provided in Table 7.  

 

Table 7   Distributions of random variables for the overrunning clutch 

Random 
Variable Distribution Mean 

(mm) 
Standard deviation 

(mm) Parameters 

X1 Beta 55.29 0.0793 A = B = 5.0 
X2 Normal 22.86 0.0043 µ = 22.86,  σ = 0.0043 
X3 Normal 22.86 0.0043 µ = 22.86,  σ = 0.0043 
X4 Rayleigh 101.60 0.0793 A = 0.1211, ( )4 101.45X ≥  

 

Similar to Examples 1 and 2, the standard deviations of Y are also estimated by 

the RS, LHS and HSS with ten different sample sizes, and the results are shown in Fig. 9. 

Same conclusions are obtained in this problem as those in the previous two examples. 

X1 

X2 

X3 

X4 

Y 
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Fig. 9   Standard deviations from different sampling techniques (clutch) 

 

Table 8 gives the estimated standard deviations by the first and second order 

Taylor series expansion methods, BDRI, the result (3-Point) from Seo and Kwak (2002), 

and HSS simulation. The result of HSS with 1,000,000 sample points is considered the 

accurate result. It is seen that all methods provide good results and that the Taylor series 

expansion methods are the most efficient methods. HSS is the least efficient method and 

its result from 1,000 sample points is less accurate than Taylor series expansion methods, 

the 3-Point method, and BDRI methods. For this problem with only four random input 

variables, BDRI uses 91 function evaluations while the 3-Point method uses 81 function 

evaluations. This indicates that BDRI may not be as efficient as the other quadrature-

based methods when the number of random variables is small. Table 9 provides the 

results from the percentile difference method with α1 = 0.05 and α2 = 0.95. The total 
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number of performance function evaluations is 162, which is higher than Taylor series 

expansion methods and the point estimate methods.  

 

Table 8 Standard deviation estimated and computational effort (clutch) 

 Taylor  Point estimate HSS 
 first second 3-Point BDRI 1,000 10,000 1,000,000 

Yσ  0.01162 0.01165 0.01169 0.01162 0.01147 0.01163 0.01166 
CE 5 11 81 91 1,000 10,000 1,000,000 

Note: CE – computational effort in terms of the number of function evaluations, the 3-
Point result is from Seo and Kwak (2002). 
 
 
Table 9   Results of percentile difference (clutch) 

0.05y  0.95y  0.95
0.05y∆  Total CE 

0.10143 0.14127 0.03984 162 
 

6. Comparisons and Conclusions 

Based on the test examples and the formulation of the methods, the robustness 

assessment methods are summarized and compared in Table 10. Efficiency, accuracy, the 

requirement of performance function differentiability, and other features are considered 

for the comparison.  
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Table 10   Comparisons of different methods for robustness assessment 

 Variance Percentile 
difference First Order Taylor Point Estimate Simulation 

Efficiency Highest  n+1 

Moderate  O(n2) * 
or O(3n) 
Costly for a large 
scale problem 

Lowest when 
dimensionality is 
small. May be 
more efficient than 
other methods for a 
large scale problem 

O(n) when using 
FORM 

Function 
differentiability Yes No No 

Yes when using 
FORM. 
No when using 
simulation 
approach 

Accuracy 

Good when the 
variances of input 
random variables are 
small and the 
nonlinearity of the 
performance function is 
not high, otherwise the 
accuracy is low. 

More accurate 
than Taylor series 

expansion 
methods in 

general 

Accurate when the 
number of sample 
size is sufficient 

Accurate if a 
sampling method 
is used with a 
sufficient sample 
size. 
Accurate when 
FORM is used 
with a less 
nonlinear 
performance 
function. 

Other features 

• Widely used 
• Easy to use 
• Fails at a stationary 

point 
 

• Easy to use 
 

• Easy and flexible 
to use 

 
• A little hard to 

understand 
• Contains more 

distribution 
information 

• Provides 
confidence 
levels 

 O(·) means “order…” which represents the rates of growth (Weiss 1999). 

 

The major concern of selecting the methods is the trade-off between efficiency 

and accuracy. In general, higher accuracy requires more function evaluations and 

therefore implies low efficiency. The conflict exists between the methods, as well as 

within a specific method. For example, one can select a sampling method instead of a 

Taylor series expansion method to ensure a higher accuracy. Even though one decides to 
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use a specific method, he or she still must make decision on the trade-off between 

accuracy and efficiency. For instance, after a sampling method is chosen, one needs to 

specify the number of samples he or she could afford according to the problem on hand. 

There is no such a method that is universally superior to other method. The selection of 

method should be determined by the specific problem.  However, some guidelines are 

provided as below.  

When computational effort is a major concern and the derivatives of the 

performance function exist, the first order Taylor series expansion method is a good 

choice.   However, the first order Taylor series expansion method may not give accurate 

results. The second order series expansion method provides better results but it needs 

more computational cost.  If the performance function is very expensive to evaluate and 

are not differentiable, the point estimate methods are good alternatives. Among the point 

estimate methods, BDRI significantly reduces the computational cost when the number of 

random input variables is large. Simulation methods are flexible to use and easy to 

implement, but usually they are the most computationally expensive methods. However, 

when a very large number of random variables (for example, 1000) are involved, they 

will be more efficient than other methods that are dimensionality-dependent. They are 

applicable to the performance functions that are not time-consuming to evaluate. HSS 

and LHS are more efficient and achieve more stable results than random sampling. HSS 

exhibits a non-decreasingly asymptotic property.  

The percentile difference approach is a promising alternative for robustness 

assessment, it can provide more distribution information about the performance, and it 

may use less computation effort when the number of random input variables is large. 



 34 

  

Acknowledges 

The support from U.S. National Science Foundation Grant DMI – 040081 and 

University of Missouri-Rolla Intelligent Systems Center is gratefully acknowledged. 

 

References    

Ayyub BM, Haldar A (1984) Practical structural reliability techniques. Journal of 

Structural Engineering 110(8):1707-1724. 

Badhrinath K, Rao JR (1994) Bi-level models for optimization designs which are 

insensitive to perturbations in variables and parameters. Advanced in Design 

Automation 69(2):15-23. 

Bain LJ, Engelhardt M (1991) Introduction to probability and mathematical statistics 

(Duxbury classic series), 2nd Edition. Thomson Learning.  

Belgundu AD, Zhang S (1992) Robustness of design through minimum sensitivity. 

ASME Journal of Mechanical Design 114:213-217. 

Beyer WH (1991) CRC standard mathematical tables and formulae, 29th Edition. CRC 

Press 449.  

Breitung K (1984) Asymptotic approximations for multinormal integrals. Journal of 

Engineering Mechanics 110(3):357-367. 

Chen W, Allen JK, Tsui, K-L, Mistress F (1996) A procedure for robust design: 

minimizing variations caused by noise factors and control factors. ASME Journal 

of Mechanical Design 118:478-485. 



 35 

Chen W, Sahai A, Messac A, Sundararaj GJ (2000) Exploration of the effectiveness of 

physical programming for robust design. ASME Journal of Mechanical Design, 

122(2):155-163. 

Chen W, Wiecek MM, Zhang J (1999) Quality utility-a compromise programming 

approach to robust design. ASME Journal of Mechanical Design 121(2):179-187. 

Chen W, Yuan C (1999) A probabilistic-based design model for achieving flexibility in 

design. ASME Journal of Mechanical Design 121:77-83. 

Crow F (1977) The aliasing problem in computer-generated shaded images. 

Communication of the ACM 20(11):799-805. 

D’Errico JR, Zaino NA (1988) Statistical tolerancing using a modification of Taguchi’s 

method. Technometrics 30(4):397-405. 

Davis PJ, Rabinowitz P (1983) Methods of numerical integration, 2nd Edition. Academic 

Press Inc. (London). 

Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and 

nonlinear equations. Prentice-Hall, Englewood Cliffs. 

Diwekar UM (2003) A novel sampling approach to combinatorial optimization under 

uncertainty. Computational Optimization and Applications 24:335-371. 

Du X (2006) Reliability-based design using saddlepoint approximation. Submitted to 

ASME Journal of Mechanical Design. 

Du X, Chen W (2000a) Methodology for managing the effect of uncertainty in simulation 

–based deign. AIAA Journal 38(8):1471-1478. 

http://ideal.mech.northwestern.edu/pdf/robust_Messac.pdf
http://ideal.mech.northwestern.edu/pdf/robust_Messac.pdf


 36 

Du X, Chen W (2000b) Towards a better understanding of modeling feasibility 

robustness in engineering design. ASME Journal of Mechanical Design 122(4): 

385-394. 

Du X, Chen W (2001) A most probable point based method for uncertainty analysis. 

Journal of Design and Manufacturing Automation 4(1): 47-66. 

Du X, Chen W (2004) Sequential optimization and reliability assessment for probabilistic 

design. ASME Journal of Mechanical Design 126(2):225-233.  

Du X, Sudjianto A, Chen, W. (2004) An Integrated Framework for Optimization under 

Uncertainty Using Inverse Reliability Strategy. ASME Journal of Mechanical 

Design 126(4):561-764. 

Fowlkes WY, Creveling CM (1995) Engineering methods for robust product design: 

using Taguchi methods in technology and product development. PTR Prentice 

Hall. 

Frey DD, Reber G, Lin Y (2005) A quadrature-based sampling technique for robust 

design with computer models. Proceedings of IDETC/CIE ASME 2005 Design 

Engineering Technical Conference and Computers and Information in 

Engineering Conference, Long Beach, California, USA. 

Fu Y, Sahin KH (2004) Better optimization of nonlinear uncertainty systems (BONUS) 

for vehicle structural design. Annals of Operations Research 132:69-84. 

Giunta AA, Wojtkiewicz SF Jr., Eldred MS (2003) Overview of modern design of 

experiments methods for computational simulations.  AIAA 2003-0649, 41st 

AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. 

http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JMDEDB000126000002000225000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JMDEDB000126000002000225000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JMDEDB000126000004000562000001&idtype=cvips&jsessionid=702061093038748120
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JMDEDB000126000004000562000001&idtype=cvips&jsessionid=702061093038748120


 37 

Greenwood WH, Chase KW (1990) Root sum squares tolerance analysis with nonlinear 

problems. ASME Journal of Engineering for Industry 112:382-394. 

Gunawan S, Azarm S (2004) Non-gradient based parameter sensitivity estimation for 

single objective robust design optimization. ASME Journal of Mechanical Design 

126(3):395-402. 

Gunawan S, Azarm S (2005) A feasibility robust optimization method using sensitivity 

region concept. ASME Journal of Mechanical Design 127(5):858-865. 

Halton JH (1960) On the efficiency of certain quasi-random sequences of points in 

evaluating multi-dimensional integrals. Numerische Mathematik 2:84-90. 

Hamersley JM (1960) Monte Carlo methods for solving multivariate problems. Annals of 

the New York Academy of Science 86:844-874. 

Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. ASCE 

Journal of the Engineering Mechanics Division 100(EM1):111-121. 

Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty 

in analysis of complex systems. Reliability Engineering & System Safety 81:23-

69. 

Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R (1987) New light on first- and 

second-order reliability methods. Structural Safety 4:267-284. 

Huang B, Du X (2006a) A robust design method using variable transformation and 

Gauss-Hermite integration. International Journal for Numerical Methods in 

Engineering, in press. 

Huang B, Du X (2006b) Uncertainty analysis by dimension reduction and saddlepoint 

approximations. ASME Journal of Mechanical Design 128(1):26-33. 



 38 

Jin R, Chen W, Sudjianto A (2004) Analytical metamodel-based global sensitivity 

analysis and uncertainty propagation for robust design. Paper 2004-01-0429, SAE 

Congress, March 8-11, Detroit, MI. USA.  

Jin R, Du X, Chen W (2003) The use of metamodeling techniques for design under 

uncertainty. Structural and Multidisciplinary Optimization 25(2):99-116. 

Jung DH, Lee BC (2002) Development of a simple and efficient method for robust 

optimization. International Journal for Numerical Methods in Engineering 

53:2201-2215. 

Kalagnanam JR, Diwekar UM (1997) An efficient sampling technique for off-line quality 

control. Technometrics 39:308-319. 

Lau W (1995) An adaptive supersampling method. Image Analysis Applications and 

Computer Graphics, Chin et al. (Eds), LNCS 1024, Spring-Verlag 205-214. 

Law AM, Kelton WD (1982) Simulation modeling and analysis. McGraw-Hill Company, 

New York, USA. 

Lee K-H, Eom I-S, Park G-J, Lee W-I (1996) Robust design for unconstrained 

optimization problems using the Taguchi’s method. AIAA Journal 34(5):1059-

1063. 

Lee KH, Park GJ (2001) Robust optimization considering tolerances of design variables. 

Computers and Structures 79:77-86. 

Mateufel RD (2000) Evaluating the convergence of Latin hypercube sampling. AIAA-

2000-1636. 41st AIAA structures, Structural Dynamics, and Materials 

Conference, Atlanta, GA,  USA.  



 39 

Mckay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for 

selecting values of input variables in the analysis of output from a computer code. 

Technometrics 21(2):39-245.  

Montgomery DC (2005) Design and analysis of experiments, 6th Edition. John Wiley and 

Sons, Inc.  

Owen A (1997) Monte Carlo variance of scrambled equidistribution quadrature. SIAM 

Journal of Numerical Analysis 34(5):1884-1910. 

Park GJ, Lee TH, Lee KH, Hwang KH (2006) Robust design: an overview. AIAA 

Journal 44 (1):181-191. 

Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal 

design. ASME Journal of Mechanical Design 115:74-80. 

 Phade MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood 

Cliffs, New Jersey. 

Phadke MS (1989) Quality engineering using robust design. PTR Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey. 

Putko MM, Taylor III AC, Newman PA, Green LL (2002) Approach for input 

uncertainty propagation and robust design in CFD using sensitivity derivatives. 

ASME Journal of Fluids Engineering 124:60-69. 

Reichert P, Schervish M, Small MJ (2002) An efficient sampling technique for Bayesian 

inference with computationally demanding models. Technometrics 44(4): 318-

327. 

Robinson DG (1998) A survey of probabilistic methods using in reliability, risk, and 

uncertainty analysis: analytical techniques I. U.S. Sandia Report SAND98-118.  



 40 

Rosenblueth E (1975) Point estimates for probability moment. Proceedings of the 

National Academy Sciences 72(10):3812-3814. 

Rubinstein RY (1981) Simulation and the Monte Carlo method. New York: Wiley. 

Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer 

experiments. Springer Series in Statistics, Springer.  

Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distribution 

using three-point information. International Journal of Production Research 

40(4):931-944. 

Simpson TW, Peplinskim J, Koch PN, Allen JK (2001) Metamodels for computer-based 

engineering design: survey and recommendations 17(2):129-150. 

Sundaresan S, Ishii K, Hourser DR (1995) A robust optimization procedure with 

variations on design variables and constraints. Engineering Optimization 24:101-

117. 

Taguchi G (1978) Performance analysis design. International Journal of Production 

Research 16:521-530. 

Taguchi G (1987) System of experimental design, Vols 1 & 2, Kraus International, New 

York. 

Taguchi G (1993) Taguchi on robust technology development: bringing quality 

engineering upstream. ASME press, New York. 

Taguchi G, Chowdhury S (1999) Robust engineering: learn how to boost quality while 

reducing costs & time to market. McGraw-Hill Professional. 

Thaweepat B, Cao J, Chen W (2004) A weighted three-point-based strategy for variance 

estimation. Proceedings of ASME 2004 Design Engineering Technical 



 41 

Conference and Computers and Information in Engineering Conference, Salt 

Lake, Utah, USA. 

Tu J, Choi KK (1999) A new study on reliability based design optimization. ASME 

Journal of Mechanical Design 121(4):557-564. 

Wang L, Beeson D, Wiggs G (2004) Efficient and accurate point estimate method for 

moments and probability distribution. 10th AIAA/ISSMO Multidisciplinary 

Analysis and Optimization conference, 30 August - 1 September 2004. Albany, 

New York. 

Weiss MR (1999) Data structures & algorithm analysis in C++, second Edition. Addison 

Wesley Longman, Inc. 

Xu H, Rahman S (2004) A generalized dimension-reduction method for 

multidimensional integration in stochastic mechanics. International Journal for 

Numerical Methods in Engineering 60(12):1992-2019. 

Youn BD, Choi KK, Park YH (2003) Hybrid analysis method for reliability-based design 

optimization. ASME Journal of Mechanical Design 125(2):221-232. 

Yu J, Ishii K (1998) Design optimization for robustness using quadrature factorial 

models. Engineering Optimization 30 (3/4):203-225. 

Zhao Y-G, Hon A H-S A (2003) System reliability assessment by method of Moments. 

ASCE Journal of Structural Engineering 129(10):1341-1349.  

Zhao Y-G, Ono T (2000) New point estimates for probability moments. ASCE Journal of 

Engineering Mechanics 126(4):433-436. 

 


	Department of Mechanical and Aerospace Engineering
	University of Missouri – Rolla
	E-mail: beiqing.huang@gmail.com
	Department of Mechanical and Aerospace Engineering

