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Abstract 
 

Probabilistic uncertainty analysis quantifies the effect of input random variables on 

responses (outputs). It is an integral part of decision making under uncertainty and risk, 

reliability-based design, robust design, and design for Six Sigma. The efficiency and accuracy of 

probabilistic uncertainty analysis is a trade-off issue in engineering applications. In this paper, an 

efficient and accurate Mean-Value First Order Saddlepoint Approximation (MVFOSA) method 

is proposed. Similar to the Mean-Value First Order Second Moment (MVFOSM) approach, a 

response function is approximated with the first order Taylor expansion at the mean values of all 

the random input variables. Instead of simply using the first two moments of the random 

variables as in MVFOSM, MVFOSA estimates the probability density function and cumulative 

distribution function of the response by the accurate Saddlepoint Approximation. Because of the 

use of complete distribution information, MVFOSA is generally more accurate than MVFOSM 

with the same computational effort. Without the nonlinear transformation from non-normal 

variables to normal variables as required by the First Order Reliability Method (FORM), 

MVFOSA is more accurate than FORM in certain circumstances, especially when the 

transformation significantly increases the nonlinearity of the response function. It is also more 

efficient than FORM due to no need of an iterative search process for the so-called Most 

Probable Point in FORM. The features of the proposed method are demonstrated with four 

numerical examples. 

Keywords: Uncertainty analysis, Cumulant generating function, Saddlepoint Approximation 
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1. Introduction  

  The performance of an engineered system or product is often affected by unavoidable 

uncertainties [1]. Accommodating and managing the effects of uncertainties on the performance 

(response), such as the consideration of reliability, safety, and robustness, is rapidly spreading in 

industry [2-7]. Quantitative uncertainty analysis has become an essential part of design and 

decision making under uncertainty and risk [8-13].  

Uncertainty can be viewed as the difference between the present state of knowledge and 

the complete knowledge. Uncertainty is usually classified into aleatory and epistemic types [14].  

Aleatory uncertainty, also termed as objective or stochastic uncertainty, describes the inherent 

randomness (variation) associated with a physical system or environment. This type of 

uncertainty is not reducible since it is a property of the system itself. Aleatory uncertainty is dealt 

with by probability theory. Epistemic uncertainty, on the other hand, results from some level of 

ignorance or incomplete information about a system [1, 14-22]. Epistemic uncertainty is 

reducible if more information is collected. Because of this reason, it is also termed as subjective 

or reducible uncertainty. Epistemic uncertainty can be modeled by probability theory, or other 

theories such as evidence theory, possibility theory, and fuzzy set. 

Even though the incorporation of both types of uncertainty is important, the focus of this 

paper is uncertainty analysis that involves only aleatory uncertainty. We will call this type of 

analysis probabilistic uncertainty analysis and will use probability distributions to describe input 

variables with aleatory uncertainty. The major task of probabilistic uncertainty analysis is to 

obtain the distribution of a response (performance) Y or the probability ofY y≤  given the 

distributions of random inputs [ ]T, ,..., 1 2 n= X X XX . The functional relationship between Y and 

X is called a performance function and is expressed by ( )Y g= X . In many engineering 
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applications, the performance function ( )Y g= X  is usually a black-box and is computationally 

expensive to evaluate. For example, the vehicle crash simulation modeled by finite element 

analysis requires hours or even days of computational time for one single analysis run. Since 

probabilistic uncertainty analysis needs to evaluate the performance function ( )Y g= X (e.g. the 

vehicle crash simulation) a number of times, the challenge issue is the intensive computational 

demand.    

In this paper, the following symbol convention is used. An uppercase letter denotes a 

random variable, a lowercase letter denotes an observation (or a realization) of a random 

variable, and a bold letter denotes a vector. For instance, X stands for a random variable; x 

denotes a realization of X; X represents a vector of random variables [ ]T, ,..., ,1 2 nX  X X  and x is 

an observation of X. 

Theoretically, the cumulative density function (CDF) of Y can be calculated by a multi-

dimensional integral, 

( )

( ) { } ( ) ,X
X

x xY
g y

F y P Y y f d
≤

= ≤ = ∫                                               (1) 

where ( )fX x  is the joint probability density function of random variables [ ]T, ,..., .1 2 n= X X XX  

Herein 1 2, ,..., nX X X  are assumed mutually independent.  In practice, the nonlinear integration 

boundary ( )g y=X  and the high dimensionality make it difficult or even impossible to obtain an 

analytical solution to the probability integration in Eq. (1) [3].  Simulation and approximation 

methods are therefore used for probabilistic uncertainty analysis. 

Commonly used simulation or approximation methods can be roughly categorized into 

three types: (1) sampling-based methods, (2) moment matching methods, and (3) Most Probable 

Point (MPP) based methods. Sampling-based methods [23-27], such as direct Monte Carlo 
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simulation, Latin hypercube sampling and importance sampling, are accurate and feasible to use. 

If sufficient simulations are used, an accurate result can be obtained with high confidence. 

However, sampling-based methods are inefficient for many engineering design problems where 

high reliability and computationally expensive performance function ( )g X  are involved [28].  

For example, if the probability of failure of a structural system is 10-6, theoretically and 

statistically, only one failure can be observed from 106 simulations. To ensure an accurate 

estimation of the probability of failure, at least 10×106 simulations should be conducted. In other 

words, the structural analysis should be performed 10×106 times. If the structural analysis is 

expensive, the task will be extremely time-consuming. To ease the computational difficulties for 

design under uncertainty, moment matching methods [5,29-31] are usually employed. This type 

of methods approximates the distribution of Y by selecting a distribution from a class of assumed 

distributions through fitting the first few moments. Various approaches, such as numerical 

integrations, point estimate methods [5, 31] and Taylor series approximations [6], have been 

developed to estimate the moments. Typically, the first two statistical moments are used. This 

type of methods is highly efficient since the performance function is approximated by the first or 

second order Taylor expansion. The commonly used method is the Mean-Value First Order 

Second Moment (MVFOSM) approach, which employs the first order Taylor expansion at the 

mean values of random variables [2]. MVFOSM is used in robust design optimization and rough 

reliability analysis. Despite its high efficiency, the accuracy of a moment matching method is 

generally lower than that of sampling-based methods. To obtain a good balance between 

efficiency and accuracy, MPP-based methods have been developed. They are widely used in 

reliability-based design optimization and structural reliability analysis. Compared with sampling-

based methods, MPP-based methods have the advantages of satisfactory accuracy and moderate 
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computational cost. They approximate the performance function with Taylor Series expansion at 

a special point, the Most Probable Point (MPP) to ensure minimal accuracy loss. Typical MPP-

based methods include the First Order Reliability Method (FORM), the Second Order Reliability 

Method (SORM) [32, 33], and the recently developed First Order Saddlepoint Approximation 

(FOSA) [34]. In most cases, the MPP has to be located numerically, and the number of the 

function evaluations is approximately equal to the number of random variables times the number 

of iterations for FORM and FOSA. The number is much higher for SORM. Hence MPP-based 

methods may still be computationally expensive for large scale problems.  

This work is aimed to address the computational issue of probabilistic uncertainty 

analysis. We will focus on the situation where the performance function is expensive to evaluate 

and only the MVFOSM method is feasible to use. The research question is: How can we improve 

the accuracy of MVFOSM without sacrificing efficiency? To answer the question, we propose to 

apply the accurate Saddlepoint Approximation [35] after the performance function is linearized 

at the mean values of random variables. The method is therefore termed as Mean-Value First 

Order Saddlepoint Approximation (MVFOSA) method. 

The rest of the paper is organized as follows. In Section 2, three existing methods, 

MVFOSM, FORM and FOSA, are briefly reviewed. The proposed method is then introduced in 

detail in Section 3. The comparison between the proposed method and existing methods are 

performed through four examples in Section 4. Section 5 presents the conclusions.  

2. Existing methods – MVFOSM, FORM and FOSA 

In this section, we briefly review the existing methods, MVFOSM, FORM and FOSA. 

The review provides the background information and serves as the basis for the comparison 

study between the existing methods and our proposed method.  
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2.1 Mean-value first order second moment (MVFOSM) approach 

MVFOSM is based on the first order Taylor expansion of the performance function 

( )Y g= X  at the mean values of random variables. The performance function ( )g X is linearized 

as 

( )
1

( ) ,
i

n

i X
i i

gY g X
X

µ
=

∂
≅ + −

∂∑
μ

μ                                                (2)  

where
1 2

T
, ,...,

nX X Xµ µ µ =  μ  is the vector of the mean values of [ ]T, ,...,1 2 n= X  X  XX . 

Based on Eq. (2), the mean value and standard deviation of Y are calculated by 

( )Y gµ ≅ μ ,                                                                (3) 

and  

2

1
,

i

n

Y X
i i

g
X

σ σ
=

 ∂ ≅
 ∂ 

∑
μ

                                                        (4) 

respectively, where
iXσ is the standard deviation of random variable iX . The probability of Y y≤  

is calculated by [2] 

 ( ) { } .Y
Y

Y

yF y P Y y µ
σ

F 
 −

= ≤ ≅  
 

                                                  (5)  

Equation (5) implies an assumption that the response Y is normally distributed. Since 

after the linearization, Y is a linear combination of ( 1, 2,..., )iX i n= in Eq. (2), the assumption is 

also equivalent to assuming that iX  are normally distributed. For black-box and explicit 

performance functions, the n partial derivatives 
i

g
X
∂
∂

at
1 2

T
, ,...,

nX X Xµ µ µ =  μ  in Eq. (2) can be 
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numerically calculated by finite difference methods [36]. When forward finite difference 

approach is used, the derivatives at the mean values of random variables are calculated as  

( ) ( )1 2 1 2
, ,..., ,..., , ,..., ,...,

, 1, 2,...,i n i nX X X i X X X X X

i i

g x gg i n
X x

µ µ µ µ µ µ µ µ+ ∆ −∂
= =

∂ ∆
μ

,        (6) 

where ix∆  are the difference intervals. It is noted from Eq. (6) that the total number of function 

evaluations ( g function evaluations) is equal to n + 1. After the derivatives are obtained, no more 

function evaluation is needed for probability calculation.  The backward and central difference 

approaches can also be employed for the partial derivatives calculation. The central difference 

approach is generally more accurate than the forward and backward difference approaches, but it 

is more computationally expensive (it needs 2n function evaluations). For more details on finite 

difference methods, refer to [36]. 

Compared with MPP-based methods and sampling-based methods, MVFOSM is much 

more efficient. However, it has obvious deficiencies: it uses only the first two moments of the 

random variables instead of the complete distribution information [2,28], and it  assumes that the 

response is normally distributed.   

2.2 First order reliability method (FORM) 

FORM solves the probability integral in Eq. (1) by simplifying the performance 

function ( )g X  using the first order Taylor series approximation at the Most Probable Point 

(MPP). The classical FORM involves the following steps:  

(1) Transform the original random variables [ ]T, ,...,1 2 nX  X  X=X  (generally non-normal) 

in X-space into standard normal variables [ ]T, ,...,1 2 nU  U  U=U  in U-space (the standard normal 

space) by Rosenball transformation [37] 
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i

1 ( ) , 1, 2,..., ,i X iu F x i n−  = F =                                                 (7) 

where 1[ ]−F ⋅  is the inverse CDF of the standard normal distribution, and
i
( )X iF x is the CDF of Xi. 

After the transformation, the performance function ( )XY g=  in X-space is expressed as 

( )UY g=  in U-space. 

(2) Search the MPP – the point on the integration boundary ( )g y=U  with the minimum 

distance to the origin in U-space. This step needs an iterative optimization process, i.e., 

min

s.t. ( ) .g y

β =


=
u

u

u
                                                            (8) 

(3) Calculate the probability. At the MPP, the joint probability density function (JPDF) of 

U has the highest value on the limit state Y y=  in U-space. The performance function is 

linearized at the MPP in U-space to ensure the minimum accuracy loss. The probability in Eq. 

(1) is then expressed analytically by the following equation [29],  

     ( ) { } ( ),YF y P Y y β= ≤ ≅ F −                                                   (9) 

where ( )F ⋅  is the CDF of the standard normal distribution, β is the distance between the MPP 

and the origin in U-space defined in Eq. (8) and is commonly called reliability index. 

 Generally, FORM produces more accurate solutions than MVFOSM. However, locating 

the MPP, as shown in Eq. (8), is an optimization (minimization) problem and needs more 

function evaluations than MVFOSM. FORM may not generate accurate results when the 

transformation, given in Eq. (7), increases the nonlinearity of the performance function [8,34]. It 

is not as robust as MVFOSM, since it may fail when there exists more than one MPP or the MPP 

search process does not converge. 
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2.3 First order Saddlepoint Approximation (FOSA) 

To overcome the drawback of increasing nonlinearity in the performance function 

because of the nonlinear transformation in Eq. (7), the recently developed First Order 

Saddlepoint Approximation (FOSA) [34] linearizes the performance function in the original 

random X-space without any random variable transformation. The expansion point is termed as 

the Most Likelihood Point (MLP) which has the highest probability density on the limit state Y = 

y. It is shown that FOSA is more accurate and efficient than FORM and in some cases even more 

accurate than the Second Order Reliability Method (SORM), and it is also proved that FORM is 

a special case of FOSA [34]. However, locating the MLP is also an optimization process. 

Therefore, FOSA has the same drawbacks as FORM, even though it is more accurate than 

FORM. For more details about FOSA, refer to [34].   

It should be noted that MVFOSM, FORM and FOSA all use the first order Taylor series 

approximation to the performance function. Such approximation may not accurately capture the 

nonlinearity of the performance function, and thus may not be suitable for the situations where 

highly nonlinear performance functions are involved. However, they are widely used in 

structural reliability analysis [2,38], reliability-based design [8,10,12,28,33], and robust design 

[3,6], because in many situations, they provide the only practical alternatives for engineering 

design under uncertainty. 

 The aim of this work is to develop an efficient and accurate method, which is expected to 

have the same efficiency and robustness as MVFOSM, but with much higher accuracy. The new 

method is detailed in the following section. 
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3. Mean-value first order Saddlepoint Approximation (MVFOSA) 

The central idea of MVFOSA is to use the accurate Saddlepoint Approximation to 

evaluate the cumulative distribution function (CDF) and probability density function (PDF) of a 

response (performance function) ( )Y g= X . The Saddlepoint Approximation requires the 

cumulant generating function (CGF) of the response Y. The CGF of Y can be readily obtained if 

the performance function ( )XY g=  is linearized. Therefore, the procedure of the proposed 

method consists of three steps: (1) linearize the performance function at the mean values of 

random variables, 2) calculate the CGF of the performance function, and (3) estimate the CDF 

and PDF of the performance function. In the following subsections, the definition of CGF and its 

two useful properties are introduced, followed by the calculation of the CGF of the linearized 

response. The Saddlepoint Approximation for CDF and PDF estimations is then discussed. 

3.1 Cumulant generating function (CGF) 

The moment generating function of a random variable X, ( ),XM t  is defined as [39]   

( ) ( ) .tx
X XM t e f x dx

∞

−∞
= ∫                                                     (10) 

The CGF of X is defined as the natural logarithm of ( ),XM t i.e.  

[ ]( ) ln ( ) .X XK t M t=                                                     (11) 

The CGF of some commonly used distributions are listed in Table 1. Interested readers 

can refer to References [39] and [40]  for other CGFs. 

 The two useful properties of CGF are as follows. 

Property I: If , ,...,1 2 nX  X  X are independent random variables and their CGFs are ( )
iXK t  

( 1, 2,...,i n= ), then the CGF of 
1

n

i
i

Y X
=

=∑  is  
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1
( ) ( ).

i

n

Y X
i

K t K t
=

=∑                                                             (12) 

Property II: If X is a random variable with a CGF, ( ),XK t  the CGF of Y aX b= +  is 

given by                      

( ) ( ) ,Y XK t K at bt= +                                                          (13) 

where both a and b are constants.  

For example, if X is normally distributed with mean value of Xµ and variance of 2 ,Xσ  then 

the CGF of Y aX b= + is  

2 2 21( ) ( ) .
2Y X XK t a b t a tµ σ= + +                                                    (14) 

Based on Properties I and II, if a linear performance function is given by 

0
1

,
n

i i
i

Y a a X
=

= +∑                                                                (15) 

where ( )1,2,...,ia i n= are constants, the CGF of Y reads 

0
1

( ) ( ).
i

n

Y X i
i

K t a t K a t
=

= +∑                                                       (16) 

After a general performance function is linearized at the mean values of random variables 

with a form of Eq. (15), we can use Eq. (16) to calculate the CGF of the linearized performance 

function. 

3.2 The CGF of a response by the first order Taylor expansion 

The first order Taylor expansion of ( )Y g= X  at the mean values 
1 2

T
, ,...,

nX X Xµ µ µ =  μ  

of random variables X  is given by 

( )
1

( ) .
i

n

i X
i i

gY g X
X

µ
=

∂
≅ + −

∂∑
μ

μ                                                     (17) 
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With Eq. (16), the CGF of Y is then evaluated by 

1 1
( ) ( ) .

i i

n n

Y X X
i ii i

g gK t g t K t
X X

µ
= =

   ∂ ∂   ≅ − +
   ∂ ∂   

∑ ∑
μ μ

μ                                       (18)                     

3.3 Saddlepoint Approximation for the CDF and PDF of a response 

The Saddlepoint Approximation has become a powerful tool to estimate CDF and PDF 

since it was first introduced by Daniels [35,41-47]. It has several excellent features. First, it 

yields extremely accurate probability estimation, especially in the tail areas of a distribution [41]; 

second, it requires only the process of finding one saddlepoint without any integration; and third, 

it provides estimations of both CDF and PDF, thereby there is no need of taking numerical 

derivative of CDF to obtain PDF or taking integration of PDF to obtain CDF. The theory of 

Saddlepoint Approximation is quite complex, but its use is fairly easy with simple formulas [45] 

as shown next.   

Once the CGF of Y is obtained as shown in Eq. (18), it is straightforward to apply the 

Saddlepoint Approximation to CDF and PDF estimations. A simple formula for computing the 

PDF of Y is expressed as [35] 

 

1
2

[ ( ) ]
"

1( ) ,
2 ( )

Y s sK t t y
Y

Y s

f y e
K tπ

− 
≅  
 

 (19)                                    

where " ( )YK ⋅  is the second order derivative of the CGF of Y, and ts is the saddlepoint, which is the 

solution to the equation, 

 ' ( ) ,YK t y=  (20) 

where ' ( )YK ⋅ is the first order derivative of the CGF of Y. 

 Lugannani and Rice [48] gave a concise formula for calculating the CDF of Y,   
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 1 1( ) { } ( ) ( ) ,YF y P Y y w w
w v

φ  = ≤ ≅ F + − 
 

 (21) 

where F(∙) and φ(∙) are the CDF and PDF of the standard normal distribution, respectively; 

 [ ]{ }1/ 2
( ) 2 ( )s s Y sw sgn t t y K t= −   (22) 

 and 

 
1/ 2'' ( ) ,s Y sv t K t =    (23) 

where ( ) 1,  0,  or 1ssgn t = + − , depending on whether the saddlepoint ts is positive, negative or 

zero. 

 From the CGF of Y given in Eq. (18), the first order derivative of the CGF of Y is 

 ' '

1 1
( ) ( ) .

i i

n n

Y X X
i ii i i

g g gK t g K t
X X X

µ
= =

   ∂ ∂ ∂   = − +
   ∂ ∂ ∂   

∑ ∑
μ μ μ

μ  (24)  

Solving the following equation,  

 ' '

1 1
( ) ( ) ,

i i

n n

Y X X
i ii i i

g g gK t g K t y
X X X

µ
= =

   ∂ ∂ ∂   = − + =
   ∂ ∂ ∂   

∑ ∑
μ μ μ

μ                       (25) 

yields the saddlepoint ts.   

Since Eq. (25) is generally a nonlinear function of t, a numerical method is required to 

solve it. However, the solution process does not need to evaluate the performance function any 

more. Once the saddlepoint ts is obtained, w and v will be easily calculated form Eqs. (22) and 

(23), respectively; and then the PDF and CDF of Y will be calculated from Eqs. (19) and (21), 

respectively.  

In the appendix, the above process is applied to a performance function with only 

normally distributed random variables. The derivation shows that the result from MVFOSA is 

the same as that from MVFSOM. Therefore, MVFOSM is a special case of MVFOSA. Since 
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MVFOSA uses the full distribution information while MVFOSM does not, the former is 

generally more accurate than the latter.  We will demonstrate this with the following example 

problems. 

 

4. Examples and discussions 

In this section, four examples are used to illustrate the effectiveness of the proposed 

method (MVFOSA); comparisons are made with FORM, FOSA, MVFOSM, and Monte Carlo 

simulation (MCS) to appraise accuracy and efficiency. The efficiency is measured by the number 

of function evaluations.  MCS is used as a reference for the accuracy comparison. The function 

evaluations used by MVFOSM, MVFOSA, FORM and FOSA include those for finite difference 

derivative calculation. The function evaluations used by FORM and by FOSA also include those 

for MPP or MLP search.  

Example 1: A mathematical problem 

Consider a performance function with two independent random variables given by [34] 

 1 2 2( ) ,
2

X X XY g + −
= =  (26) 

where X1 and X2 follow a standard exponential distribution with the PDF, 

  
i
( ) , 1, 2.ix

X if x e i−= =  (27) 

The CDF of Y is 

{ }1 2
1 2

2( ) { } 2 2
2Y

X XF y P Y y P y P X X y++ − = ≤ = ≤ = + ≤ 
 

.                 (28)                 
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A theoretical solution exists for { }1 2 2 2P X X y++ ≤ since 1 2X X+  follows a gamma 

distribution. FORM, MVFOSM, FOSA, and MVFOSA are employed to estimate the CDF of the 

performance function over a range of [ ]1.414, 4.0 − , and the results are given in Table 2.  

The results are also visualized in Fig. 1, which shows that the result of MVFOSA is 

almost identical to the theoretical solution while those of FORM and MVFOSM have large 

errors. For this linear problem, FOSA produces the same result as MVFOSA. Theoretically, the 

error of MVFOSA comes from the linearization of the performance function and Saddlepoint 

Approximation. But for this linear performance function, the error is only from the Saddlepoint 

Approximation, the results indeed verify the high accuracy of the Saddlepoint Approximation. 

The reason that MVFOSM is inaccurate is that it only uses the first two moments of X1 and X2 

instead of the full distribution information [28], and assumes that Y is normally distributed. The 

error of FORM comes from the linearization of the performance function in transformed U-

space. Even though the performance function is linear, after the nonlinear transformation from 

exponential variables to standard normal variables, the performance function in Eq. (26) 

becomes a highly nonlinear function in U-space [34]. The increase of the nonlinearity of the 

performance function due to the transformation deteriorates the accuracy of FORM.   

Example 2: A cantilever beam 

A cantilever beam made of isotropic material as shown in Fig. 2 is subjected to a 

distributed transverse load [49].   

The performance function is the tip displacement, which is expressed as 

4

( ) ,
8

X QLY g
EI

δ= = =                                                          (29)   
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where T[ , , , ] ,X Q L E I=  in which Q is the constant distributed transverse load acting on the beam, 

L is the length of the beam, E is the Young’s modulus of the beam material, and I is the moment 

of the cross-section. Q, L, E and I are normally distributed and their distribution parameters are 

provided in Table 3. 

The first case for this problem is to calculate the probability of ( ) 4.0g <X , and the results 

from different methods are given in Table 4.  Since a sufficiently large number of simulations 

(106) is used, the result of MCS is considered an accurate reference. It is noted that all the 

methods produce accurate solutions. However, both MVFOSA and MVFOSM use only 5 

function evaluations while FORM and FOSA use 26 and 21 function evaluations, respectively. 

Therefore, MVFOSA and MVFOSM are more efficient than FORM and FOSA. 

Table 4 only gives the CDF estimation at the left tail of the distribution of the tip 

displacement. To investigate the accuracy and efficiency at the right tail and near the median 

region, other two cases are run, and their results are shown in Table 5 (near the median) and 

Table 6 (right tail), respectively. The results also indicate that all the methods provide accurate 

solutions and that MVFOSA and MVFOSM are the most efficient.  

 As discussed previously, for this special problem where all the random variables are 

normally distributed, both MVFOSA and MVFOSM should produce the same resolution. This is 

verified by the results from these three cases. The small difference between MVFOSM and 

MVFOSA in the first case (see Table 4) is just caused by numerical error. As indicated in [34], 

FORM is a special case of FOSA, and when all random variables are normally distributed, both 

methods generate the same solution. This is also confirmed by the results from the three cases.  

The estimated CDF and PDF curves of the performance function from MVFOSA with 

only 5 function evaluations and from MCS with 106 function evaluations are shown in Figs. 3 
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and 4, respectively. The two curves almost overlap each other over the entire range of the 

distribution on both Figs. 3 and 4, respectively.    

If FORM or FOSA were used to generate the full distribution as shown in Fig. 3 or 4, 

their computational cost would be much higher since, at each point on y axis in Figs 3 or 4, the 

MPP or MLP is different and must be located numerically. 

Example 3: A speed reducer 

The performance function of a shaft in a speed reducer is defined as [34] 

  
2 2

2
3

32( ) ,
16

X F LY g S T
Dπ

= = − +  (30) 

where [ ]T, , , ,S D F L T=X , S is the material strength, D is the diameter of the shaft, F is the 

external force, T is the external torque, and L is the length of the shaft. The performance function 

represents the difference between the strength and the maximum stress. 

 The distribution details of all the random variables are given in Table 7. 

In order to compare the performance of different methods over the whole distribution 

range, three realizations (limit states) of Y covering two tails and the median region are selected. 

Tables 8 through 10 depict the results at the three limit states. It is noted that FOSA is the most 

accurate method, and MVFOSA is more accurate than FORM and MVFOSM.  Even though 

MVFOSA is slightly less accurate than FOSA, it is much more efficient than FOSA. FORM has 

a large error for this problem.   

From this example and the previous one, readers may notice that the number of function 

evaluations used by FORM and by FOSA varies from one case to another. This is because both 

of FORM and FOSA involve an optimization process to search for the MPP or MLP. This 
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indicates that the computational cost is not controllable when FORM or FOSA is used for 

uncertainty analysis for decision making. 

Figure 5 shows the CDF curves obtained from the proposed method requiring only 6 

function evaluations and from MCS with 106 simulations.  It is noted that the two CDF curves 

are almost identical to each other over the entire distribution range.  The two PDF curves are also 

almost indistinguishable as depicted in Fig. 6.   

This example demonstrates again that MVFOSA is very economical and accurate to 

obtain the complete distribution information of a performance function. For the same reason 

given in the previous example, if FORM or FOSA were used to generate the CDF and PDF 

curves, much more function evaluations would be needed. 

Example 4: A composite beam 

Consider a composite beam with 20 independent random variables (see Fig. 7) [10]. The 

beam with Young’s modulus Ew and A mm wide by B mm high by L mm long, has an aluminum 

plate with Young’s modulus Ea and a net section of C mm wide by D mm high, securely fastened 

to its bottom face. Six external vertical forces, P1, P2, P3, P4, P5 and P6, are applied at six 

different locations along the beam, L1, L2, L3, L4, L5, and L6. The allowable tensile stress is S.  

In this problem, the twenty random variables are 

[ ] [ ]T T
2, ,..., .1 20 1 2 3 4 5 6 1 2 3 4 5 6 a wX X  X A, B, C, D, L , L , L , L , L , L , L, P , P , P , P , P , P , E , E ,S= =X  

Details of these random variables are given in Table 11. 

The maximum stress occurs in the middle cross-section M-M and is given by 
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The maximum stress σ should be less than the allowable stress (strength) S. The 

performance function of the beam is 

 ( ) .XY g Sσ= = −                                                       (32) 

Table 12 gives the probabilities of 0Sσ − <  (the reliability of the beam). MVFOSA 

generates accurate result even though FOSA is slightly more accurate. However, MVFOSA is 

much more efficient than FOSA.  

 Referenced to MCS with 106 simulations, MVFOSA with only 21 function evaluations 

provides very good CDF and PDF curves, which are shown in Figs. 8 and 9, respectively. 

 

5. Conclusions and discussions 
 

The purpose of this work is to improve the accuracy of the traditional Mean-Value First 

Order Second Moment (MVFOSM) method. The Mean-Value First Order Saddlepoint 

Approximation (MVFOSA) is developed for this purpose. The proposed method uses the first 

order Taylor expansion of a performance function at the mean values of random input variable. 

Then it employs the accurate Saddlepoint Approximation to estimate the CDF and PDF of the 

linearized performance function. The advantage of MVFOSA over MVFOSM is the 

improvement of accuracy without deteriorating efficiency. Same as MVFOSM, the new method 

requires only 1n+  performance function evaluations (n is the number of random variables) when 
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the finite difference method is used for derivative estimation.  The new method is generally more 

accurate than MVFOSM since it uses the complete distribution information. MVFOSM is a 

special case of MVFOSA in the sense that both of them produce an identical solution when all 

the random variables are normally distributed. Therefore, it is preferable to use MVFOSA 

instead of MVFOSM, when computation cost is a major concern. As demonstrated by the four 

examples, MVFOSA may also be an attractive alternative to existing methods, such as FORM, 

FOSA and MCS. Compared with FORM and FOSA, the proposed method does not involve an 

optimization process to search the MPP or MLP, it is therefore much more efficient and robust.  

There are two sources that contribute to the error of MVFOSA, the linearization of the 

performance function at the mean values of random variables and the Saddlepoint 

Approximation for the CDF and PDF of the linearized performance function. Since Saddlepoint 

Approximation is extremely accurate for a linear function (see Example 1), the linearization of 

the performance function is the dominant factor that causes errors. If the performance function is 

highly nonlinear and the uncertainty (variances) of random variables is large, the linearization at 

the mean values can not approximate the performance function well, and MVFOSA may 

consequently results in a large error. In this case, one may select to use FOSA, FORM, or 

SORM, or even Monte Carlo simulation. However, one should be aware that the error of FOSA 

FORM, and SORM may also be large if the MPP or MLP is not the global solution and if 

multiple MPPs or MLPs exist. Moreover, FORM, SORM, and FOSA are only suitable for 

reliability analysis but are not appropriate for the complete distribution generation because of 

their high computational cost.  The accuracy of the proposed method can be further improved by 

the Advanced Mean Value (AMV) method [50,51]. Our future work will target to integrate the 

AMV method with MVFOSA. 
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It should be noted that the proposed probabilistic uncertainty analysis is only suitable for 

aleatory uncertainty, which is described by probability distributions. Since a performance 

function that specifies the relationship between the performance and input random variables is 

required, the proposed method is applicable to the physics-based uncertainty analysis where the 

system states can be modeled by the performance function. It is not designed for uncertainty 

analysis for time-dependent problems based on statistical data. Another limitation of the 

proposed method is that the analytical cumulant generating function (CGF) of a random variable 

should exist. A few distributions do not have an analytical CGF, for example, Weibull 

distribution. This problem can be solved by transforming the distributions into any other 

distributions that have an analytical CGF, or by using sampling method to obtain an empirical 

CGF [34]. 
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Appendix: Relationship between MVFOSA and MVFOSM 

MVFOSM implies that the performance function ( )Y g= X  is normally distributed after 

it is linearized at the mean values of random variables. With a finite number of random variables, 

the implication is equivalent to the assumption that all the random variables are normally 

distributed. Next, we will use MVFOSA to derive the CDF of Y for the situation where only 

normal random variables are involved and demonstrate that MVFOSM is a special case of 

MVFOSA. 
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 If [ ]T1 2, ,..., nX X X=X are normally distributed with mean of 
iXµ and variance of 

2 ( 1, 2,..., ),
iX i nσ =  the mean-value first order Taylor series approximation of ( )Y g= X is 
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According to Eq. (18) and Table 1, the CGF of Y is  

2

2

1

1( ) ( ) .
2

μ

μ
i

n

Y X
i i

gK t g t t
X

σ
=

 ∂ = +
 ∂ 

∑                                                (A2)  

Solving Eq. (20),  

' ( ) ,YK t y=                                                                 (A3) 

the saddlepoint ts is obtained as                                                    
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Substituting Eq. (A4) into Eq. (A2), the CGF at the saddlepoint st is obtained as 
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The second order derivative of CGF at ts is given as 
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Substituting Eqs (A4) through (A6) into Eqs. (22) and (23) yields 
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and according to Eq. (21), the CDF of Y becomes 
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which is the identical result of MVFOSM given in Eq. (5). Therefore, MVFOSM is a special 

case of MVFOSA, when all random variables are normally distributed.  
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Tables 
 
Table 1 
The CGF of some common distributions 
Distribution PDF CGF 

Uniform 
1( )Xf x

b a
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Normal 
21 ( )

21( )
2

x

Xf x e
µ

σ

πσ

− −   =  2 21( )
2XK t t tµ σ= +  

Exponential 
11( )

x

Xf x e β

β

−
=  ( )( ) ln 1XK t tβ= − −  

Type I Extreme 
Value (Gumbel) 

1( ) exp
x x

Xf x e e
µ µ

σ σ

σ

− −
− − 

= − 
 

 ( ) ln (1 )XK t t tµ σ= + Γ −  

Gamma 1( )
( )

x
Xf x x e

α
α ββ

α
− −=

Γ
 ( ) ( ){ }( ) ln lnXK t tα β β= − −  

2χ  
1

/ 2 1 2
/ 2

1( )
( / 2)2

xn
X nf x x e

n
−−=

Γ
 ( )1( ) ln 1 2

2XK t n t= − −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 30 - 

                    Table 2  
                    CDF ( ) { }YF y P Y y= ≤  

y FORM MVFOSM MVFOSA 
FOSA Exact 

-1.414 0.0000 0.0787 0.0000 0.0000 
-1.014 0.1661 0.1553 0.1108 0.1108 
-0.614 0.4045 0.2696 0.3121 0.3125 
-0.214 0.6013 0.4153 0.5052 0.5059 
0.186 0.7426 0.5738 0.6597 0.6605 
0.586 0.8377 0.7211 0.7730 0.7738 
0.986 0.8993 0.8379 0.8519 0.8525 
1.386 0.9382 0.9171 0.9050 0.9055 
1.786 0.9625 0.9630 0.9398 0.9402 
2.186 0.9774 0.9856 0.9623 0.9625 
2.586 0.9864 0.9951 0.9766 0.9768 
2.986 0.9919 0.9986 0.9856 0.9857 
3.386 0.9952 0.9996 0.9911 0.9912 
3.786 0.9972 0.9999 0.9946 0.9947 
4.000 0.9979 1.0000 0.9959 0.9959 
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Table 3  
Parameters of random variables in the cantilever beam problem 

Variable Mean Standard deviation  Distribution 
Distributed load Q (N/mm) 10 3 Normal  
Length L (mm) 5,000 2 Normal 
Young Modulus E (N/mm2) 73,000 1,000 Normal 
Cross-section moment I (mm4) 1.067×109 100,000 Normal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 32 - 

Table 4  
Probability { ( ) 4.0}P g <X  

 FORM FOSA MVFOSM MVFOSA MCS 
{ ( ) 4.0}P g <X  0.02255 0.02255 0.02264 0.02258 0.02253 

Function evaluations 26 21 5 5 106 
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Table 5 
Probability { ( ) 10.03}P g <X  

 FORM FOSA MVFOSM MVFOSA MCS 
{ ( ) 10.03}P g <X  0.5 0.5 0.4999 0.4999 0.5011 

Function evaluations 14 11 5 5 106 
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Table 6 
Probability { ( ) 20.0}P g <X  

 FORM FOSA MVFOSM MVFOSA MCS 
{ ( ) 20.0}P g <X  0.9995 0.9995 0.9995 0.9995 0.9995 

Function evaluations 26 21 5 5 106 
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Table 7  
Distribution details of random variables in the speed reducer problem 
Variable Parameter 1 Parameter 2 Distribution 
Strength S (MPa) 70  80  Uniform a 
Diameter D (mm) 39  0.1 Normal b 
External force F (N) 1500  150 Gumbel c 
Span L  (mm) 400  0.1 Normal 
Torque T (Nm) 250  35 Normal 

a For a uniform distribution, Parameters 1 and 2 are lower and upper bounds, respectively. 
b For normal distribution, Parameters 1 and 2 are mean and standard deviation, respectively. 
c For Gumbel distribution, Parameters 1 and 2 are mean and standard deviation, respectively. 
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Table 8  
Probability 7{ ( ) 1.0 10 }P g < ×X  

 FORM FOSA MVFOSM MVFOSA MCS 
7{ ( ) 1.0 10 }P g < ×X  1.492×10-3 7.437×10-3 4.645×10-3 6.682×10-3 8.020×10-3 

Function evaluations 1003 37 6 6 106 
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Table 9  
Probability 7{ ( ) 2.48 10 }P g < ×X  

 FORM FOSA MVFOSM MVFOSA MCS 
7{ ( ) 2.48 10 }P g < ×X  0.2433 0.4897 0.4897 0.4902 0.4963 

Function evaluations 72 49 6 6 106 
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Table 10 
Probability 7P{ ( ) 3.5 10 }g < ×X  

 FORM FOSA MVFOSM MVFOSA MCS 
7{ ( ) 3.5 10 }P g < ×X  0.7839 0.9535 0.9704 0.9519 0.9563 

Function evaluations 79 55 6 6 106 
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Table 11  
 The distribution information of random variables in the composite beam problem 

Variable No. Variable Mean Standard deviation Distribution  
1 A (mm ) 100  0.2 Normal 
2 B (mm) 200 0.2 Normal 
3 C (mm) 80  0.2  Normal 
4 D (mm) 20  0.2  Normal 
5 L1 (mm) 200  1  Normal 
6 L2 (mm) 400  1  Normal 
7 L3 (mm) 600  1  Normal 
8 L4 (mm) 800 1  Normal 
9 L5 (mm) 1000 1  Normal 
10 L6 (mm) 1200 1  Normal 
11 L (mm) 1400 2  Normal 
12 P1 (kN ) 15  1.5 Gumbel 
13 P2 (kN ) 15  1.5  Gumbel 
14 P3 (kN ) 15  1.5 Gumbel 
15 P4 (kN ) 15  1.5 Gumbel 
16 P5 (kN ) 15  1.5 Gumbel 
17 P6 (kN ) 15  1.5  Gumbel 
18 Ea (GPa) 70  7 Normal 
19 Ew (GPa) 8.75  0.875  Normal 
20 S (MPa) 16 1.6 Gumbel 
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Table 12 
Probability P{ 0}Sσ − <  

 FORM FOSA MVFOSM MVFOSA MCS 
P{ 0}Sσ − <  0.99999 0.96282 0.93732 0.96359 0.96262 

Function evaluations 244 169 21 21 106 
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Figures 

 
Fig. 1. Comparison of the CDF of Y from different methods. 
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Fig. 2. A cantilever beam. 
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Fig. 3. CDF of Y (Example 2). 
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Fig. 4. PDF of Y (Example 2). 
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Fig. 5. CDF of Y (Example 3). 
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Fig. 6. PDF of Y (Example 3). 
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Fig. 7. A composite beam. 
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Fig. 8. CDF of Y (Example 4). 
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Fig. 9. PDF of Y (Example 4). 

 

 


	Reliability Engineering & System Safety
	Volume 93, Issue 2, February 2008, Pages 325–336
	Department of Mechanical and Aerospace Engineering
	University of Missouri – Rolla
	Department of Mechanical and Aerospace Engineering
	University of Missouri – Rolla

