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Abstract 

A good balance between accuracy and efficiency is essential for reliability-based design (RBD). 

For this reason, sequential-loops formulations combined with the First Order Reliability Method 

(FORM) are usually used. FORM requires a nonlinear nonnormal-to-normal transformation, 

which may increase the nonlinearity of a probabilistic constraint function significantly. The 

increased nonlinearity may lead to an increased error in reliability estimation. In order to 

improve accuracy and maintain high efficiency, the proposed method uses the accurate 

Saddlepoint Approximation for reliability analysis. The overall RBD is conducted in a sequence 

of cycles of deterministic optimization and reliability analysis. The reliability analysis is 

performed in the original random space without any nonlinear transformation. As a result, the 

proposed method provides an alternative approach to RBD with higher accuracy when the 

nonnormal-to-normal transformation increases the nonlinearity of probabilistic constraint 

functions.   
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1. Introduction 

 Reliability-based design (RBD) ensures that the probability of failure be invariably small 

in the presence of uncertainty. RBD has been used in engineering fields for several decades [1], 

including those in civil, mechanical, and aerospace engineering.  

In RBD, the trade-off between higher reliability and a lower cost is usually sought. The 

cost-type objective is minimized while reliability constraints are maintained. A RDB optimizer 

calls reliability analysis repeatedly to assess if the reliability requirement is met. The First Order 

Reliability Method (FORM) [2] is typically used for the reliability assessment, which is 

formulated as another optimization problem. Because of the double-loop nature as shown in 

Fig.1, RBD is computationally expensive. 

 

Fig. 1 Double-loop RBD 

To reduce the computational cost, the sequential loops RBD methods in conjunction with 

FORM have been developed. The high efficiency is achieved in the following two aspects.  

1) Decouple reliability analysis from deterministic optimization 

Sequential cycles are employed. In each cycle, optimization and reliability analysis are 

decoupled; reliability analysis is conducted after optimization. The procedure is illustrated in Fig. 
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2. Since the process is expected to converge with a few cycles, the efficiency is much higher than 

the double-loop procedure schematized in Fig. 1.  

 

Fig 2. Sequential loops procedure 

The typical sequential loops method is the safety-factor based method [3]. Other methods 

include the single-loop single variable method [4], sequential optimization and reliability 

assessment (SORA) [5, 6], and other variations [7, 8]. The methods differ from each other in 

whether random design variables are included, whether the MPP is searched, and whether the 

full reliability analysis is performed for inactive probabilistic constraints [9, 10]. SORA is a 

generic method because it contains both deterministic and random design variables, as well as 

random parameters. Various reliability analysis methods, such as FORM, the use of KKT 

conditions for the MPP, and the moment matching method, can be used in SORA. In this paper, 

we use SORA due to its generality. 

(2) Perform reliability analysis only up to the necessary level 

Calculating a specific value of a probabilistic constraint that corresponds to the required 

reliability is the task of the inverse reliability analysis [11]. Such a value is termed as a percentile 

performance or performance measure [12]. In general, using the percentile performance is more 

efficient than using the actual reliability in RBD [12, 13]. 

Even though FORM is efficient, it may not be accurate. It requires nonnormal random 

variables be transformed into standard normal variables. In the transformed random space a 
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probabilistic constraint function is linearized at the so called Most Probable Point (MPP). The 

nonnormal-to-normal transformation is nonlinear and may increase the nonlinearity of a 

constraint function [14]. In this case, FORM will result in a large error in reliability estimation.  

The First Order Saddlepoint Approximation (FOSPA) eliminates the nonlinear 

transformation [21]. It linearizes a probabilistic constraint function in the original random space. 

And then the accurate Saddlepoint Approximation is employed. FOSPA produces more accurate 

reliability estimation than FORM does when the latter increases the nonlinearity of a constraint 

function [21]. In this work, we integrate FOSPA with SORA to provide an alternative RBD 

method when FORM is not appropriate. The new method is therefore termed as SORA-SPA. 

FOSPA is designed for only reliability calculation, but SORA uses a percentile 

performance formulation. Directly calculating a percentile performance by FOSPA would 

require an iterative process and would not be efficient. Therefore, the research issue is to modify 

FOSPA so that it can evaluate the percentile performance efficiently. A computational procedure 

and algorithms are developed. Details of the procedure and algorithms are discussed in Section 4 

after the introduction to the general RBD model and saddlepoint approximation in Sections 2 and 

3. Four examples are then presented in Section 5 followed by conclusions in Section 6. 

 

2. Model of Reliability-Based Design 

A typical RBD model is given by 

 

( , )
Min  ( , , )

. . 

Pr{ ( , , ) 0} [ ] 1 ,  1, 2, ,

( , , ) 0,  1, 2, ,
i i fi G

j g

f

s t

G R p i n

g j n






 ≤ ≥ = − =  
 ≤ =

X
X Pd μ

X P

d μ μ

d X P

d μ μ





 (1) 
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In the above model, 1 2( , , , )nX X X⋅ ⋅ ⋅X =  is the vector of independent random design 

variables whose mean values  1 2( , , , )X X X Xnµ µ µ⋅⋅⋅μ  =  are to be determined; and n is the number 

of random design variables. 1 2( , , , )mP P P= ⋅⋅⋅P  is the vector of independent random parameters 

(noise factors), which can not be controlled by designers; and m is the number of the random 

parameters. ( )f ⋅  is the objective function and is evaluated at the means of X and P, 

1 2( , , , )X X X Xnµ µ µ⋅⋅⋅μ  =  and 1 2( , , , )P P P Pmmmm  ⋅⋅⋅μ  = , respectively. ( , , ) ( 1, 2, , )i GG i n=d X P   

are probabilistic constraint functions whose probability of constraint satisfaction or reliability, 

=Pr{ ( , , ) 0}i iR G ≤d X P , should be greater than or equal to the required reliability [ ]iR .  fip    is 

the allowable probability of failure for constraint i. ( , , ) ( 1, 2, , )j gg j n=X Pd μ μ   are 

deterministic constraint functions and are evaluated at the means of random variables. 

As mentioned previously, the percentile formulation is usually used due to its efficiency. 

By definition, if the percentile performance that corresponds to the required reliability 

[ ] 1 [ ]i fiR p= −  is 1 [ ]fip
iG −  , then 

 1 [ ]Pr{ ( , , ) } 1 [ ]fip
i i fiG G p−≤ = −d X P . (2) 

Eq. 2 implies that the reliability requirement Pr{ ( , , ) 0} 1i fiG p ≤ ≥ −  d X P  will be 

satisfied if 1 [ ] 0fip
iG − ≤ . Therefore, with the percentile performance, the equivalent RBD model 

becomes 

 

( , )

1 [ ]

Min   ( , , )

. . 

( , , ) 0,  1,2, ,
( , , ) 0,  1,2, ,

fp
i G

j g

f

s t

G i n
g j n

−






≤ =
 ≤ =

X
X Pd μ

X P

d μ μ

d X P
d μ μ





 (3) 
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When FORM is used, the percentile performance can be calculated at the MPP, * *( , )i iX P , 

of ( , , )iG d X P  as [12, 13] 

 1 [ ] * *( , , ) ( , , )fip
i i i iG G− =d X P d X P , (4) 

where *
iX  and *

iP are the components of the MPP for the i-th reliability constraint function 

( , , )iG d X P . The RBD model is then given by 

 

( , )

* *

Min   ( , , )

. . 
( , , ) 0,  1,2, ,
( , , ) 0,  1,2, ,

i i i G

j g

f

s t
G i n
g j n






≤ =
 ≤ =

X
X Pd μ

X P

d μ μ

d X P
d μ μ





 (5) 

SORA [5] solves the above RBD model sequentially starting from the first cycle where 

the deterministic optimization is performed at the means of random variables. FORM is then 

used to find the MPP * *( , )i iX P  at the optimal point. In the second cycle, the MPP * *( , )i iX P  is 

used to formulate a new (modified) deterministic optimization problem. The reliability analysis 

is performed again after the modified deterministic optimization problem is solved. This process 

repeats till convergence.  

 

3. The First Order Saddlepoint Approximation 

Saddlepoint Approximation (SPA) provides an accurate estimate of the cumulative 

distribution function (CDF) in a tail area [15-26]. The first application of SPA in reliability 

analysis was the work of the Second Order Reliability Method (SORM) by Tvedt [24]. After a 

performance function is approximated in a quadratic form at the MPP, SPA is applied to 

calculate the reliability. This method is more accurate than the original SORM, but is inefficient 

because of the use of second derivatives. An efficient and accurate First Order Saddlepoint 
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Approximation (FOSPA) has been proposed recently [14]. A brief introduction to FOSPA is 

given below. 

 Since there is no need to distinguish the random design variables X from the random 

parameters P in reliability analysis, we use a vector Y to represent all the random variables, 

namely,  

 ( , )=Y X P . (6) 

For brevity, we also omit the subscript for a probabilistic function and use 

( , ) ( )G G=X P Y  to denote an arbitrary probabilistic constraint function. Different from FORM 

where the constraint function is linearized in the transformed space, in FOSPA, ( )G Y  is 

linearized in the original random space. The expansion point is called the Most Likelihood Point 

(MLP) [14], 
^^ ^

( , )=y x p , which is on the limit state ( ) 0G =Y . The linearization is given by 

 

^

T

^ ^ ^1

( ) ( ) ( ) ( )
m n

j
jj j

GG Y y
Y

+

=

∂
≈ ∇ − = −

∂∑
y

Y y Y y , (7) 

where 
^

( )∇ y  is the gradient of ( )G Y  at 
^^ ^

( , )=y x p . 

 At the MLP, the joint probability density function (PDF) has its highest value; therefore, 

the following model is used to identify the MLP 
^^ ^

( , )=y x p , 

 1

max   ( )

s.t. ( ) 0

m n

j j
j

f y

G

+

=




 =

∏y

y
 (8) 

where ( )j jf y  is the probability density function (PDF) of Yj, and 
1

( )
m n

j j
i

f y
+

=
∏  is the joint PDF of 

the independent random variables ( , )=Y X P .  
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 Linearizing ( )G Y  at the MLP results in the minimum accuracy loss due to the 

linearization [14]. After the constraint function is approximated by Eq. 7, SPA is used to estimate 

the reliability or the probability of failure.  

 Let the cumulant generating function (CGF) of jY  be ( )yjK t , based on Eq. 7, the CGF of 

( )G Y  is given by [27] 

 

^

1
( )

m n

G yj
j j

GK t K t
Y

+

=

 
∂ =  ∂ 

 

∑
y

. (9) 

 The saddlepoint st  is the solution to the following equation 

 ' ( ) 0GK t = . (10) 

 According to Lugannani and Rice’s formula [18], the reliability is approximated by   

1 1Pr{ 0} ( ) ( )R G w w
w v

φ  = ≤ = Φ + − 
 

,                                           (11) 

where Φ(∙) and φ(∙) are the CDF and PDF of a standard normal distribution, respectively; 

[ ]{ }1/ 2
( ) 2 ( )s sw sgn t K t= −                                                 (12) 

 and 

1/ 2'' ( ) , =  s sv t K t                                                              (13) 

where ( )ssgn t = +1, -1, or 0, depending on whether ts is positive, negative or zero.  

The central idea of SPA is that the probability integration is approximated at the 

saddlepoint where the integrand has the highest contribution. SPA has several excellent features. 

It yields extremely accurate probability estimation, especially in the tail area of a distribution 

[16, 23]. It requires only a process of finding one saddlepoint without any integration. For the 

complete methodology, interested readers may refer to [22]. 
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4. Reliability-Based Design with Saddlepoint Approximation 

4.1 Overview 

 In the proposed SORA-SPA method, after deterministic optimization, reliability analysis 

is performed, where the MLPs corresponding to the required reliability are searched. Then in the 

next cycle, the modified deterministic optimization is formulated using the MLPs. The process is 

outlined in Fig. 3. 

 

Fig. 3 Outline of the SORA-SPA process 

4.2 Reliability analysis 

 The purposes of reliability analysis in the proposed method are 1) to calculate the 

percentile performance and 2) to provide information for building a new (modified) deterministic 

optimization model. The original FOSPA method is only for reliability calculation and is not 

intended to compute the percentile performance. The direct use of FOSPA is computationally 

expensive; we therefore propose an efficient approach to calculating the percentile performance. 

Deterministic optimization 

Cycle =1 

Reliability analysis by 
FOSPA 

Optimal 
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MLP  

Stop 
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 The magnitudes of random variables may be in substantially different orders. For 

example, a material strength is in megapascals (MPa), and a diameter of a shaft is in millimeters 

(mm). To maintain numerical stability, we use the standardized random variables. A 

standardized variable is defined by 

    Y

Y

YZ µ
σ
−

= ,                                                             (14) 

where Yµ  and Yσ  are the mean and standard deviation of Y, respectively. 

 The probabilistic constraint function is then expressed in terms of the standardized 

variables as 

   ( , ) ( , ) ( , , )X PG G G= =d Y d Z d Z Z . (15) 

It should be noted that the transformation in Eq. 14 is linear and does not increase the 

nonlinearity of a probabilistic constraint function after the transformation.  

The CGF of several distributions are given in Table 1. 

Table 1 CGF of some distributions 

Distribution PDF CGF 

Normal  
2

2
( )

21( )
2

x

f x e
µ
σ

πσ

−
−

=  2 21( )
2XK t t tµ σ= +  21( )

2ZK t t=  

Exponential  ( ) xf x e ββ −=  ( ) ln 1X
tK t
β


= − − 
 

 ( )( ) ln 1ZK t t t= − − −  

Uniform  
1( )f x

b a
=

−
 

( )
( ) ln

bt at

X
e eK t
b a t

 −
=  − 

 
3 3

( ) ln
2 3

t t

Z
e eK t

t

−  −
=  

 
 

Type I 
Extreme 
Value 
(Gumbel) 

1( ) exp
x x

f x e e
α α
β β

σ

− −
− − 

= −  
 

 ( ) ln (1 )XK t t tα β= + Γ −
 

( ) ln (1 )X
Z

X X

K t t tµ α β
σ σ
−

= + Γ −  

2χ   
1

/ 2 1 2
/ 2

1( )
( / 2)2

xn
nf x x e

n
−−=

Γ
 ( )1( ) ln 1 2

2XK t n t= − −  1( ) ln 1 2
2

X
Z

X X

tK t t nµ
σ σ

 
= − − − 

 
 

Gamma  1( )
( )

xf x x e
α

α ββ
α

− −=
Γ

 ( )( ) ln 1XK t tα β= − −  ( ) ln 1X
Z

X X

tK t tµ α
σ σ β

 
= − − − 

 
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 Since we expect reliability constraints to be satisfied only at the end of the optimization 

process, we do not need to calculate the exact percentile performance in each cycle. We therefore 

propose the following reliability analysis procedure, which ensures that the reliability 

requirement be satisfied at the final optimal point. The reliability analysis in the k-th cycle is 

explained below.  

 1) Search the MLP at the optimal point ( , )k k
Xd μ . 

 The MLP , ,

^ ^
( , )k i k i

X P
z z  of the i-th constraint function  ( 1,2, , )i GG i n=   at the limit state 

0iG =  is the solution to the following optimization model  

 , 1

max ( )

s.t. ( , , ) 0

X P

m n

zj j
j

k
i X P

f z

G

+

=




 =

∏z z

d z z
 (16) 

The superscript k in the MLP , , ,

^ ^ ^
( , )k i k i k i

X P
=z z z  denotes the k-th cycle and the superscript i 

denotes the i-th constraint.  

2) Linearize ( , , )iG d X P  at the MLP , , ,

^ ^ ^
( , )k i k i k i

X P
=z z z . 

 
, , ,

^ ^ ^

, , , ,T

^ ^ ^ ^1 1 1

0
1

( , ) ( ) ( ) ( )

,

k i k i k i

j

m n m n m n
k i k i k i k ik i i i

i j jj jj j jj j j z

m n

j j
j

G G GG Z z z Z
Z Z Z

a a Z

+ + +

= = =

+

=

∂ ∂ ∂
≈ ∇ − = − = − +

∂ ∂ ∂

= +

∑ ∑ ∑

∑

z z

d Z z Z z

 (17) 

where the coefficients are  

 
,

^

,
0 ^1

k i

m n
k ii

jj j

Ga z
Z

+

=

∂
= −

∂∑
z

, (18) 

and 
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,

^

k i

j

i
j

j z

Ga
Z
∂

=
∂

. (19) 

3) Find the percentile performance 1 [ ]fip
iG −  and the MLP 

, ,
( , )

k i k i
X Pz z   corresponding to the 

required reliability 1 [ ]
if

p− . 

According to Eq.2, the percentile performance 1 [ ]fip
iG −  is the solution to the following 

equation. 

 1 [ ]
0

1
Pr 1 [ ]fi

m n
p

j j i fi
j

a a Z G p
+

−

=

 
+ ≤ = − 

 
∑ . (20) 

The reliability  on the left-hand side of Eq. 20 is calculated with FOSPA as follows.  

Let 

 

1 [ ]
0

1

fi
m n

p
i j j i

j

G a a Z G
+

−

=

= + −∑ . (21) 

The CGF of  iG  can be derived as [22] 

 


( ) ( )1 [ ]
0

1

( ) fi

ji

m n
p

i Z jG
j

K t a G t K a t
+

−

=

= − +∑ . (22) 

where 
jZK is the CGF of jZ , which is given in Table 1.  

According to Eq. 10, the saddlepoint st  is the solution to the following equation 

 


( ) ( )1 [ ]' '
0

1
( ) 0fi

ji

m n
p

i j Z jG
j

K t a G a K a t
+

−

=

= − + =∑ . (23) 

Thereafter, the probability  { }1 [ ]
0

1

Pr 0 Pr 0fi
m n

p
ij j i

j

a a Z G G
+

−

=

 
+ − ≤ = ≤ 

 
∑  in Eq. 20 can be 

easily calculated with Eqs. 11 through 13.  
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Newton’s method or bisection method [28] can be used to solve Eq. 23. The percentile 

performance 1 [ ]fip
iG −  will be used to find the corresponding MLP 

, ,
( , )

k i k i
X Pz z  . And then 

, ,
( , )

k i k i
X Pz z   

will be used to formulate the reliability constraints iG  in the next (k+1)-th cycle. The MLP 

1, 1,
( , )

k i k i
X P
− −

z z   can be found at the percentile performance 1 [ ]fip
iG −  with the following model. 

 


, 1

1 [ ]
0

1

max ( )

s.t. 0

X P

fi

m n

zj j
j

m n
p

i j j i
j

f z

G a a Z G

+

=

+
−

=





 = + − =


∏

∑

z z

 (24) 

Any optimization algorithm can be used to solve the above model. It should be noted that 

solving the above model and Eq. 20 does not call the constraint function iG . It is also 

worthwhile to note that the MLP , , ,

^ ^ ^
( , )k i k i k i

X P
=z z z  (the solution to Eq. 20) is for the limit state 

0iG =  and that the MLP 
, ,

( , )
k i k i
X Pz z   (the solution to Eq. 24) is for the percentile performance 

1 [ ]fip
iG − . Only the latter is used to formulate a modified deterministic optimization model for the 

next cycle. 

In summary, the purpose of reliability analysis is to provide information so that a new 

optimization model can be formulated for the next cycle. Two steps are involved. (1) The MLP 

, ,

^ ^
( , )k i k i

X P
z z  for 0iG = is first identified, then iG  is linearized at , ,

^ ^
( , )k i k i

X P
z z . The FOSPA is used to 

calculate the percentile performance 1 [ ]fip
iG −  at , ,

^ ^
( , )k i k i

X P
z z . (2) The MLP 

, ,
( , )

k i k i
X Pz z   at 1 [ ]fip

iG −  is 

identified. It is obvious that the percentile performance 1 [ ]fip
iG −  is the function value of iG at the 

MLP 
, ,

( , )
k i k i
X Pz z  . To satisfy the reliability requirement for iG , the percentile performance 1 [ ]fip

iG −  
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should be less than zero, namely, 
, ,1 [ ] ( , , ) 0fi

k i k ip
X Pi iG G− = ≤d z z  . This condition is used to formulate 

new reliability constraint functions in the (k+1)-th cycle. 

The reliability analysis is demonstrated with a special two-dimensional problem in Fig. 4, 

where the constraint function iG  contains two standardized random variables Z1 and Z2. At first, 

the constraint function is linearized at the optimization point obtained from the k-th optimization. 

Then the MLP  ,

^

k iz  is searched by maximizing the joint PDF at 0iG = . Next, the constraint 

function is liearized at ,

^

k iz , and the percentile performance 1 [ ]fip
iG −  is calculated based on the 

linearization. Finally, the MLP  
,k i

z  is identified. The joint PDF at ,

^

k iz  has the highest value at 

the line ( ) ( ), , 1 [ ]
1 20 1 1 2 2

fi
k i k i p

ia a Z z a Z z G −+ − + − =  . ,

^

k iz  will then be used to formulate a new 

(modified) deterministic optimization model for the (k+1)-th cycle. 

 

Fig. 4 Reliability analysis 

 

( ) ( ), ,
0 1 1 2 2^ ^1 2

0k i k ia a Z z a Z z+ − + − =

1Z

( , )k
iG c=d Z

,

^

k iz

,k i
z

Contour of joint PDF 

( ) ( ), , 1 [ ]
1 20 1 1 2 2

fi
k i k i p

ia a Z z a Z z G −+ − + − = 

2Z
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4.3 Optimization 

 We have discussed the reliability analysis in the k-th cycle. Next we discuss how to 

formulate the modified deterministic optimization for the (k+1)-th cycle. The percentile 

formulation in Eq. 3 is used to formulate a RBD problem. As discussed in the last subsection, the 

percentile performances of probabilistic constraints  ( 1,2, , )i GG i n=   are calculated at the 

MLPs  

, ,
( , )

k i k i
x p  as 

   ( ), , , ,1 [ ] T T( , , ) , ,fi
k i k i k i k ip

X Pi i i X X P PG G G− = = + +d x p d μ σ z μ σ z  . (25) 

 The RBD optimization in (k+1)-th cycle is then modeled as 

 ( )

( , )

, ,T T

Min  ( , , )

. . 

, , 0,  1,2, ,

( , , ) 0,  1,2, ,

k i k i
X Pi X X P P G

j g

f

s t

G i n

g j n






+ + ≤ =


≤ =

X
X Pd μ

X P

d μ μ

d μ σ z μ σ z

d μ μ

  





 (26) 

 Because the following equation holds  

 


( )
,

, ,T T ,

k i kk i k ik k iX
XX X X X X X X

X

−
+ = + = − − = −

x μμ σ z μ σ μ μ x μ s
σ

  , (27) 

where ,k is  is called the shifting vector and is given by  

 ( ),, k ik i k
X= −s μ x  , (28) 

the reliability constraint iG  in Eq. 26 becomes 

 ( ),,, , 0
k ik i

i XG s− ≤d μ p . (29) 

Eq. 29 indicates that the reliability constraint iG  is evaluated at the MLP 
,k i

p obtained in 

the previous cycle and that the constraint boundary in the design space is shifted toward the 
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feasible region with the distance ,k is .  The distance is the difference between the design variables 

k
Xμ  and their MLP 

,k i
x .  

The idea is illustrated in Fig. 5 where one reliability constraint function 1 2( , )G X X  with 

two random design variables is involved. The overall RBD starts from the deterministic 

optimization in the first cycle where the first optimal point 1
Xμ  is found. The constraint is active 

because 1
Xμ  is on the constraint boundary. In the reliability analysis, the constraint function is 

linearized at 1
Xμ . Based on the linearization, the percentile performance 1 [ ]fpG −  is solved by Eq. 

20, and the MLP 
1

x  is obtained from Eq. 24. In the second cycle, a modified deterministic 

optimization is formulated with shifted constraint boundary toward the feasible region by the 

distance ( )11 1
X= −s μ x . The reliability will be improved at the optimal point 2

Xμ  due to the 

reduced feasible region. After the optimization, reliability analysis is performed to obtain the 

MLP 2x̂  for the limit state 0G = .  The constraint function is then linearized at 2x̂ , and SPA is 

used to calculate the percentile performance 1 [ ]fpG −  and the MLP 
2

x . If the percentile 

performance 1 [ ]fpG −  is still greater than zero, the constraint boundary will be shifted again and 

the process will be repeated till convergence. 
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Fig. 5 Shifting constraint boundary 

 

 

4.4 Numerical Implementations 

 In this work, the RBD optimization and the MLP search are performed with the 

Sequential Quadratic Programming (SQP). The equations of percentile performance and the 

saddlepoint are solved by the bisection method.  

 The stopping criteria of the overall RBD are as follows. 

1) The reliability requirement is satisfied. 

  1 [ ]
1  ( 1,2, , )fip

i GG i nε− ≤ =   (30) 

2) The difference of the objective functions in two consecutive cycles is small. 

  1
2

k kf f ε−− ≤  (31) 

2x̂

Cycle 1: original 
boundary  ( ) 0XG =μ  

 

1
( ) 0G =x

1 1, XX µ

2 2, XX µ

1
Xμ

Contour of joint PDF 



1
x

1s

2
Xμ

 

2
( ) 0G =x



2
x

1s

2s

Cycle 2: shifted boundary 
1( ) 0XG − =μ s  

 

Cycle 3: shifted boundary 
2( ) 0XG − =μ s  

 
2s
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where 1ε  and 2ε  are small positive numbers. 

The proposed SORA-SPA method requires that a random variable is tractable; or in other 

words, a closed-form CGF exists. Some random variables may not have a closed-form CGF, for 

example, a Weibull distribution or a lognormal distribution. There are three ways to approach an 

intractable CGF: 1) Approximate the CGF using polynomial expansions [29]; 2) sample the 

intractable variable and use the samples to approximate the CGF [30]; and 3) transform the 

intractable random variable into another tractable random variable.   

 

4.5 Selection of a RBD method 

There is a fundamental difference between the proposed SORA-SPA method and a 

FORM based method. A probabilistic constraint function is linearized in the original random 

space in the former method while a probabilistic constraint function is linearized in the 

transformed space in the latter method. A question arises due to the difference: What method 

should be used for a given problem? The general answer would be as follows. If the nonnormal-

to-normal transformation in FORM increases the nonlinearity of a probabilistic constraint 

function, the SPA method should be used; otherwise, FORM should be used. The nonlinearity 

can be measured by the curvature of the probabilistic constraint function at the MLP or MPP. 

The following two examples are used to demonstrate the idea. In example 1, the nonnormal-to-

normal transformation increases nonlinearity of the probabilistic function, and the proposed 

method should be used. In example 2, the nonnormal-to-normal transformation decreases the 

nonlinearity of the probabilistic function, and FORM should be used. 

In example 1, the constraint function is given by 1 2 1 2( ) 40 ( 8 8 )G Y Y Y Y= − + +Y , where Y1 

and Y2 follow an extreme value type I distribution (Gumbel distribution) with the mean of 1.5 
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and the standard deviation of 0.2. The probabilities of failure by FORM, FOSPA, and Monte 

Carlo simulation (MCS) with 106 samples are 0.00021331, 0.00040691, and 0.000363, 

respectively. Taking the MCS solution as a benchmark, FOSPA is more accurate than FORM. 

The reason is that FORM increases the nonlinearity of the function. This is illustrated in Figs. 6 

and 7. The curvature of the function at the MLP in the original Y-space is 0.069338, and the 

curvature increases to -0.15703 at the MPP after the transformation in the standard normal U-

space. The curve of ( ) 0G =Y  in Fig. 6 is flatter than ( ) 0G =U  in Fig. 7. In Fig. 6, the linearized 

function (a straight line) at the MLP in Y-space is plotted, and the linearized function at MPP in 

U-space, (which is a straight line in u-space in Fig. 7), is also plotted in Y-space where the line 

becomes a curve. It is shown in both figures that the constraint function is closer to the linearized 

function in Y-space. Therefore, the linearization in Y-space produces higher accuracy. In this 

case, SORA-SPA should be used. 
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         Fig. 6 Constraint function in y-space                Fig. 7 Constraint function in u-space 
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In example 2, the constraint function is given by 1 2( ) 4G Y Y= −Y , where Y1 and Y2 follow 

the same distribution as in example 1. The probabilities of failure by FORM, FOSPA, and Monte 

Carlo simulation (MCS) with 106 samples are 0.0022882, 0.0038289, and 0.002717, 

respectively. Taking the MCS solution as the benchmark, FORM is more accurate than FOSPA. 

As shown in Figs. 8 and 9, the curvature of 0G =  is reduced significantly after the 

transformation, from 0.35355 at the MLP in Y-space to -0.045072 at the MPP in u-space. This 

indicates the reduced nonlinearity because of the transformation. In this case, SORA-FORM 

should be used. 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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         Fig. 8 Constraint function in y-space                Fig. 9 Constraint function in u-space 

 

It should be noted that the calculation of a curvature needs the second derivatives of a 

constraint function with respect to all its random variables. The recommendation is that calculate 

the curvatures at the MLP in Y-space and at the MPP in U-space after the first deterministic 

optimization is performed.  If the curvature increases in U-space, one should use SORA-SPA 

method; otherwise, one should use SORA-FORM method. For a high-dimensional problem, 

principal curvatures may be used. 
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5. Examples 

A number of problems have been used to test the proposed method. Four examples are 

presented here. These problems represent a wide range of application scenarios. Some problems 

have only deterministic design variables and only normal random variables, and others have both 

deterministic and random design variables, as well as nonnormal random variables. The accuracy 

and efficiency are compared between the proposed SORA-SPA method and SORA-FORM 

method [10]. The accuracy of the reliability calculation at the optimal point is confirmed with the 

result obtained from Monte Carlo simulation (MCS) with a large sample size, if no analytical 

solution exists. The efficiency is measured by the number of function evaluations, including 

those for both optimization and reliability analysis. The derivatives are evaluated numerically by 

the finite difference method. The MATLAB SQP optimizer is used for the optimization and 

reliability analysis. The same parameter setting and stopping criteria are used for both methods 

to ensure a fair comparison. It should be noted that the proposed method performs better than the 

FORM based RBD method in all the examples because FORM increases the nonlinearity of 

probabilistic constraint functions. The proposed method is not applicable when FORM decreases 

the nonlinearity of probabilistic constraint functions. 

  

Example 1 – mathematical problem 1 

In this problem, there are two deterministic design variables, 1 2( , )d d=d , and m random 

parameters 1 2( , , , )mP P P=P  . There is no random design variable. The RBD problem is 

modeled as 
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∑

d

d P  

The allowable probability of failure is [ ] 0.001fp = . Each of the independent random 

parameters follows a standard exponential distribution with the following CDF, 

 ( ) 1 exp( )i i iF p p= − − . 

The probability of failure for the constraint ( , )G d P  from FORM and SPA can be found 

analytically for this specific mathematical problem. The accurate probability of failure is also 

available. Since the reliability analysis can be performed analytically, the RBD is conducted 

without sequential loops.  

The optimal solutions for 15m =  using FORM, SPA, and analytical reliability analysis 

are displayed in Table 2.  The results show that SPA produces a very accurate result, which is 

almost identical to the analytical result. The probability of failure at the optimal point from SPA 

is exactly at the required level, which is 0.01. The optimal solution from FORM has a large error. 

The actual probability of failure calculated at the optimal point from FORM is 0.02802, which is 

far away from the required probability of failure 0.01. 

Table 2 Results from analytical methods 

METHOD ( )f d  *
1 2( , )d d=d  fp  AT *d  

FORM 134.96 (11.62, 11.62) 0.028 
FSPA 222.79 (14.93, 14.93) 0.001 

Theoretic solution  222.78 (14.93, 14.93) 0.001 

The problem is also solved by SORA-FORM and SORA-SPA. The same results are 

obtained as shown in Table 2. The convergence history of each method and the number of 
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function evaluations are displayed in Tables 3 and 4, respectively. Both methods converge in 

three cycles (denoted by k in the table) but produce different solutions. At the optimal point, the 

percentile performance 1 [ ]fpG −  is close to zero for both methods. This indicates that the 

probabilistic constraint is active. It is also seen that the convergence is achieved progressively 

from the first cycle to the last. In Tables 3 and 4, N denotes the number of function evaluations 

(or deterministic analyses for evaluating objective function and all the constraint functions). 

SORA-SPA is more efficient than SORA-FORM since the former uses 111 function evaluations 

while the latter uses 254 function evaluations. 

Table 3 Convergence history of SORA-FORM  

k ( )f d  1 2( , )d d  1 [ ]fpg −  N 
1 56.25 (7.5, 7.5) 14.85 

254 2 134.96 (11.62, 11.62) 0.0 
3 134.96 (11.62, 11.62) 0.0 

 

Table 4 Convergence history of SORA-SPA 

k ( )f d  1 2( , )d d  1 [ ]fpg −  N 
1 56.25 (7.5, 7.5) 8.23 

111 2 222.79 (14.93, 14.93) 0.0 
3 222.79 (14.93, 14.93) 0.0 

 

Example 2 – mathematical problem 2 

In the previous example, no random design variable is involved, and therefore no 

constraint boundary shifting is needed. To test SORA-SPA for a more general case, in this 

problem, we use two deterministic design variables, 1 2( , )d d=d , two random design variables 

1 2( , )X X=X , and eight random parameters 1 2 8( , , , )P P P=P  . The RBD problem is given by 
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The allowable probability of failure is [ ] 0.005fp = . Each of the independent random 

parameters follows a standard exponential distribution as in example 1. 

The convergence history of each method is given in Tables 5 and 6. Since no analytical 

solution is available, Monte Carlo simulation (MCS) with 106 samples is used to calculate the 

actual probability of failure at the optimal points from SORA-FORM and SORA-SPA. The 

probability of failure calculated by MCS at the optimal point from SORA-FORM is 

0.0336fp = .  It is much higher than the allowable probability of failure [ ] 0.005fp =  with an 

error of 572.0%
fpε = . The solution of SORA-FORM is therefore risky. The probability of 

failure calculated by MCS at the optimal point from SORA-SPA is 0.0051fp = , which is very 

close to the allowable probability of failure [ ] 0.005fp = . The error is 2%
fpε = . SORA-FORM 

uses 361 function evaluations, and SORA-SPA uses 277 function evaluations. The results show 

that SORA-SPA is more accurate and efficient than SORA-FORM. 

Table 5 Convergence history of SORA-FORM 

k ( )f d  1 2 1 2( , , , )x xd d µ µ  1 [ ]fpg −  fp  
fpε  N 

1 0.32 (0.75, 0.75, 0.75,0.75)     6.30 
0.034 572.0% 361 2 4.04 (4.02, 4.02, 0.5, 0.5) 0.01 

3 4.05 (4.03, 4.03, 0.5, 0.5) 0.0 
* MCS solution fp  is from 106 samples, the error of the probability of failure under 95% 
confidence is 3.4%, and the 95% confidence interval is [0.031655, 0.033861].  
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Table 6 Convergence history of SORA-SPA 

k ( )f d  1 2 1 2( , , , )x xd d µ µ  1 [ ]fpg −  fp  
fpε  N 

1 0.32 (0.75, 0.75, 0.75, 0.75)     9.40 

5.1×10-3 2.0% 277 
2 92.24 (3.10, 3.10, 3.10, 3.10) 2.44 
3 11.96 (6.92, 6.92, 0.5, 0.5) -2.57 
4 7.92 (5.63, 5.63, 0.5, 0.5) 0.0 
5 7.92 (5.63, 5.63, 0.5, 0.5) 0.0 

* MCS solution is fp  from 106 samples, the error of the probability of failure under 95% 
confidence is 8.6%, and the 95% confidence interval is [0.004691, 0.005577]. 

 

 

Example 3 – cantilever beam design 

In the previous two mathematical examples, there is only one constraint function, and the 

constraint function is linear. Next, we will test SORA-SPA using two engineering examples, 

which involve nonlinear constraint functions and different distributions.  

A cantilever beam [3] to be designed is illustrated in Fig. 10.  

 

Px 

Py 
 

b 

h 

L 

 

Fig. 10 Cantilever beam 

 

The objective is to minimize the weight or equivalently the cross-area 

 b hf µ µ= ,  

where b and h are random design variables, which represent the width and height of the cross 

section, respectively, and the design variables are their means ( ),b hµ µ=d . There is no 



 26 

deterministic design variable in this problem. The random parameters are ( , , , )x yP P E S=P , 

which are the horizontal force, vertical force, Young’s modulus, and material yield strength, 

respectively. Two cases with different distributions are considered. All the random variables are 

normally distributed in Case 1, and uniform distributions are involved in Case 2. The 

distributions of the random variables for both cases are shown in Tables 7 and 8, respectively. 

 

Table 7 Distributions for Case 1 

Variable Mean Standard deviation Distribution 
b bµ  in 0.01 in Normal 
h hµ  in 0.01 in Normal 
Px 500 lb 100 lb Normal 
Py 1000 lb 100 lb Normal 
E 29×106 psi 1.45×106 psi Normal 
S 40000 psi 2000 psi Normal 

 

Table 8 Distributions for Case 2 

Variable Parameter 1* Parameter 2* Distribution 
b bµ  in 0.01 in Normal 
h hµ  in 0.01 in Normal 
Px 300 lb 700 lb Uniform 
Py 600 lb 1500 lb Uniform 
E 29×106 psi 1.45×106 psi Normal 
S 40000 psi 2000 psi Normal 

* Parameter 1 is the mean for a normal distribution and the lower bound for a uniform 
distribution. Parameter 2 is the standard deviation for a normal distribution and the upper bound 
for a uniform distribution 
 

Two constraints are considered. The first constraint is that the maximum stress at the 

fixed end of the cantilever is less than the yield strength S. 

   1
6( ) ( ) 0yx PL PG S
bh b h

= + − ≤d , 
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where 100 inL =  is the length of the beam. 

The second constraint is that the tip displacement does not exceed an allowable value D0, 

   
223

2 03 3

4( ) 0yx PL PG D
E b h bh

= + − ≤  
   

d  

where 0 2.5D =  in.   

The allowable probability of failure of each of the reliability constraints is 

1 2[ ] [ ] 0.001f fp p= = . The reliability-based design model is given by 
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Both of the reliability constraint functions are normalized as follows. 

 1
6 ( ) 1 0yx PL PG S
bh b h
 

= + − ≤ 
 
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 The optimal solutions for Case 1 are given in Tables 9 and 10. The solutions from both 

SORA-FORM and SORA-SPA are almost identical. The probability of failure evaluated by 

MCS at the optimal points is also the same. The first reliability constraint is active at the optimal 

solution, and the probability of failure of the first constraint at the optimal point obtained from 

each of the methods is also displayed in Tables 9 and 10. The second constraint is inactive. Its 
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probability of failure is much smaller than the required one and is not displayed in the tables. The 

result indicates that if all the random variables are normally distributed, both SORA – FORM 

and SORA – SPA produce the same solution. 

 

Table 9 Convergence history of SORA-FORM for Case 1 

k f  ( , )b hµ µ  11
1

fpg −  21
2

fpg −  1fp  
1fpε  N 

1 7.67 (2.06, 3.75) 0.40 0.54 
1.04×10-3 4.0% 1351 2 9.58 (2.49, 3.84) 0.0 -0.11 

3 9.58 (2.45, 3.90) 0.0 -0.10 
* The MCS solution 1fp  is from 106 samples, the error of the probability of failure under 95% 
confidence is 19.2%, and the 95% confidence interval is [0.0008393, 0.0012387]. 

 

Table 10 Convergence history of SORA-SPA for Case 1 

k f  ( , )b hµ µ  11
1

fpg −  21
2

fpg −  1fp  
1fpε  N 

1 7.67 (2.05, 3.75 0.37 0.49 
1.04×10-3 4.0% 481 2 9.56 (2.51, 3.81) 0.0 -0.12 

3 9.58 (2.45, 3.91) 0.0 -0.10 
* The MCS solution 1fp  is from 106 samples, the error of the probability of failure under 95% 
confidence is 19.2%, and the 95% confidence interval is [0.00084113, 0.0012409]. 
 
 In Case 2, some of the random variables are not normally distributed, the optimal solution 

from SORA-FORM is different from that of SORA-SPA as shown in Tables 11 and 12. 

Compared with the confirmation from MCS, the error of the probability of failure associated 

with the first reliability constraint at the optimal point from SORA-FORM is -62.4% while the 

error of SORA-SPA is only 0.1%. This indicates that the latter is more accurate than the former 

when the random variables are not normally distributed. The results for the two cases also show 

that the efficiency of SORA-SPA is much higher than SORA-FORM. 
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 Table 11 Convergence history of SORA-FORM for Case 2 

k ( )f d  
(in2) 

( , )b hµ µ  
(in) 

11
1

fpg −  21
2

fpg −  1fp  
1fpε  N 

1 7.80       (2.02, 3.86) 0.53 0.53 
3.760×10-4 -62.4% 1750 2 10.35        (2.20, 4.71) 0.0 -0.07 

3 10.35 (2.20, 4.70) 0.0 -0.07 
* The MCS solution 1fp  is from 106 samples, the error of the probability of failure under 95% 
confidence is 31.9%, and 95% confidence interval is [2.558×10-4, 8.032×10-4].  

Table 12 Convergence history of SORA-FSPA for Case 2 

k ( )f d  
(in2) 

( , )b hµ µ  
(in) 

11
1

fpg −  21
2

fpg −  1fp  
1fpε  N 

1 7.80 (2.02, 3.86) 0.45 0.45 

9.99×10-4 0.1% 336 2 10.07 (2.17, 4.64) 0.02 -0.03 
3 10.19 (2.18, 4.67) 0.0 -0.06 
4 10.20 (2.18, 4.67) 0.0 -0.06 

* The MCS solution 1fp  is from with 106 samples, the error the probability of failure under 95% 
confidence is 19.6%, and 95% confidence interval is [8.03×10-4, 0.0011948].  
       
 
Example 4 – the design of a two-bar bracket 

 In this two-bar bracket design problem (Fig. 11), which is adapted from [31], 

deterministic design variables, random design variables, random parameters, nonnormal 

distributions, reliability constraints, and deterministic constraints are involved. This is a general 

problem where all the elements in a RBD model specified in Eq. 1 are included. The details of 

deterministic design variables 1 2 3 4 1 1 2 2( , , , ) ( , , , )o i o id d d d d d d d= =d , random design variables 

1 2( , ) ( , )X X h s= =X , and random parameters 1 2 1 2( , ) ( , , , )P P W S Sθ= =P  are given in Table 13. 

The distributions of all the random variables are given in Table 14. 
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Fig. 11 Two-bar bracket 

 

Table 13 Variables in example 4 

Variables Symbol used in 
RBD model 

Symbol used in 
Fig. 7 Definition 

Deterministic 
design 
variables 

1d  1od  Outer diameter of bar 1 

2d  1id  Inner diameter of bar 2 

3d  2od  Outer diameter of bar 2 

4d  2id  Inner diameter of bar 1 
Random 
design 
variables 

1X  h  Height of the bracket 

2X  s  Span of the bracket 

Random 
parameters 

P1 W External force 
P2 θ Angle between W and horizon 
P3 S1 Yield strength of bar 1 
P4 S2 Yield strength of bar 2 
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Table 14 Distributions of Random Variables 

Variable Parameter 1* Parameter 2* Distribution 
h hµ mm 5 mm Normal 
s sµ mm 5 mm Normal 
θ 58° 62° Uniform 
W 50 kN 5 kN Extreme type I 
S1 200 MPa 20 MPa Normal 
S2 200 MPa 20 MPa Normal 

* Parameter 1 is the mean for a normal distribution and extreme type I distribution, and the lower 
bound for a uniform distribution. Parameter 2 is the standard deviation for a normal distribution 
and extreme type I distribution, and the upper bound for a uniform distribution 

 

The RBD problem is formulated as 
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The objective is to minimize the volume of the structure, and three probabilistic 

constraint functions are related to the stresses of the two bars. There are also three deterministic 

constraint functions. All the reliability constraint functions are also normalized similarly to the 

treatment in example 3. 
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The optimal solutions from SORA-FORM and SORA-SPA are displayed in Tables 15 

and 16, respectively. The first probabilistic constraint function is active at the optimal points, 

where the probability of failure is calculated by MCS. The results are given in Table 17, which 

shows that SORA-SPA is much more accurate and efficient than SORA-FORM.  

Table 15 Convergence history of SORA-FORM  

k f 
(mm2) 

1 1 2 2( , , , , , )o i o i h sd d d d µ µ  
(mm) 

1
1

fpg −  1
2

fpg −  1
3

fpg −

 
1 44168.6 (26.75, 19.55, 16.79, 10.79, 101.0, 100.0) 0.66 -0.89 -0.48 
2 59541.6 (30.82, 19.94, 15.10, 10.10, 100.0, 100.0) 0.0 -0.85 -0.34 
3 59452.1 (25.65, 10.29, 15.0, 10.0, 100.0, 100.0) 0.0 -0.84 -0.33 

   

Table 16 Convergence history of SORA-SPA 

k f  
(mm2) 

1 1 2 2( , , , , , )o i o i h sd d d d µ µ  
(mm) 

1
1

fpg −  1
2

fpg −  1
3

fpg −

 
1 40132.9  (27.64, 20.78, 15.0, 10.0, 100.0, 100.0) 0.56 -0.78 -0.33 
2 59543.1  (30.15, 18.93, 15.22, 10.22, 100.0, 100.0) 0.01 -1.09 -0.40 
3 59849.8 (30.22, 18.88, 15.0, 10.0, 100.0, 100.0) 0.0 -1.08 -0.38 
4 59849.8 (30.22, 18.88, 15.0, 10.0, 100.0, 100.0) 0.0 -1.09 -0.38 

 

              Table 17 Probability of failure at the optimal point 

Method 1fp  
1fpε  N 

SORA-FORM 0.001234 23.4 % 2995     
SORA-SPA 0.001055 5.5 % 880 

* The MCS solutions 1fp  are from 106 samples. The error of the probability of failure of SORA-
FORM under 95% confidence is 17.6%, and the 95% confidence interval is [0.0010164, 
0.0014516]. The error of the probability of failure of SORA-SPA under 95% confidence is 
19.072%, and the 95% confidence interval is [0.00085379, 0.0012562].  

 

6. Conclusion 

The focus of this work is to improve the accuracy of reliability-based design without 

sacrificing computational efficiency. This is achieved by combining Sequential Optimization and 
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Reliability Assessment (SORA) and the First Order Saddlepoint Approximation (FOSPA). The 

proposed method is more accurate than the FORM based RBD methods when the nonnormal-to-

normal transformation increases the nonlinearity of probabilistic constraints. Therefore, SORA-

SPA can be used as an alternative method to reliability-based design. It should be noted that 

when all the random variables are normally distributed, SORA-SPA produces exactly the same 

solutions as FORM-based RBD methods. SORA-SPA may also be extended to the situations 

where other distribution parameters (such as standard deviations) are part of design variables. 

SORA-SPA requires tractable random variables with a closed-form CGF. If all random 

variables are intractable and are transformed into standard normal variables, the method becomes 

SORA-FORM. SORA-SPA shares several limitations of FORM based RBD methods. For 

example, if multiple MLPs exist, SORA-SPA may not provide a correct solution to a RBD 

problem. Similarly, if a multimodal distribution, which will cause multiple MLPs, is involved, 

the method may not be applicable. It should also be noted that since SORA-SPA relies on 

numerical methods such as optimization and MLP search, there is no guarantee of convergence. 

The other restriction of the current SORA-SPA method is that all the random variables have to 

be mutually independent. In principle, the Saddlepoint Approximation method is able to handle 

dependent random variables. The extension of SORA-SPA method to the treatment of dependent 

random variables should be the future work. The other future work is to investigate the best way 

to address an intractable random variable and a easy way to determine whether the Saddlepoint 

Approximation or FORM should be used for a given RBD problem. 
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