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Abstract 

With higher reliability and safety requirements, reliability-based design has been increasingly 

applied in multidisciplinary design optimization (MDO). A direct integration of reliability-

based design and MDO may present tremendous implementation and numerical difficulties. 

In this work, a methodology of Sequential Optimization and Reliability Assessment for MDO 

is proposed to improve the efficiency of reliability-based MDO. The central idea is to 

decouple the reliability analysis from MDO with sequential cycles of reliability analysis and 

deterministic MDO. The reliability analysis is based on the First Order Reliability Method 

(FORM). In the proposed method, the reliability analysis and deterministic MDO use two 

MDO strategies, Multidisciplinary Feasible Approach and Individual Disciplinary Feasible 

Approach. The effectiveness of the proposed method is illustrated with two example 

problems. 

 

Key words: reliability-based design, multidisciplinary design optimization, reliability 

analysis, Most Probable Point 
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1 Introduction 

Combined with optimization, the model based design enables engineers to identify 

design options effectively and automatically. However, the traditional deterministic 

optimization design ignores the fact that in real life there are many sources of uncertainty, 

such as manufacturing variations and various customer usages (Batill, et al., 2000; Du and 

Chen, 2000a; Du and Chen, 2000b) . Consequently, deterministic optimization designs may 

be too sensitive to the variation of system input (leading to quality loss), risky (high 

likelihood of undesired extreme events and low reliability), or uneconomic. For this reason, 

incorporating uncertainty in design has received increasing attention and applications, such as 

those found in automotive, civil, mechanical, and aerospace engineering.  

 The other reason of uncertainty consideration is that engineering systems have become 

increasingly sophisticated and that the occurrence of failure events may lead to higher 

catastrophic consequences. To this end, the expectation of higher reliability and lower 

environmental impact has become imperative. Reliability-based design (RBD) is a design 

method to meet this expectation. RBD seeks a design that has a probability of failure less than 

some acceptable (invariably small) value and therefore ensures that failure events be 

extremely unlikely. RBD has been used in engineering fields for several decades (Zang, et al., 

2002). Most of RBD applications are for relatively simple systems where only one discipline 

is involved. 

Multidisciplinary Design Optimization (MDO) (Balling and Sobieski 1994) has 

become a systematic approach to optimization of complex, coupled engineering systems. 

“Multidisciplinary” refers to the different aspects that must be included in designing a system. 

The design involves multiple interacting disciplines, such as those found in aircraft, 
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spacecraft, automobiles, and industrial manufacturing applications. Numerous successful 

examples of MDO applications have been reported in many areas (Giesing, et al., 1998; Salas 

and Townsend, 1998), such as in aerospace engineering (Xiong et al., 2004; Laban, 2004; 

Maute and Allen, 2004), vehicle design (Kodiyalam, S. et al., 2004), coupled thermal-

structural problem (Autio, 2001), and fluid-structure problem (Lund, et al., 2003)  

To ensure the high reliability in complex systems design, techniques of reliability 

analysis and RBD under the MDO framework have been developed recently (Sues, et al. 

1995; Sues and Cesare 2000; Koch, et al. 2000; Du and Chen, 2002; Padmanabhan and Batill, 

2002a and 2002b; Padmanabhan et al., 2003; Agarwal et al, 2003; Ahn et al., 2004). In the 

work of Sues, et al. (Sues, et al. 1995), response surface models of system output are created 

at the system level to replace the computationally expensive simulation models. Using the 

response surface models, reliability analysis is conducted for MDO under uncertainty. The 

use of response surface models may be costly if high accuracy is required and a large number 

of variables are involves. A framework for reliability-based MDO (RBMDO) is proposed by 

Sues and Cesare (2000). In their work, reliability analysis is decoupled from optimization. 

Reliabilities are computed initially before the first execution of the optimization loop and then 

updated after the optimization loop is executed. To alleviate the computational burden, in the 

optimization loop, approximate forms of reliability constraints are used. To integrate the 

existing reliability analysis techniques with the MDO framework, a multi-stage, parallel 

implementation strategy of probabilistic design optimization is utilized by Koch, et al. (2000). 

Padmanabhan et al. (2003) demonstrate the use of Monte Carlo Simulation in MDO. The 

Concurrent Subsystem Optimization techniques have been used to search the Most Probable 

Point (MPP) (Padmanabhan and Batill, 2002a and 2002b). The collaborative reliability 
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analysis has also been proposed, where the MPP and multidisciplinary analysis are conducted 

concurrently (Du and Chen, 2002). To reduce computational effort of performing RBD for 

multidisciplinary systems, Agarwal et al (2003) employ a decomposition approach, which 

uses the method of Simultaneous Analysis and Design (SAND) as an optimization drive 

within a single-level RBD strategy. Ahn et al. (2004) propose a new strategy named 

Sequential Approach on Reliability Analysis under Multidisciplinary Analysis Systems. In 

their approach, reliability analysis and multidisciplinary analysis are decomposed and 

arranged in a sequential manner, making a recursive loop. The integration of these efficient 

reliability analysis methods into the MDO framework can potentially improve the overall 

performance of RBMDO.  

Engineering applications of RBMDO have been reported (Xiao et al, 1999; Pettit and 

Grandhi, 2000; Sues et al, 2001; Hirohata et al, 2004). Xiao et al(1999) apply a framework of 

RBD for an aircraft wing design with the maximum cruise range, involving coupled aero-

structural analysis. Pettit and Grandhi (2000) show that the RBMDO solution provides an 

optimum design, which is improved over the deterministic design in terms of robustness and 

reliability. Sues et al (2001) apply the framework of RBMDO for a full-scale wing design. 

Another example is the research conducted by Hirohata et al. (2004). In their work, a 

RBMDO is performed for CPU module packaging in order to identify the reliability 

relationship between packaging solutions and the statistical trade-off mechanism among 

multi-objectives. It is verified that the applied method can assist in the selection of a suitable 

packaging solution for the required specifications and reliability. 

In all of the existing RBMDO frameworks, most computations are consumed on 

reliability analysis during the optimization process. The efficiency of reliability analysis 
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dominates the overall efficiency of the entire design process. Since reliability analysis is 

usually conducted at the system-level multidisciplinary analysis, double loops or triple loops 

of iterative computations will be involved. As a result, RBMDO becomes much less 

affordable compared to deterministic MDO. In this work, we propose a sequential 

optimization and reliability assessment method for MDO to improve the efficiency.  

This paper is organized as follows. The background of reliability analysis, reliability-

based design, and multidisciplinary design optimization is presented in Section 2. RBMDO is 

reviewed in section 3. In Section 4, the proposed methodology, the sequential optimization 

and reliability assessment for multidisciplinary systems design, is discussed in detail. 

Examples are given in Section 5, followed by the conclusions in Section 6. 

 

2 Review of Reliability-Based Design 

 In the process of RBD, reliability analysis is called repeatedly to evaluate the 

reliability of each of the probabilistic constraints at every design point generated by the 

optimizer. Reliability analysis is therefore a critical component of RBD. Next, a brief review 

of the reliability analysis is provided first followed by the review of RBD. 

2.1 Reliability Analysis 

 Reliability is calculated by the following multidimensional integral  

( ) 0

= Pr{ ( ) 0} ( )
G

R G f d
<

< = ∫ x
x

x x x ,                  (1) 

where { }1 2,  ,  ,  x nx x x=   is a vector of independent random variables, ( )fx x  is the joint 

probability density function of x, and ( )G x  is a performance function. 

 The performance function ( ) 0G =x  divides the random variable space into two 

regions, namely, the safe region where 0)( <xG  and the failure region where 0)( >xG .  
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 Because it is difficult to obtain an analytical solution to the probability integration in 

(1), approximation methods, such as the First Order Reliability Method (FORM) (Hasofer and 

Lind, 1974) and the Second Order Reliability Method (SORM) (Breitung, 1984), are often the 

method of the choice. The procedure of the two methods is as follows.  

At first, the original random variables { }1 2,  ,  ,  nx x x=x   (in x-space) are 

transformed into a set of random variables { }1 2,  ,  ,  nu u u=u   (in u-space) whose elements 

follow a standard normal distribution. The transformation form x to u is based on the 

condition that the cumulative distribution functions (CDF) of the random variables remain the 

same before and after the transformation. This type of transformation is called Rosenblatt 

transformation (Rosenblatt, 1952), which is expressed by 

( ) ( ), 1, 2, , 
iX i iF x u i n= F = ⋅⋅⋅                                                                                                     (2) 

where )(⋅Φ is the CDF of the standard normal distribution.  

            The transformed standard normal variable is then given by 

1 ( )-u x
ii X iF = F                                                                                                                        (3) 

            For example, for a normally distributed random variable ~ ( , ),xi i iN μ σ  Eq. 3 yields 

1 1( )- - x x   u x
i

i i i i
i X i

i i

μ μF
σ σ

  - - = F = F F =   
  

                                                                    (4) 

or 

x    ui i i iμ σ= +                                                                                                                          (5) 

Next, the performance function ( )G u  is approximated with a linear form (in FORM) 

or a quadratic form (in SORM) at the so-called Most Probable Point (MPP). After the two-

step simplification and approximation, the probability integration in (1) can be solved 
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analytically. To reduce the accuracy loss, the expansion point is selected at the MPP, which 

has the highest contribution to the probability integration. Maximizing the joint probability 

density function (PDF) of the random variables on the hyper surface of the integration region 

( ) 0G =u  in u-space results in the following optimization model for locating the MPP. 

min

s. t . ( ) 0
u

u

  uG =
          (6) 

where u  stands for the magnitude of a vector. 

 After the solution MPP *u  is identified, the reliability is simply computed in FORM 

as 

( )R β= Φ  (7) 

where  *β = u  is the shortest distance from the surface ( ) 0G =u  to the origin in u-space 

and is called reliability index. The formulation of the second order reliability method (SORM) 

can be found in (Breitung, 1984).  

 Besides using the direct reliability evaluation as shown in (6) and (7), inverse methods 

have also been proposed to assess the reliability, such as inverse reliability strategy (Li and 

Foschi, 1998; Tu, et al., 1999; Choi and Youn, 2001; Du et al., 2004), safety-factor strategy 

(Wu, et al, 2001), and probabilistic sufficiency factor approach (Qu and Haftka, 2004). In this 

work, we use the inverse reliability strategy to model a RBD problem because the inverse 

reliability strategy is more efficient than  a direct reliability evaluation. In using the inverse 

reliability strategy, the percentile value of the performance function is calculated, the 

percentile RG  is the value that corresponds to a given reliability ( )R β= Φ , namely, 

Pr{ ( ) }RG G R< =x .    (8)             
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 If FORM is used, the MPP for the inverse reliability problem is identified by the 

following model, 

max ( )

s. t .
u

u

 u

G

β=
                  (9) 

 Then RG  is the function value calculated at the MPP *u by 

( )uRG G ∗=  .                                                                                                                          (10) 

 

2.2 Reliability-Based Design 

 Reliability-based design (RBD) ensures the reliability higher than an acceptable level. 

The following typical RBD model formulates the trade-off between a higher reliability and a 

lower cost: 

 

min  ( , )

s. t . Pr{ ( , ) 0} ,  1, 2, ,
      ( ,  ) 0,   1, 2, ,

d
d x

d x
d x

i i G

j g

v

G R i n
g j n


 < > =
 < =





 (11) 

 
where v  is a cost-type objective function; d is the vector of deterministic design variables; x 

is the vector of random design variables; ( , )iG d x  is a constraint function that is subject to the 

reliability requirement; iR  is the required reliability for ( , )iG d x ;  ( , )jg d x  is a deterministic 

constraint function; Gn  is the number of ( , )iG d x ; gn  is the number of  ( , )jg d x . 

 The conventional approach for solving a RBD problem is to employ a double-loop 

strategy. The optimization loop (outer loop) calls the reliability analysis (inner loop) 

repeatedly as shown in Fig. 1.  

Insert Fig.1 here 

Fig. 1 A double-loop procedure of RBD 
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 As the double-loop strategy is computationally expensive, various techniques have 

been developed to improve efficiency. These techniques can be classified into two categories: 

one is to improve the efficiency of reliability analysis (Du and Chen, 2001; Choi, and Youn 

2003), and the other is to formulate the design problem in such a way that the RBD problem 

can be solved efficiently. The latter includes (1) the use of inverse reliability formulation to 

reduce the computational demand of reliability analysis (Li and Foschi, 1998; Tu, et al., 1999; 

Choi and Youn, 2001) and (2) sequential single-loop and single-loop procedures (Chen and 

Hasselman, 1997; Wu and Wang, 1998; Wu, et al., 2001; Du and Chen, 2004; Du and 

Sudjianto, 2004; Du, et al., 2004; Qu and Haftka, 2004; Patel, et al. 2005). 

 

3 Reliability-Based Multidisciplinary Design Optimization 

 In this section, we discuss the general RBMDO problems and models. We use a three-

discipline system as an example for discussion. The extension of the discussion to a general 

multidisciplinary system will be obvious. A system with three coupled disciplines 

(subsystems) is shown in Fig. 2. The notations in the figure are explained below. 

 

Insert Fig.2 here 

Fig. 2 Multidisciplinary systems with random parameters 

 sd : shared design variables, which are common design variables of all disciplines 

 id : local design variables of discipline i 

 sx : shared random parameters, which are common input variables to all disciplines 

 ix : local random input variables to discipline i 

 ijy : coupling variables, which are output of discipline i and the input of discipline j 
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 iz : output of discipline i 

 The complete set of output coupling variables from discipline i is expressed by 

),,,,,(),3,2,1,( iisisiii ijj ⋅⋅⋅⋅ =≠== yxxddyyy  (12) 
 
where i⋅y  represents dependent variables as on the left-hand side of (12) and also the 

functional relationships between dependent variables and independent variables. We use the 

same way for other dependent variables in the rest of the paper. i⋅y  in (12) is the vector of 

coupling variables, which are the inputs to discipline i and the outputs from other disciplines, 

i.e. 

{ },  1,2,3,  i ji j j i⋅ = = ≠y y . (13) 

Expanding (12) over all disciplines, we obtain the following simultaneous equations 

that determine the consistency over the interface among the disciplines. 

12 12 1 1 1

13 13 1 1 1

21 21 2 2 2

23 23 2 2 2

31 31 3 3 3

32 32 3 3 3

y ( , , , , )

y ( , , , , )

y ( , , , , )

y ( , , , , )

y ( , , , , )

y ( , , , , )

s s

s s

s s

s s

s s

s s

⋅

⋅

⋅

⋅

⋅

⋅

=

=

=

=

=

=

y d d x x y
y d d x x y
y d d x x y
y d d x x y
y d d x x y
y d d x x y

 (14) 

 

 The output iz  consists of three parts as follows: 

( , , )i i i i=z v g G  (15) 

where iv  are part of the system level objective functions, ig  are local deterministic constraint 

functions, and iG  are local constraint functions subject to reliability requirements. They can 

be expressed in subsystems as 
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( , , , , )

( , , , , )

( , , , , )

i i s i s i i

i i s i s i i

i i s i s i i

⋅

⋅

⋅

=

=

=

v v d d x x y
g g d d x x y
G G d d x x y

 (16) 

 
We can solve (16) and obtain the outputs 1 2 3( , , )z z z given a set of inputs 

),,,,,,,( 332211 xdxdxdxd ss .  This is the task of multidisciplinary analysis (MDA). As shown 

in Fig.2, the major difficulty in dealing with uncertainty is that a reliability analysis in one 

discipline will need to consider uncertainties propagated from other disciplines due to the 

data flow among disciplines (Batill, et al., 2000).  

 
 The general RBD model under the multidisciplinary environment is given by 

1 2 3min ( , )
(d ,d)

 v v ,v
s

v   

s. t.  3,2,1,0}),,,,(Pr =>≤⋅ iiiisisi Ryxxdd{G   
3,2,1,0),,,,( =≤⋅ jiisisj yxxddg  (17) 

 

In the above optimization model, ),,( 321 dddd = is the vector of local design 

variables; the objective function v is the function of the nominal values of the individual 

disciplinary outputs 1 2 3( ,  ,  )v v v . In this paper,   denotes a nominal value of a response 

variable and a mean value of a basic input random variable. iv is given by 

),,,,(v iisisii ⋅= yxxddv . (18) 
 
 The nominal values of coupling variables i⋅y  are determined by  

jijijisisjijii ≠==== •⋅ 1,2,3;1,2,3;),,,,,()( yxxddyyy  (19) 
 

where j•y is the vector of coupling variables passed into the jth discipline from all the other 

disciplines. 
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As demonstrated in Fig. 3, solving a RBMDO problem given in the above 

optimization model involves a triple loop procedure, where the outer loop is the overall 

optimization, the middle loop is reliability analysis, and the inner loop is the multidisciplinary 

analysis (MDA). Under this framework, the number of reliability analyses is equal to the 

number of function evaluations consumed by the overall optimization. Reliability analysis 

also needs to call MDA repeatedly. The total number of disciplinary analyses is therefore very 

high. In this work, we introduce the Sequential Optimization and Reliability Assessment 

(SORA) to solve a general RBMDO problem efficiently. 

 

Insert Fig.3 here 

Fig. 3 Reliability-based MDO 
 
 

4 Sequential Optimization and Reliability Assessment under Multidisciplinary Design 

Environment  

4.1 The Strategy 

The focus of this work is to model and solve RBMDO problems efficiently. We 

propose to achieve high efficiency in the following two aspects.  

(1) Model a RBMDO problem that the problem can be solved efficiently. 

The sequential single-loop methods (Chen and Hasselman, 1997; Wu and Wang, 

1998; Wu, et al., 2001; Du and Chen, 2004; Qu and Haftka, 2004; Patel, et al. 2005) have 

been successfully applied to single-disciplinary RBD. We use the same strategy for RBD 

under a multidisciplinary environment. The central idea is to employ a series of cycles of 

MDO and reliability analysis. In each cycle MDO and reliability analysis are decoupled from 
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each other; reliability analysis is only conducted after the MDO. The idea is outlined in Fig. 4. 

It is seen that through this procedure, the number of reliability analyses is equal to the number 

of cycles. The design is likely to converge in a few cycles, and therefore the computational 

efficiency will be much higher than a procedure where reliability analysis is applied directly 

with MDO.  

 

Insert Fig.4 here 

Fig. 4 The Procedure of SORA 

(2) Perform reliability analysis only up to the necessary level 

The inverse reliability strategy (percentile performance) is used because evaluating a 

percentile performance is more efficient than evaluating an actual reliability (Tu, et al., 1999; 

Du and Chen, 2002a). Since the system failure modes are correlated due to the sharing factors 

(materials, dimensions, and loads), if the reliability constraints of some failure modes are 

satisfied, other reliability constraints may never be active. However, those never-active 

reliability constraints may unfortunately dominate the computational effort in the RBD 

process (Murotsu, et al., 1994). To this end, we seek a procedure which evaluates a percentile 

performance only up to a needed level.  The optimization model with percentile performance 

formulation is discussed in the next section.  

  

4.2   The Procedure 

 As mentioned previously (Fig. 4), the overall optimization is conducted with 

sequential cycles of optimization and reliability analysis where the deterministic MDO is 
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followed by the reliability analysis. In each cycle, four steps are involved and are shown as 

follows. 

 Step 1: Solve the deterministic MDO. In the first cycle, the optimization is the 

conventional MDO without any uncertainty. From the second cycle, based on the information 

obtained from the previous cycle, the deterministic MDO is formulated in such a way that the 

optimality and reliability requirement will be gradually achieved. 

 Step 2: Perform reliability analysis. At the optimal point obtained in Step 1, the MPPs 

of all the reliability constraints are identified, and the percentile performance values 

corresponding to required reliabilities are calculated. 

 Step 3: Check the convergence. If reliability requirements are satisfied and the system 

objective function becomes stable, the entire optimization process stops; otherwise, proceed to 

Step 4.  

 Step 4: Formulate a new deterministic MDO model for the next cycle based on the 

MPP information from Step 3.  

 The percentile formulation of the MDO problem in Cycle k is given by 

1 2 3min ( , )
(d ,d)

 v v ,v
s

v   

s. t. 3,2,1,0),,,,( 1),(*,1),(*,1),(*, =≤−
⋅

−− iki
i

ki
i

ki
sisi yxxddG   

3,2,1,0),,,,( =≤⋅ iiisisi yxxddg  (20) 
 

where 1),(*, −ki
sx , 1),(*, −ki

ix and 1),(*, −
⋅

ki
iy are the components of the MPP of  sx , ix and i⋅y  obtained 

from reliability analysis in the ith discipline in Cycle k-1, and 1),(*, −
⋅

ki
iy is the vector of coupling 

variables at the MPP.  

 Next, we will discuss how to perform the deterministic MDO and reliability analysis 

under the MDO environment. 
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4.3 Deterministic MDO 

 The task of the deterministic MDO is to solve the optimization model specified in 

(20).  The SORA strategy discussed in the last subsection is applicable to any MDO schemes. 

Herein we employ two methods to perform the deterministic MDO: Individual Disciplinary 

Feasible approach (IDF) and Multidisciplinary Feasible approach (MDF) (Cramer, et al, 1994; 

Allison, et al, 2005). The former accommodates the coupling variables as part of design 

variables and includes system consistency as part of system constraints. The latter excludes 

the coupling variables from the design variables, and the coupling variables are solved out by 

the system level analyses. 

 
4.3.1   Individual Disciplinary Feasible Approach (IDF) 

 In IDF, the deterministic MDO model in Cycle k is given by 

1 2 3min ( , )
(d ,d,y,y )

 v v ,v
s

v
∗

  

s. t.  3,2,1,0),,,,( 1),*,(1),*,(1),*,( =≤−
⋅

−− iki
i

ki
i

ki
sisi yxxddG   

3,2,1,0),,,,( =≤⋅ iiisisi yxxddg  
jijiiisisijij ≠==−= ⋅ ,3,2,1,,0),,,,(1 yxxddyy)yx,(d,haux  

mjmjik
j

ki
j

ki
sjsjm

k
jm ≠==−= −

⋅
−−−∗ ,3,2,1,,,0),,,,( 1∗,1),∗,(1),∗,(1∗,

2 yxxddyy)yx, (d,haux      (21) 
  
where 1),(*, −ki

sx , 1),(*, −ki
ix and 1),(*, −

⋅
ki

iy  are the components of the MPP (see the explanation for Eq. 

20). 

In the above model, the design variables also include the nominal values of all the 

coupling variables, which are given by 

{ },  1,  2,  3, 1,  2,  3, ij i j i j= = = ≠y y  (22) 
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and all the coupling variables 1, −∗ ky at the MPPs of the reliability constraints, which are given 

by 

 mjmjk
j

k
j

k
j

k
jm ≠=== −

⋅
−

⋅
−

⋅
− ,3,2,1,,0),,( 1),3(*,1),2(*,1),1(*,1*, yyyy                                                        (23) 

where 1),(*, −ki
jmy  is the vector of the coupling variables outputted from discipline j inputted to 

discipline m, corresponding to each of the reliability constraints in discipline i (i =1, 2, 3) at 

the MPPs of Cycle k-1.  

 1( )auxh d,x,y  are the system consistency constraint for coupling variables at the mean 

values of random variables, and 2 ( )auxh d, x,y∗  are the system consistency constraints for 

coupling variables at the MPPs. 

 In IDF approach, individual discipline feasibility is maintained at each optimization 

iteration. The coupling variables are treated as extra design variables, and interdisciplinary 

equilibrium is treated as constraints. The system consistency is then maintained at the 

convergence of optimization (Cramer, et al, 1994; Allison, et al, 2005).  

 

4.3.2    Multidisciplinary Feasible Approach (MDF) 

 If many coupling variables and reliability constraint functions are involved, the 

number of design variables in IDF will become too large to handle and may cause severe 

difficulties in efficiency and convergence. In this case, MDF becomes an alternative method. 

MDF requires a double-loop procedure and only takes the original design variables without 

any additional design variables in its outer loop. The coupling variable are identified in its 

inner loop where the system consistency equations are solved out. The outer loop 

deterministic MDO model in Cycle k is given by 
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1 2 3min ( , )
(d ,d)

 v v ,v
s

v   

s. t. 3,2,1,0),,,,( 1*,1),*,(1),*,( =≤−
⋅

−− ik
i

ki
i

ki
sisi yxxddG   

3,2,1,0),,,,( =≤⋅ ii
r
i

d
i

r
s

d
si yxxxxg                                                                                     (24) 

 Since the coupling variables are not included in the outer loop optimization model, 

they have to be obtained from the inner loop system consistency equations. The inner loop 

multidisciplinary analysis (MDA) for solving coupling variables at mean values of random 

variables and the MPPs is given by the system of simultaneous equations 

),,,,( ,
i

r
i

d
i

r
s

d
sjmjm ⋅= yxxxxyy  

*, 1 ,*,( ), 1 ,*,( ), 1 *, 1( , , , , ), , , 1, 2,3,y y x x x x y  k d r i k d r i k k
jm jm s s i i j i j m j m−−−−  

⋅= = ≠  (25) 
  

Depending on the problems, different iterative methods (Heinkenschloss, et al, 1998; 

Arian, 1997), such as Gauss-Seidel-type methods (Ortega and Rheinboldt, 1970), Jacobi 

method (Acton, F.S., 1990), Newton type methods (Dennis and Schnabel, 1996; Kelly, 1995), 

Broyden’s method (Dennis and Schnabel, 1996; Kelly, 1995) and Powell’s dogleg method 

(Powell, 1970), can be employed to solve this system of equations. In the examples of this 

paper, we use a variant of Powell’s dogleg method that is provided by Matlab. 

 
4.4      Reliability Analysis under MDO Environment  

Once the optimal solution is obtained from the deterministic MDO, the reliability 

analysis is conducted. Reliability analysis evaluates the percentile values of reliability 

constraint functions and checks whether the reliability requirement is met. It also provides the 

reliability information for building the deterministic MDO model for the next cycle if the 

reliability requirement is not satisfied. 

Reliability analysis by FORM is essentially an MDO problem. Therefore, similar to 

the deterministic MDO, the same methods, IDF and MDF, can be used for reliability analysis. 
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4.4.1    Individual Disciplinary Feasible Approach 

  In IDF, the system consistency is also included in the optimization model for the MPP 

search. The design variables in the MPP search contain the shared random variables and 

disciplinary random variables, and all the random coupling variables as well. Since the system 

consistency is treated as constraints, there is no need to perform MDA as an inner loop. The 

optimization model for reliability constraint iG  is given by 

( ) ( )( )

( ) ( ) ( )max ( , )
(u ,u ,y )

 d u ,u ,y
i ii

s i

i i i
i s iG ⋅         

s. t.  ( ) ( )( , )i i
s β=u u   

mjmjii
j

ii
sjs

i
jm

i
jm ≠==−= ⋅ ,3,2,1,,,0),,( )()()()(*,)(*, y,u,uddyyy)u,(d,haux  (26) 

 
where ( ) ( ) ( ) ( )

1 2 3( , , )i i i i=u u u u , and β  is the reliability index, which is associated with the 

required reliability and can be calculated by (7). 

 The solution is the MPP in u-space *,( ) *,( )( ,  )i i
su u  and the coupling variables *y jm at the 

MPP. After the MPP in x-space *,( ) *,( )( ,  )i i
sx x  is obtained from the transformation from 

*,( ) *,( )( ,  )i i
su u , the percentile value of the constraint function is calculated at *,( ) *,( )( ,  )i i

sx x  .  

*,( ) *,( )( ,  )i i
sx x  will also be used for formulating the deterministic MDO model for the next 

cycle, as shown in (21). 

4.4.2    Multidisciplinary Feasible Approach 

 The design variables in MDF are the shared random variables and the disciplinary 

random variables in u-space. The optimization model of the outer loop is given by 

( )( )

( ) ( ) ( )max ( , )
(u ,u )

 d u ,u ,y
ii

s

i i i
i s iG ⋅         

s. t. ( ) ( )( , )i i
s β=u u   
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The inner loop solves the coupling variables and is given by the following system of 

simultaneous equations 

mjmjii
j

ii
sjs

i
jm

i
jm ≠== ⋅ ,3,2,1,,,),,( )()()()(*,)(*, y,u,uddyy     

   Similarly to the deterministic MDO, for the purpose of demonstration, the inner loop 

problem is solved by a variant of Powell’s dogleg method. 

 

5 Demonstrative Examples 

In this section, two examples are used to demonstrate the proposed methods. 

5.1   Example 1 – A Mathematical Problem 

A conventional RBD problem is given by 

( )
1 2

2 2 2
1 2min ( , )

( , , )
 d x

s
s sd d d

v d x d d= + + +   

s. t.  { }1 1 1 2 1Pr ( , ) 0s sG x d x d d R= −−−−    ≤ ≥d x   

{ }2 1 2 2 2Pr ( , ) 2 0s sG d x d d x R= + − + − ≤ ≥d x   

1 20 , , 5sd d d≤ ≤    
 

where ~ (0,0.3)sx N , 1 ~ (5,0.5)x N , 2 ~ (1,0.1)x N , 1 2 ( ) 0.9987R R β= = Φ = , 3β = . 

( , )N µ σ  stands for a normal distribution with a mean of µ  and standard deviation of σ . 

The solution to this RBD problem is ( )1 2, , (2.2498, 2.2498, 2.2497)sd d d= =d  and 

1843.15=v . SORA and double-loop method (Du and Chen, 2004) are used to solve the 

problem. 

For demonstration, the problem is artificially decomposed into two subsystems 

(disciplines) and then formulated as a RBMDO problem as shown in Fig. 5. 
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Insert Fig.5 here 

Fig. 5 Example 1 

Method 1 - IDF  

First, we use IDF to solve the problem. In each cycle, for the deterministic MDO, the 

MPP ( )*,(1) *,(1) *,(1)
1 2, ,su u u  for G1 and the MPP ( )*,(2) *,(2) *,(2)

1 2, ,su u u  for G2 are obtained from 

reliability analysis in the previous cycle. The deterministic MDO is formulated as 

( ) 2 2 2
1 2 1 2min ( )

DV
 s sv v v d x d d= + = + + +   

s. t.  ( ) 022 )1(*,
211

)1(*,)1(*,
11 ≤+++−= ydxdxG ss   

         ( )*, 1*,(1) *,(1)
12 1 21s sy d x d y= + + +   

         )1(*,
122

)1(*,)1(*,
21 ydxdy ss −++=                                          

        04355 )2(*,
2

)2(*,
122

)2(*,
12 ≤−−++= xydxdG s   

          )2(*,
211

)2(*,)2(*,
12 ydxdy ss +++=   

          )2(*,
122

)2(*,)2(*,
21 ydxdy ss −++=                                              

 
The design variables DV = ( ),(1) ,(1) ,(2) ,(2)

1 2 12 21 12 21 12 21, , ;  , ; , ; ,sd d d y y y y y y∗ ∗ ∗ ∗ .  

The optimal point ( )1 2, ,sd d d  from the above MDO model is then used in reliability 

analysis. The model for the MPP search for G1 is given by  

( )(1) (1) (1)
1 1 1 21max 2 2

DV
 s sG x d x d y= − + + +   

s. t.   ( ) ( ) ( )2 2 2(1) (1) (1)
1 2su u u β+ + =   

        ( ) ( )1(1) (1)
12 1 21s s s sy d u d yµ s= + + + +   

        ( ) )1(
122

)1()1(
21 ydσuμdy ssss −+++=    

 
The design variables DV = ( )(1) (1) (1) (1) (1)

1 2 12 21, , ; ,su u u y y . 

The solution, MPP *,(1) *,(1) *,(1)
1 2( , , )su u u , is then transformed into x-space, namely, 

*,(1) *,(1)
s s s sx uµ s= +   
*,(1) *,(1)
1 1 1 1x uµ σ= +   
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*,(1) *,(1)
2 2 2 2x uµ σ= +    

 

The model of reliability analysis for G2 can be derived in the same way, and the 

solution is the MPP in x-space *,(2) *,(2) *,(2)
1 2( , , )sx x x . 

 The optimal solution from IDF is ( )1 2, , (2.2498, 2.2498, 2.2498)sd d d= =d  

and 15.1843v = , which is identical to the solution of the conventional RBD problem. 

 

Method 2 - MDF 

The problem is also solved by MDF. The outer loop deterministic MDO is then 

formulated as 

( )
( )

1 2

2 2 2
1 2 1 2min ( )

, ,
 

s
s sd d d

v v v d x d d= + = + + +   

s. t.  ( ) 022 )1(
211

)1(*,)1(*,
11 ≤+++−= ydxdxG ss                                       

04355 )2(*,
2

)2(
122

)2(*,
12 ≤−−++= xydxdG s                                          

 
 The following inner loop is used for solving coupling variables.  

( ) ( )1 1(1)
12 1 21s sy d x d y= + + +   

)1(
122

)1()1(
21 ydxdy ss −++=   
( ) ( )2 2(2)
12 1 21s sy d x d y= + + +   

)2(
122

)2()2(
21 ydxdy ss −++=    

 
 For reliability analysis, the deterministic design variables ( )1 2, ,sd d d  are given by the 

above deterministic MDO. The outer loop of the MPP search for G1 is given by 

( ) [ ]
1 2

(1) (1) (1)
1 1 1 1 1 1 1 1 21( , , )

max ( ) 2 2
s

su u u
G u d u d ymsms   = + − + + + +  

   s. t. ( ) ( ) ( )2 2 2(1) (1) (1)
1 2su u u β+ + =    
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The following inner loop is embedded in the outer loop for solving the coupling 

variables. 

( ) ( ) ( )1 1(1)
12 1 21s s s sy d u d yµ s= + + + +   

( ) )1(
122

)1()1(
21 ydσuμdy ssss −+++=    

 
The reliability analysis model for constraint G2 can be derived in the same way. 

The identical result is obtained from MDF. To verify the accuracy of the proposed 

methods, the problem is also solved by the conventional RBMDO method. By the 

conventional RBMDO, we mean that the traditional RBD method is directly applied to the 

MDO framework. As mentioned in the introduction section, this direct application results in 

an expensive triple-loop procedure. The procedure is outlined in Fig. 3 and detailed in Fig. 6. 

 

Insert Fig.6 here 

Fig. 6 Conventional RBD for MDO  

Table 1 Optimal results 

Problem Method 1 2( ,  ,  )sd d d  v 1G  
at MPP 

2G  
at MPP 1n  2n  

Original 
Sequential  

Single-loops 
(2.252,2.252,2.252) 15.2144 0.0 -0.047695 695 

Double loop (2.2519,2.252,2.252) 15.2144 0.0 -0.047755 1992 

MDO 

Conventional (2.25,2.2494,2.2499) 15.1843 0.0 -0.050212 186600 186600 

IDF (2.2497,2.2498,2.2498) 15.1843 0.0 -0.051335 451 635 

MDF (2.2498,2.2498,2.2498) 15.1843 0.0 -0.051316 1836 1836 

 

The results of the original single-disciplinary and MDO problems from all the 

methods are summarized in Table 1. The efficiency of each method, however, is quite 

different. If we use the number of disciplinary analyses to measure the efficiency, for this 



 23 

example, IDF is more efficient than MDF since the former uses fewer disciplinary analyses 

than the latter. It is also noted that the percentile value of G1 is zero at the optimal point. This 

means that the G1 is active and the reliability of G1 is exactly the same as the required 

reliability. The percentile value of G2 is less than zero, and therefore the reliability of G2 is 

greater than the required reliability.   

 

5.2 Example 2 – Compound Cylinder Design 

 For a further illustration, we present an engineering application example. Though the 

problem is simple, it sufficiently demonstrates the use and effectiveness of our proposed 

methods. A compound cylinders design is modeled as a multidisciplinary design optimization 

problem, where the inner and outer cylinders are considered as subsystems 1 and 2, 

respectively.  

 A system of multiple cylinders can resists relatively large pressures more efficiently 

when it is designed properly, i.e., it requires less material than a single cylinder (Ugural and 

Fenster, 1975). Fig. 7 shows the sketches of the outer and inner cylinders of a compound 

cylinders design.  

Insert Fig. 7 here 

Fig.7 The compound cylinder system 

 

The internal and external radii of the inner cylinder are a and b, and the internal and 

external radii of the outer cylinder are c and d. The internal pressure is P0. The objective is to 

maximize the volume capacity, or the base area, i.e.  

2v aπ=    
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The inner and outer cylinders are designed by two design groups, and the two designs 

are coupled through the common radii, contact pressure, and radial stresses at the interface 

between the two cylinders. The corresponding multidisciplinary systems and notations are 

given in Fig. 8. 

 

Insert Fig.8 here 

Fig. 8 System structure of the compound cylinders design 

 

Shared variables: s φ=d , an empty set. 

Random shared random variables: ( , , )s E S ρ=x , where E is the modulus of elasticity, 

S is the allowable stress, and ρ  is the Poisson’s ratio.  

Subsystem 1: the inner cylinder 

Deterministic disciplinary design variables: 1 ( , )a b=d . 

Random disciplinary random variables: 1 0( )p=x . 

Input coupling variables: 21 ( , , )p c d=y  , where p is  the contact stress at the interface. 

Output coupling variables: 12 1( , )bδ=y , where 1δ  is the radial deformation of the 

inner cylinder at radius b, which is given by 

2 2

1 2 2

pb b a
E b a

δ ρ
 +

= −  − 
.   

 
 Output: 1 ( , , )a bv σ σ=z , where v  is the previously defined objective, and aσ and 

bσ are the tangential stresses at the internal radius a and external radius b of the inner 

cylinder, respectively, which are given by 
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22
0

22

22

2 )(2
ad

pda
ab

pbσa −
+

+
−

−
=    

 
and  

222
0

222

22

22

)(
)()(
bad

pdba
ab

abpσb −
+

+
−
+−

= ,   

 
respectively. 

 The constraints in Subsystem 1 are as follows: 

 The reliability constraints are given by 

{ } )1(0)1(Pr 11 RSσG a ><−= ,   
 
and 

{ } )2(0)2(Pr 11 RSσG b ><−= ,   
 
where 1(1)R  and 1(2)R  are required reliabilities. 

 The deterministic constraints are given by 

1(1) 1.2 0g a b= − ≤ ,   
 

1(2) 0g b c= − ≤ ,   
 
and 

1(3) 0g c b= − ≤ .   
 

Subsystem 2: the outer cylinder 

Deterministic disciplinary design variables: 2 ( , )c d=d  

Random disciplinary variables: 1 ( )δ=x , where δ is the total shrinkage allowance of 

the two cylinders at the interface. 

Input coupling variables: 12 1( , )bδ=y . 
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Output coupling variables: 21 ( , , )p c d=y , where p is given by 

2 2
2

2 2
E c dp

c d c
d ρ

 +
= +  − 

,                  

          
in which  

2 2

2 2 2

pc c d
E d c

d ρ
 +

= +  − 
.   

 
 The constraints in Subsystem 2 are as follows: 

 The reliability constraints are given by 

{ } )1(0)1(Pr 22 RSσG c ><−= ,   
 
and 

{ } )2(0)2(Pr 22 RSσG d ><−= ,                                 
 
where )1(2R  and )2(2R  are required reliabilities, and the tangential stresses at the internal 

radius c and external radius d are given by 

0222

222

22

22

)(
)( p

cad
dca

cd
dcpσc −

+
+








−
+

= ,   

and 

22
0

2

22

2 22
ad
pa

cd
pcσd −

+
−

= ,    

respectively. 

 The deterministic constraints are given by 

2(1) 1.2 0g c d= − ≤ ,   
 
and  

2(2) 0g c b= − = .   
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The distributions of the random variables are given in Table 2. 

The required reliabilities are 1 1 2 2(1) (2) (1) (2) ( ) 0.9987R R R R β= = = = Φ = , and the 

reliability index 3β = . 

Table 2 Distributions of random variables 
Variables Mean Standard deviation Distribution 

E 30×106 psi 3×106 psi Normal 
S 40×106  psi 4×106  psi Normal 
ρ  0.3 0.03 Normal 
p0 20,000 psi 2,000 psi Normal 
δ 0.004 in 0.0001 in Normal 

 

The Optimal results and convergence history from both IDF and MDF methods are 

given in Tables 3 and 4, respectively. Both methods generate almost the same results. At the 

optimal point, the percentile value of constraint G1(1) is very close to zero. This indicates that 

the reliability of G1 is equal to the required reliability. The percentile value of G2 is negative, 

and therefore the reliability of G2 is greater than the required reliability. Both methods 

converge within 3 cycles. IDF is more efficient than MDF because the former uses fewer 

disciplinary analyses than the latter.  

 

Table 3 Convergence history of IDF 

k (d11, d 12, d 21, d 22) v G1(1), G 1(2), G 2(1), G 2(2) at the MPP n1 n2 

1 (9.10138, 10.9217, 10.9217, 15) 260.234 0.52011, 0.16963, 0.53322, 0.10437 

4721 4141 2 (7.44443, 10.008, 10.008, 15) 174.1055 1.6688e-3, -0.39349, 1.0308e-3, -0.38524 

3 (7.43762, 9.99931, 9.99931, 15) 173.7874 5.4286e-6, -0.39482, -0.0031455, -0.38662 

 

Table 4 Convergence history of MDF 



 28 

k (d11, d 12, d 21, d 22) v G1(1), G 1(2), G 2(1), G 2(2) at the MPP n1 n2 

1 (9.4904, 11.6988, 11.6988, 15) 282.9558 0.59532, 0.19009, 0.53151, 0.15849 

43209 43209 2 (7.44675,10.0183, 10.0183, 15) 174.2143 2.7611e-3, -0.39336, 8.285e-4, -0.38255 

3 (7.42897,10.3168, 10.3168, 15) 173.3832 1.3714e-8, -0.39782, -0.003573, -0.38526 

 

To verify the solutions from IDF and MDF, the problem is also solved by the 

conventional method (see Fig. 6) . The comparison of the results is given in Table 5. It is seen 

that the two proposed methods procedure almost identical results to the conventional method 

and are much more efficient. 

Table 5 Comparison of Optimal results by Conventional RBD method, IDF and MDF 

Method (d11, d 12, d 21, d 22) v G1(1), G 1(2), G 2(1), G 2(2) at the MPP 1n  2n  

Conv’ (7.43394,9.98739,9.98739,15) 173.6154 -0.001394,-0.39521,-6.8101e-7, -0.38568 2973473 2973473 

IDF (7.43762, 9.99931, 9.99931,15) 173.7874 5.4286e-6, -0.39482, -3.1455e-3, -0.38662 4721 4141 

MDF (7.42897,10.3168, 10.3168,15) 173.3832 1.3714e-8, -0.39782, -3.573e-3, -0.38526 43209 43209 

 

6 Conclusions 

A new reliability-based MDO method is developed by the strategy of Sequential 

Optimization and Reliability Assessment. The entire reliability-based MDO is conducted with 

sequential cycles of deterministic MDO and reliability analysis. The reliability analysis is 

decoupled from the deterministic MDO. The model of deterministic MDO is formulated 

based on the reliability analysis results from the previous cycle such that the violated 

reliability constraints can be improved.  

Two MDO methods, IDF and MDF, are employed for both deterministic MDO and 

reliability analysis. In IDF, in addition to the original design variables in deterministic MDO 
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and reliability analysis, the coupling variables are also considered as part of design variables. 

The system consistency is also included as additional constraints in the deterministic MDO 

and reliability analysis. Because everything is taken care of in a single model for deterministic 

MDO and reliability analysis, the entire reliability based MDO is performed in a serials of 

single loop procedure. 

On the other hand, in MDF, no additional design variables are considered for either 

deterministic MDO or reliability analysis. The system consistency for solving the coupling 

variables is formulated separately as the inner loop and is nested within the outer loop of 

deterministic MDO and reliability analysis.  

As for the selection of method, the following facts may be considered.  

1) Theoretically, both MDF and IDF produce the same optimal results. Numerically, 

IDF may be more robust than MDF. For MDF, if the inner loop generates a non-optimal result 

or local optimal, the outer loop optimization may diverge. Choosing the appropriate starting 

point for the inner loop optimization is also a difficult task. 

2) The efficiency of the two methods depends on the number of coupling variables and 

the number of reliability constraint functions. Since all the mean values of coupling variables 

and the coupling variables at the MPP of each reliability constraint are part of the design 

variables in IDF, the scale of the problem may become much larger if the number of coupling 

variables and the number of reliability constraint functions are large. In this case, one should 

choose MDF. The two examples have illustrated that IDF is more efficient when the number 

of coupling variables and the number of reliability constraint functions are relatively small. 

Therefore, one should consider using IDF for the above case. 
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The structure of the proposed method well suits other frameworks of MDO. Therefore, 

the proposed methods can be integrated with Concurrent Subsystem Optimization (CSSO) or 

Collaborative Optimization (CO)  by just replacing IDF or MDF with CSSO or CO.  
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