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SUMMARY 

 

Equality constraints have been well studied and widely used in deterministic design 

optimization, but they have rarely been addressed in reliability-based design optimization 

(RBDO). The inclusion of an equality constraint in RBDO results in the dependency 

(correlation) among random variables. Theoretically, one random variable can be expressed 

in terms of the remaining random variables given an equality constraint; and the equality 

constraint can then be eliminated. However, in practice, eliminating an equality constraint 

may be difficult or impossible because of complexities such as coupling, recursion, high 

dimensionality, nonlinearity, implicit formats, and high computational costs. The objective 

of this work is to develop a methodology to model equality constraints and a numerical 

procedure to solve an RBDO problem. A sequential optimization and reliability analysis 

strategy is proposed to solve RBDO with equality constraints. The First Order Reliability 

Method (FORM) is employed for reliability analysis. The proposed method is illustrated by 

a mathematical example and a two-member frame design problem.  

 

KEY WORDS: Optimization; reliability; equality constraints; probabilistic constraints  
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1. INTRODUCTION 

 

With the advancements of computational technologies, design optimization has 

been increasingly used in engineering design. Combined with mathematical models and 

simulation tools such as finite element analysis, design optimization enables engineers to 

reach an inexpensive and optimal design solution in an automatic manner. In real-world 

problems, uncertainties such as variations in design variables and model parameters always 

exist. Deterministic optimization without considering uncertainties usually pushes the 

design to the limits of constraints, leaving little or no room for accommodating 

uncertainties in modeling and simulation and manufacturing imperfections. Consequently, 

deterministic optimization could lead to unreliable decisions. 

To meet the need of higher product quality and safety, optimization under 

uncertainty has been increasingly applied as an alternative to deterministic optimization. 

Reliability-based design optimization (RBDO) [1-4] is one of the representative methods of 

optimization under uncertainty.  

RBDO maintains design constraint satisfaction at expected probability (reliability) 

levels. There are two common RBDO formulations: reliability index approach (RIA) [4, 5] 

and performance measure approach (PMA) [1, 2]. In RIA, design feasibility is formulated 

as the probability of constraint satisfaction equal to or greater than the desired reliability. In 

PMA, design feasibility is formulated by a percentile constraint function value that 

corresponds to the desired reliability. PMA has a couple of numerical advantages over RIA 

[6]: (1) PMA is more robust in terms of convergence; and (2) PMA is more efficient in 

reliability analysis because it performs reliability assessment only up to a necessary level. 
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An RBDO problem is generally formulated from a deterministic optimization 

problem by converting deterministic constraints into probabilistic ones while the objective 

function is evaluated at the mean values of random variables. A general deterministic 

optimization problem involves both inequality and equality constraints. However, with the 

presence of uncertainty, formulating an equality constraint is much more complicated [7, 

8].  Only few researchers have addressed the equality constraints with random variables in 

robust design optimization, which is another optimization methodology under uncertainty. 

In Das’s work [9], equality constraints are eliminated by solving out the dependent random 

variables from equality constraints. Yu and Ishii [10] formulate equality constraints at the 

mean values of random variables. In Mattson and Messac’s work [8], a comprehensive 

discussion on equality constraints with random variables is provided. They classify the 

treatments of equality constraints under uncertainty into three categories: (a) to relax 

equality constraints, (b) to satisfy equality constraints in a probabilistic sense, and (c) to 

remove the equality constraints through substitution.  

 All of the aforementioned approaches are conducted under the framework of robust 

design optimization. Handling equality constraints in RBDO is still a rarely touched area. 

In this work, a general method of modeling and handling equality constraints for RBDO is 

developed. A sequential optimization and reliability analysis (SORA) strategy and the First 

Order Reliability Method (FORM) are applied to solve an RBDO problem with equality 

constraints. 

 The rest of the paper is organized as follows. Section 2 reviews the general models 

of deterministic optimization and RBDO with equality constraints. Section 3 classifies 

equality constraints into two types: physics-based equality constraints and demand-based 



 4 

equality constraints. Section 4 formulates an RBDO problem for the two types of equality 

constraints. In Section 5, a computational algorithm is developed to solve RBDO problems 

involving physics-based equality constraints.  A mathematical example and a two-member 

frame design problem are used to illustrate the effectiveness of the proposed method in 

Section 6. Section 7 concludes this research work. 

 

2. DETERMINISTIC OPTIMIZATION AND RELIABILITY-BASED DESIGN 

OPTIMIZATION WITH EQUALITY CONSTRAINTS 

 

 In this section, we first briefly review the model of deterministic design 

optimization with an emphasis on equality constraints. Then, we discuss the RBDO model 

with equality constraints.  

 

2.1 Deterministic design optimization model 

A deterministic optimization model is given by 

 

min  ( )

. .   ( ) 0,  1, 2,  , 

       ( ) 0,  1, 2,  , 
i g

j h

f

s t g i n
h j n


 ≤ =
 = =

d
d

d
d





 (1) 

In the above model, ( )1 2, , ,
dnd d d=d   is the vector of design variables; ( )f d  is the 

objective function; ( )ig d  are inequality constraint functions; ( )jh d  are equality constraint 

functions; nd is the number of design variables; ng is the number of inequality constraints; 

and nh is the number of equality constraints.  
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 An equality constraint imposes a functional relationship on design variables. 

Theoretically, given an equality constraint, one design variable can be solved out and be 

expressed in terms of the remaining design variables. In other words, eliminating one 

equality constraint means eliminating one design variable. If we can eliminate all the 

equality constraints by solving the simultaneous equality 

equations, ( ) 0 ( 1,2,  , )j hh j n= =d  , the number of independent design variables will be 

d hn n− . However, in practice, eliminating an equality constraint may be very difficult or 

impossible because of complexities such as coupling, high dimensionality, nonlinearity, 

implicit functional relationships (block-boxes), and high computational costs. Furthermore, 

in collaborative multidisciplinary design optimization [11], equality constraints are 

artificially added to maintain the consistency among disciplines.   

 

2.2    Reliability-based design optimization model 

In reliability-based design optimization, random variables are used to account for 

uncertainties from various sources, such as variations in material’s properties, 

manufacturing processes, and operating environments. By converting deterministic model 

in Equation (1) into a RBDO model, we obtain   

{ }
min  ( , )

s.t.   Pr ( , ) 0 ,  1, 2,  , 

        ( , ) 0,  1, 2,  , 
i i g

j h

f

g R i n
h j n


 ≤ ≥ =
 = =

Pd
d μ

d P
d P





                                          (2) 

 In the above model, ( )1 2, , ,
pnP P P=P   is the vector of random variables and np is 

the number of random variables. P are treated as design parameters that are out of 

designers’ control. The objective function ( , )f Pd μ  is evaluated at the means, Pμ , of the 
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random variables P . Pr{}⋅  denotes a probability, and iR  stands for the desired reliability 

for constraint i.  Equality constraints ( , )jh d P  involve random parameters P.  

 At each design point ( )1 2, , ,
dnd d d=d  , reliability analysis is needed in order to 

calculate the reliability { }Pr ( , ) 0kg ≤d P . Typical reliability analysis methods [12, 13] or 

Monte Carlo Simulation [15] can be used for the reliability analysis purpose.   

It is worthwhile to explain and differentiate the concepts of the design space 

(deterministic space) and reliability analysis space (random space) used in RBDO. The 

design space consists of deterministic design variables ( )1 2, , ,
dnd d d=d  . It is an dn - 

dimensional space. The reliability analysis space consists of random variables 

( )1 2, , ,
pnP P P=P  . It is an pn - dimensional space.  

 

 

 

3. CLASSIFICATION OF PROBABILISTIC EQUALITY CONSTRAINTS 

 

To properly formulate equality constraints in an RBDO problem, it is necessary to 

study their features and then classify them into different categories. Adopting Mattson and 

Messac’s idea [8], we classify equality constraints into two categories: physics-based 

equality constraint and demand-based equality constraint. Statistically, these two types are 

fundamentally different.  

 

 



 7 

3.1  Type 1: Physics-based equality constraint 

 A physical-based equality constraint function is determined by a physical principle; 

the equality condition always holds regardless of the variations of its constituting variables. 

For instance, Newton’s second law states the equality relationship among the mass, ( )1m P , 

of a particle, external resultant force, ( )2F P , acting on the particle, and the acceleration, 

( )3a P , of the particle. The equation is given by 

 1 2 3( ) ( , , ) 0h h P P P F ma= = − =P                  (3)                                

 If F and m are random, a is also a random variable dependent on F and m.  The 

above equation should be always satisfied during a numerical implementation. 

 In a cantilever beam design problem, four random variables 1P , 2P , 3P , and 4P  are 

involved as shown in Figure 1.  

 

Figure 1.   A cantilever beam. 

 

 The total length 4P  is the sum of the other variables.  

 4 1 2 3P P P P= + +  (4) 

 Then, an equality constraint consisting of 1P , 2P , 3P , and 4P  is given by 

 1 2 3 4( ) 0h P P P P= + + − =P  (5) 

 This equality constraint is determined by the material continuity of the beam. 

P1 P2 P3 
P4 
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 In the example of a cubic container design (see Figure 2), there are three random 

parameters 1P , 2P , and 3P . 1P  is the length and width, 2P  is the height, and 3P  is the 

volume, which is given by 

   2
3 1 2P P P=  (6) 

 

 

Figure 2.   A cubic container. 

 

 Therefore, the equality constraint is expressed by 

 2
1 2 3( ) 0h P P P= − =P  (7) 

 The above equality constraint is determined by a geometric relationship.  

 Features of a physical based equality constraint include: 

 (1) The equality condition should always hold. 

 Since an equality constraint represents a physical principle, the equality condition 

should always hold. In other words, the probability of the equality constraint satisfaction 

should always be 1.0, no mater how large uncertainties are. The violation of a physics-

based constraint will result in an infeasibility design. For example, the violation of the 

equality constraint in Equation (5) implies the breakage of the beam. 

P1 
P1 

P2 
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 (2) The equality condition holds in the random analysis space. 

 From Equations (3) and (7), we see that the equality condition holds in the random 

space, no matter how random variables vary.  

 (3) Satisfying an equality condition in deterministic design space may not be 

sufficient. 

 As discussed in Section 1, in some literature an equality constraint is formulated at 

the means of random variables in the deterministic design space as 

 ( ) 0h =pμ  (8) 

 This equation may or may not guarantee the equality condition in the random space. 

For the cantilever beam problem in Figure 1, let 1P , 2P , and 3P  be independently normally 

distributed with their means, 1µ ,  2µ , and 3µ , and standard deviations, 1σ ,  2σ , and 3σ , 

respectively. Since 4P  is a linear combination of the other normally distributed variables, 

4P  is also normally distributed with its mean  

 4 1 2 3µ µ µ µ= + +  (9) 

and its standard deviation 

 
3

2
4

1
i

i
σ σ

=

= ∑  (10) 

 With Equation (8), the equality constraint in the deterministic design space is given 

by  

 1 2 3 4( ) 0h µ µ µ µ= + + − =μ  (11) 

  This equation guarantees the same equality condition in the random analysis space 

when the standard deviation of 4P  is determined by Equation (9). 
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  However, for the cubic container design problem, let 1P  and 2P  be independently 

normally distributed with their means, 1µ  and 2µ , and their standard deviations, 1σ   and 

2σ , respectively. The mean of the volume 3P  is given by 

 2 2
3 1 1 2( )µ µ σ µ= +  (12) 

  The equality constraint in the deterministic design space is  

 2
3 1 2µ µ µ=  (13) 

  Since the standard deviation 1σ  is not zero, Equation (11) conflicts with Equation 

(12). This indicates that the equality constraint specified in Equation (13) in the 

deterministic design space cannot guarantee that the equality constraint is satisfied in the 

random analysis space. 

 Generally, whether an equality constraint in deterministic design space ensures the 

equality condition in the random analysis space depends on the constraint function form 

and the distribution types of random variables. 

 (4) A physics-based equality constraint imposes correlations among random 

variables.  

 A physical-equality constraint inexplicitly reduces one degree of freedom of random 

variables. For example, for the cantilever problem, there are correlations between 4P  and 

1P ,  4P  and  2P , and 4P  and 3P . The correlations increase the complexity of computing the 

probabilistic characteristics of equality and inequality constraints.  
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3.2  Type 2: Demand-based equality constraint 

 A demand-based equality constraint is determined by designers’ preferences or 

desires, not by any physical principle. For example, in the above cubic container design 

problem, the design variables are chosen as the length and width ( 1P ) and height ( 2P ), and 

they are mutually independent. A designer may wish the volume to be as close as possible 

to a target value of 1 m3. This is a demand-based equality constraint. 

 Features of a demand based equality constraint include: 

 (1) The equality condition may not be required to be strictly satisfied.  

 Since a demand-based equality constraint is not determined by physical principles, a 

slight constraint violation does not necessarily mean an infeasible design. Instead, this type 

of constraint is somewhat “flexible” since it only reflects designers’ preferences or desires. 

 (2) A demand-based equality constraint cannot always be satisfied in random 

analysis space. 

 In the above cubic container design problem, we wish the volume to be 1 m3. Then, 

we could express our preferences in the random analysis space as 

 2
1 2 1P P =  (14) 

or 

 2
1 2( ) 1 0h P P= − =P  (15) 

 Since the volume 2
1 2P P  is a continuous random variable and the probability of the 

volume being equal to a specific value is zero. Equations (14) or (15) will never be satisfied 

in the random analysis space. We must find other means to formulate this type of constraint 

(see the next section). 
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 (3) A demand-based equality constraint may not impose a correlation on the random 

variables. 

 A demand-based equality constraint may not necessarily indicate the reduction of a 

degree of freedom of random variables that are involved in an equality constraint. For 

instance, in the above example, 1P  and 2P  can be changed independently even though we 

wish the volume to be a certain value. Therefore, there is no correlation between 1P  and 2P . 

 

4. MODELING EQUALITY CONSTRAINTS IN RBDO 

 

We have discussed the features of two fundamentally different types of equality 

constraints. Next, we discuss how to formulate both types of constraints.  

 

4.1  Formulating a demand-based equality constraint 

 A demand-based equality constraint will never be satisfied. Therefore, we have to 

relax the ideal equality condition. The simplest treatment is to formulate it just at the mean 

values of random variables. The optimization model is therefore given by 

 { }
min  ( , )

. . Pr ( , ) 0 ,  1, 2,  , 

      ( , ) 0,  1, 2,  , 

P

i i g

j P h

f

s t g R i n
h j n


 ≤ ≥ =
 = =

d
d μ

d P
d μ





 (16) 

 Another treatment is to relax and replace the equality constraints 

( , ) 0,  1, 2,  , j hh j n= =d P  , as shown in Equation (2) by the following two equality 

constraints: 

 { }Pr ( , )j j jh Rδ≤ ≥d P , (17) 
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and 

 { } 'Pr ( , )j j jh Rδ≥ − ≥d P , (18) 

where jδ , jR and '
jR   are a small tolerance and two desired reliabilities, respectively. 

 By use either of the above two approaches, there is no equality constraint. 

Therefore, the problem can be solved by any existing RBDO algorithm. Next, we thus 

focus on formulating and solving RBDO problems with physics-based equality constraints. 

 

 

4.2 Formulating a physics-based equality constraint 

As we discussed in Section 3, a physics-based equality constraint must be satisfied 

with a probability of 1.0 in the random analysis space. However, in the optimization model, 

we can only formulate an equality constraint in the deterministic design space, and an 

equality constraint formulated in the deterministic design space may not guarantee the 

equality condition in the random analysis space. To this end, it is nearly impossible to 

satisfy a physics-based probabilistic equality constraint in the deterministic design space. 

The only way to ensure the probability of 1.0 is to eliminate the equality constraints by 

eliminating dependent random variables. Since eliminating equality constraints may not be 

practical, we develop the following numerical procedure based on the principle of variable 

elimination. 

Let equality constraint functions in the random analysis space be  

 ( , ) 0 1,2,  ,                   i hh i n= =d P   (19) 

 d  are deterministic design variables and are treated as constants in the random 

analysis space. The inclusion of equality constraints in RBDO results in the dependency 
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(correlations) among random variables. In this work we assume that there are P hn n−  

independent random variables. We partition random variables P  into independent variables 

X  and dependent variables Y  such that 

 ( ),  =P X Y  (20) 

 Solving the simultaneous equations in Equation (19) yields 

 ( ),=Y G d X  (21) 

where G represents the relationship between X  and Y . 

 Then, an RBDO problem is formulated as 

 
( ){ }

min  ( , )

s.t. Pr , ,  0 1,2,  , 

X

i i i

f

g R i n




≤ ≥ =   

d
d μ

d X G X 

 (22) 

where equality constraints are eliminated.  

 In practice, eliminating equality constraints is difficult. We propose to use the First 

Order Reliability Method [12] to formulate and solve the above RDBO model.  As 

discussed in the introduction, performance measure approach (PMA) [1, 2] has advantages 

over the traditional reliability index approach (RIA). We therefore use PMA to formulate 

the reliability constraints in Equation (20). Suppose the Most Probable Point (MPP) [12] of 

the constraint function ( ), ,  ig   d X G X  is found at *
ix  given the desired reliability iR , then 

according to RIA, the reliability constraint ( ){ }Pr , ,  0i ig R≤ ≥  d X G X  is equivalent to 

( )* *, ,  0i i ig   ≤ d x G x . Hence the RBDO model can be rewritten as 

 
( )* *

min  ( , )

s.t. , ,  0 1,2,  , 

X

i i i i

f

g i n




  ≤ =  

d
d μ

d x G x 

 (23) 
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 Using the concept of variable elimination but not actually eliminating dependent 

variables, we include the mean values Yμ , of the dependent variables Y  and their values 

*
iy  at the MPP *

ix  as design variables as well. *
iY  can be calculated by 

 ( )* *,i i=Y G d x  (24) 

 The RBDO model then becomes 

 ( )
*, ,

* *

* *

min  ( , , )

s.t. , ,  0 1,2,  , 

      ( , , ) 0,  1, 2,  ,  

      ( , , ) 0,  1, 2,  ,  ,  1, 2,  ,  

Y i
X Y

i i i i

j h

j i i h g

f

g i n

h j n

h j n i n



   ≤ =  
 = =


= = =

d μ y

X Y

d μ μ

d x G x

d μ μ

d x y





 

 (25) 

 In the above model, since each inequality constraint has its own MPP, the totally 

number of equality constraints at MPPs is h gn n× . Solving this model needs to search the 

MPP *
ix  for the reliability constraint 0ig ≤ . The MPP search for reliability analysis itself is 

also an optimization problem [1, 2], and therefore, directly solving the above RBDO 

problem will involve an expensive double-loop procedure. Next, we develop a numerical 

procedure that decouples the optimization outer loop from the reliability analysis inner loop 

with the sequential single-loop strategy. 

 

5. SOLVE RBDO WITH PHYSICS-BASED EQUALITY CONSTRAINTS 

 

 In this section, we first briefly review the recently developed sequential single-loop 

strategy for RBDO without equality constraints. Then, we develop the formulation and 

numerical procedure for RBDO with physics-based equality constraints. 
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5.1   Sequential single-loop strategy for RBDO  

 RBDO without equality constraints has been extensively studied. Traditional 

approaches to RBDO without equality constraints require a nested double-loop process. 

Under the optimization outer loop, the inner loop of reliability analysis calculates the 

reliability for each of probabilistic constraints. The optimization outer loop searches for the 

optimal solution by updating design variables and calling the reliability analysis repeatedly. 

Because of the nested framework, this process is computationally intensive. To improve 

computational efficiency, single loop methods have been developed. The original 

approaches can be found in Chen and Hasselman [16], Wu and Wang [17] and Wu, et al. 

[18].  The sequential optimization and reliability assessment (SORA) [2] method is one of 

later developed methods. SORA consists of a few cycles as shown in Figure 3. In each 

cycle, there are two decoupled parts: deterministic optimization (DO) and reliability 

analysis (RA); deterministic optimization is performed first, followed by reliability 

analysis.  

  

 

Figure 3.   Sequential single-loop strategy for RBDO. 

 

 In each cycle, optimization and reliability analysis are decoupled from each other 

and run sequentially. The deterministic optimization is performed to achieve an optimal 

design solution; the reliability analysis is conducted after optimization to verify the 

DO RA 

Cycle 1 

DO RA 

Cycle 2 

DO RA 

Cycle i 
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satisfaction of reliability constraints and also provides improvement direction for updating 

design solution within optimization in the next cycle. If the process does converge, a new 

deterministic optimization model is formulated for the next cycle based on the reliability 

analysis results just obtained. The new optimization formulation shifts the constraint 

boundaries of unsatisfied reliability constraints toward the feasible region and therefore 

guarantees the reliability improvement.  

   

5.2  Deterministic Optimization 

 The deterministic optimization in each cycle is given by Equation (25), where in 

addition to the original design variables d, two new groups of variables, Yμ  and *y , are 

also added as design variables. The inequality constraints are evaluated at the MPPs 

( )* *,x y  of independent random variables X and dependent random variables Y. The MPPs 

*x  of independent variables are the results from the reliability analysis in the previous 

cycle. Equality constraints hold at both the means and the MPPs.  

 

5.3  Reliability analysis 

 The First Order Reliability Method (FORM) is employed to calculate the MPPs 

corresponding to the desired reliability. Two main steps are involved. 

 (1) Transformation: Rosenblatt transformation [19] is used to convert the 

independent random variables X in each of the constraint functions  ig into standard normal 

variables U. The transformation is given by 

1 ( ) , 1, 2, ,
jj X j Xu F x j n−  = F = ⋅⋅⋅                                                 (26) 
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where [ ]1F− ⋅  is the inverse cumulative distribution function (CDF) of the standard normal 

distribution, ( )
jXF ⋅   is the CDF of Xj. After the transformation, the constraint function  

*( , , )i ig d X y  in the original space becomes another function *( , , )i ig d U y  in the transformed 

normal space with regarding to X.  d  and *
iy  are known because they are obtained in the 

deterministic optimization in the previous cycle. 

(2) MPP search:  For constraint i, a maximization (optimization) procedure is used 

to search the MPP *u  in the transformed normal space. The model is given by                                                   

for all , 1, 2, ,i gg i n= ⋅ ⋅ ⋅  

 

*

,

1

*

max  g ( , , )

.    ( )

        ( , , ) 0,  1, 2,  ,  

i i

i

j i h

st R

h j n

−


 = F
 = =

u Y
d u y

u

d u y 

      (27) 

 Different from the conventional MPP search without any equality constraint, the 

above model includes all the equality constraints to ensure their satisfaction at the MPP. 

The solution *
iu  to the above problem is the MPP for constraint i in the transformed space. 

The MPP *
ix  in the original space can be obtained by using Eq. (26).  

 The overall flowchart is depicted in Figure 4.  
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Figure 4.   Flowchart of RBDO with Equality Constraints. 

 

6. NUMERICAL EXAMPLES 

 

In this section, we use two examples to demonstrate the proposed method, including a 

mathematical problem and a design of a two-member frame. For the two-member frame 

design, the result from the proposed method is also verified with that from the elimination 

method, in which equality constraints are eliminated. 

 

6.1  A mathematical problem 

  A deterministic optimization problem is given by 

Stop 

Start 

f converges & 
all 0ig ≤  ? 

Yes 

No 

c = c+1 Reliability Analysis 

Deterministic Optimization  

*New  for all constraintsu  

Initialization:  
* *, , ,i iYd μ y x   

d 
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  The problem involves design variables ( )1 2 3 4 5 1 2, , , , , ,d d d d d y y=d  and two equality 

constraints. The last two design variables ( )1 2,y y  can be eliminated because of the two 

equality constraints.  

  To demonstrate the effectiveness of the proposed method, this deterministic 

optimization problem is reconfigured as an RBDO problem, in which ( )  1, 2,...,5id i =  are 

consider as random design variables, which follow normal distributions 

( ), ,  0.1.i i iN µ σ σ =  To use the RBDO model as shown in Equality (25), a random design 

variable is split into two parts, namely, i iXµ + , where ( )~ 0,i iX N σ .  iX  can be treated as 

independent random variables, and ( )1 2,y y  become the dependent random variables 

( )1 2,Y Y  . Therefore, ( )1 2 3 4 5, , , ,µ µ µ µ µ=d , ( ),  =P X Y , ( )1 2 3 4 5, , , ,X X X X X=X , 

( )1 2,Y Y=Y  , and the RBDO model is given by  

 

( )

( ) ( )( )
( ) ( ) ( ) ( )( )( )
( ) ( ) ( )
( )( ) ( ) ( )

2
1 2 3 4 5

2
1 2 3 1 2 3 2, , , ,

1 1 4 4 5 5 1

2
1 1 2 2 3 3 2 2 21

2
1 1 1 2 2 3 3 2

2
2 1 1 4 4 4 4 5 5 1

min   ( , , ) 2

:  12 - 0.4  0

      11- 2 0

      2 2

      
      0 1

Yd d d d d

i

f d d d d d d d

st d X d X d X Y

d X d X d X d X Y

Y d X d X d X Y

Y d X d X d X d X Y
d

µ
=

= + + −

+ + + + + ≤

+ + + + + + + − ≤

= + + + − + +

= + + + + + + +

≤ ≤

d

0,   1, 2,...,5i












 =

 

 The desired reliability is 0.9 for the two inequality constraints. The results from the 

proposed method are given in Table I. The entire RBDO procedure converges with three 

cycles. The final optimal design solution is 
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( ) ( )1 2 3 4 5, , , , 2.2494, 0.0000, 7.5075, 0.0000, 8.4180d d d d d= =d , and the objective value 

is 12.5671. 

Table I.  The results for the mathematical RBDO problem. 

Cycle Design solution ( )1 2 3 4 5, , , , d d d d d=d  Objective 
1 (2.3135, 0.1380,7.1118, -0.0000, 6.9902) 11.0000 
2 (2.2489, 0.0000, 7.5052, 0.0000, 8.4167) 12.5627 
3 (2.2494, 0.0000, 7.5075, 0.0000, 8.4180) 12.5671 

 

6.2  RBDO for a two-member frame [20] 

 A two-member frame is subject to out-of-plane load as shown in Figure 5. Such 

frames are commonly encountered in automotive, aerospace, mechanical and structural 

engineering applications. The design is to minimize the volume of the frame with the stress 

constraints such that the maximization stresses should be less than or equal to the allowable 

material strengths. Three design variables are the width (d), the height (h), and the wall 

thickness (t) of the member, namely, d = (d, h, t).  

 

 

Figure 5.   A two-member frame. 

 

The volume of the structure is given by 

l 
 

x y 

t 

b 

h 

U2 U3 

P 

l 
 

1 
 

2 
 

U1 
3 

 z 
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2( ) 2 (2 2 4 )f l dt ht td = + −  

The members are subjected to both bending and shear stresses, and the combined 

stress constraint needs to be imposed at points 1 and 2.  According to von Mises yield 

condition, the two constraints are 

( )2 2
1 12

1 3 1.0 0
a

g σ τ
σ

= + − ≤  

( )2 2
2 22

1 3 1.0 0
a

g σ τ
σ

= + − ≤  

where 1 2, and σ σ are the maximum bending stresses at points 1 and 2, respectively; and  τ  

is the shear stress in the members.  

To calculate the stresses, the vertical displacement U1 at Point 2, the rotation U2 about 

line 3-2 and the rotation U3 about line 1-2 need to be first computed using finite element 

analysis procedure, which involves solving the following three equality constraints, 

1
2 2

23

3
2 2

24 6 6

6 4 0 0
0

6 0 4

L L U P
EI GLL L L U
L EI

UGLL L L
EI

 
 −

    
    − + =    
       

 +
 

, 

where  

( ) ( )331 (moment of inertia) = 2 2
12

I dh d t h t − − −  , 

( ) ( )
( )

2 22
 (polar moment of inertia) = 

2
t d t h t

G
d h t
− −
+ −

, 

and 

( ) ( )A (area for calculation of torsional shear stress) = -d t h t− . 
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Once the U1, U2 , U3 have been solved out, the torque T, and bending moments M1 

and M2 at points 1 and 2 for the member 1-2 can be calculated as  

3 - GJT U
L

= , 

( )1 1 2
2 3EIM U U L

L
= − + , 

and 

( )2 1 2
2 3 2EIM U U L

L
= − + . 

Using the torque and moments, the torsional shear and bending stresses can be 

calculated as 

 
2
T
At

τ = , 

( )1 1
1 
2

M h
I

σ =  , 

and                                                    

( )2 2
1 
2

M h
I

σ = . 

 For more details about this example, refer to [20]. 

  

 Five independent random variables are involved. They consist of the length L, the 

modulus of elasticity E, the shear modulus G, the allowable stress (material strength) aσ , 

and the external force P. Their distribution parameters are given in Table II. 

 

Table II.  Distributions of random variables. 
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Variable Distribution type Mean (μ) Standard deviation(σ) 
L Normal 100 in 1 in 
E Normal  30,000,000 psi 3,000,000 psi 
P Normal -10, 000 lb 1,000 lb 
G Normal 11,540,000 psi 1,000,000 psi 

aσ  Normal 40,000 psi 4,000  psi 
 

The formulation with both inequality and equality constraints is briefly shown as 

( )

( )

( )

4

2 2
1 12

2 2
2 22

1
2 2

23

3
2 2

min  ( ) 2 2 2 4

1:   ( , ) 3 1.0 0

1       ( , ) 3 1.0 0,

24 6 6

6 4 0 0
      

0
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= + − ≤
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d P

d P
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 ≤

                   (29) 

in which  ( ), ,d h t=d  and ( ) ( )1 2 3, , , , , , , ,aE L G P U U Uσ= =P X Y . The independent 

random variables are ( ), , , , aE L G P σ=X  and the dependent random variables are 

( )1 2 3, ,U U U=Y .  

 To show the effectiveness of the proposed method, we first solve the RBDO 

problem with three equality constraints and two probabilistic inequality constraints, which 

is converted from the deterministic optimization model shown in Eq. (29). The desired 

reliability is 0.9 for both inequality constraints. The results are shown in Table II. The 

entire RBDO process converges with three serial cycles. The final design solution is d = (d, 
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h, t) = (9.7518, 10.0000, 0.1000) (in). The total volume of the two-member frame structure 

is 782.0697 in3. 

 

Table III.  Results from the proposed RBDO with equality constraints. 

Cycle Design solution d = (d, h, t ) (in) Objective 
1 (7.7987, 10.0000, 0.1000) 703.9467 
2 (9.7517, 10.0000, 0.1000) 782.0695 
3 (9.7518, 10.0000, 0.1000) 782.0697 

 

This problem can also be formulated as an RBDO problem with only two inequality 

constraints. To verify the proposed method, we also use the RBDO with only two 

inequality constraints. The result from the RBDO model with only two inequality 

constraints is the same as the result from the proposed RBDO formulation with both 

inequality and equality constraints. 

 

7. CONCLUSIONS 

 

Equality constraints exist in many engineering problems and have been well- 

addressed in deterministic optimizations. With random variables, it is straightforward to 

deal with equality constraints in RBDO. Equality constraints are therefore overlooked in 

literature or are simply treated as deterministic ones at the mean values of random 

variables.  

 To appropriately handle equality constraints in RBDO, we classify them into two 

types. The first type consists of demand-based equality constraints, which are resulted from 

a designer’s preferences and desires. A demand-based equality constraint may not be 
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satisfied when random variables exist. They can be treated as deterministic equality 

constraints or as inequality reliability constraints that bound an equality constraint with a 

small tolerance.  

The second type consists of physics-based equality constraints, which must be 

satisfied with a probability of 1.0. This type of constraints can be eliminated by solving and 

expressing the dependent random variables in terms of independent random variables. 

However, in practice, variable elimination may not be feasible due to coupling, high 

dimensionality, nonlinearity, implicit format, and high computational costs. A numerical 

procedure is proposed to handle and solve the RBDO problems with physics-based equality 

constraints. A sequential deterministic optimization and reliability analysis strategy is 

employed. Formulations for the deterministic optimization and reliability analysis are 

developed. To maintain the equality relationships without eliminating equality constraints, 

additional design variables are added, including the mean values and the MPPs of the 

dependent random variable. The two examples indicate the feasibility and effectiveness of 

the proposed method.  
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