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Abstract 

Two types of uncertainty exist in engineering. Aleatory uncertainty comes from inherent 

variations while epistemic uncertainty derives from ignorance or incomplete information. 

The former is usually modeled by probability theory and has been widely researched. The 

latter can be modeled by probability theory or non-probability theories and is much more 

difficult to deal with. In this work, the effects of both types of uncertainty are quantified 

with belief and plausibility measures (lower and upper probabilities) in the context of 

evidence theory. Input parameters with aleatory uncertainty are modeled with probability 

distributions by probability theory. Input parameters with epistemic uncertainty are 

modeled with basic probability assignments by evidence theory. A computational method 

is developed to compute belief and plausibility measures for black-box performance 

functions. The proposed method involves the nested probabilistic analysis and interval 

analysis. To handle black-box functions, we employ the First Order Reliability Method 

(FORM) for probabilistic analysis and nonlinear optimization for interval analysis. Two 

example problems are presented to demonstrate the proposed method. 
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1.  Introduction 

Products must be reliable, robust, and safe against uncertainties. To this end, 

nondeterministic design approaches have been increasingly researched and applied by 

industry, government, and academia [1-3]. Uncertainty can be viewed as the difference 

between the present state of knowledge and the complete knowledge [4]. Uncertainty is 

usually classified into aleatory and epistemic types [4-6]. Aleatory uncertainty, also termed 

as objective or stochastic uncertainty, describes the inherent variation associated with a 

physical system or environment. Epistemic uncertainty, or subjective uncertainty, on the 

other hand, derives from some level of ignorance or incomplete information about a 

physical system or environment.  

Uncertainty associated with a parameter can be aleatory (due to the inherent 

variation) or epistemic (due to limited information). Uncertainty associated with a model 

structure is a special type of epistemic uncertainty [7-9], which comes from assumptions or 

a lack of knowledge in the model building process. Aleatory uncertainty is usually 

modeled by probability theory while epistemic uncertainty can be modeled by probability 

or non-probability theories. 

Quantifying and managing the effect of uncertainty at the design stage is important 

– sometimes imperative – as in reliability-based design. Probabilistic approaches that deal 

with stochastic (aleatory) parameter uncertainty have been vastly investigated. 

Representative but not exhaustive methods include robust design [10-14], reliability-based 

design [15-17], and multidisciplinary optimization under uncertainty [18-20].   

However, aleatory parameter uncertainty is only one facet of the total uncertainty 

that engineers encounter. The integration of a full range of uncertainty has barely been 
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explored in engineering design. It is difficult to quantify epistemic uncertainty because the 

information may come from multiple sources and may be conflicting. Although a few 

theories of epistemic uncertainty are available, their practical engineering applications 

have scarcely been exploited. In addition, incorporating uncertainty into simulation-based 

design may lead to severe numerical difficulties because of the black-box nature and a high 

computational cost. 

Exploratory research on epistemic uncertainty in engineering has recently been 

conducted. Several examples include (1) studies on the relationships and differences 

between probability and non-probability theories [21, 22]; (2) study on bounding the value 

of information with epistemic distribution parameters [23]; (3) optimization design by 

possibility and evidence theory [24, 25]; (4) sensitivity analysis with aleatory and 

epistemic uncertainties [26]; and (5) epistemic uncertainty in engineering applications [27, 

28]. The above work has indicated the promising possible engineering applications of the 

treatment of a full range of uncertainty. 

Evidence theory is a more general theory that can handle both types of uncertainty. 

However, it requires much more computational demands than the less general theory, 

namely, probability theory [29]. Monte Carlo simulation is capable of handling both types 

of uncertainty, but generally prohibitively expensive for real-world problems. Interval 

arithmetic combined with probabilistic analysis is efficient but may not be accurate and 

inapplicable to black-box models.   

We propose a unified uncertainty analysis method based on the First Order 

Reliability Method (FORM). The method is referred to as FORM-UUA (FORM-Based 

Unified Uncertainty Analysis) in the rest of the paper. In FORM-UUA, aleatory 
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uncertainty is modeled by random variables with distributions, and epistemic uncertainty is 

modeled by intervals with basic probability assignments. With coupled probabilistic 

analysis and interval analysis, FORM-UUA is able to quantify the effects of both types of 

uncertainty. To deal with a black-box performance function with high robustness, 

probabilistic analysis is performed by the improved HL-RF (iHLRF) algorithm [30]; 

interval analysis is embedded in the iHLRF algorithm and is conducted by nonlinear 

optimization.   

A brief overview of evidence theory from a perspective of uncertainty analysis is 

given in Section 2. The unified uncertainty analysis framework, where the proposed 

method is derived, is presented in Section 3. The FORM-UUA method is discussed in 

Section 4 followed by two engineering examples in Section 5. Conclusions and possible 

future research are presented in Section 6. 

 

2.  Intervals and Evidence Theory 

 Intervals are widely used for epistemic uncertainty. Typical interval examples are 

given in [31]. The periodic condition monitoring is used herein to demonstrate the basics 

of intervals and evidence theory. The condition of a system is monitored at preplanned 

time instants 0 1, 2,   ,  t t t   as shown in Fig. 1. If a failure is detected at 1it + , we know that 

the failure could occur at any instant over the interval between it  and 1it + . Epistemic 

uncertainty therefore exists in the estimation of the time to failure.  
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Figure 1. Periodic condition monitoring 

 We use Y to denote an epistemic parameter as well as its sample space, a space that 

contains all possible values of Y. The power set of Y, denoted by ( )YP , contains all the 

possible distinct subsets of Y. For the above example, possible subsets of Y include 

{ } { } { } { } { } { }1 1 2 2 3 1 2, , , , , , , , , , ,Y Yi Y Y Y Y Y Y YnC C C C C C C C C∅    , where { }∅  is an empty 

set, and n is the total number of subset { }YiC . 

 A probability (or belief), ( )Y Yim C , can be assigned to each of the subsets 

{ } ( 1,2, , )YiC i n=   based on statistical data or engineering judgment. ( )Y Yim C  is called a 

Basic Probability Assignment (BPA). The formal definition of BPA is as follows. A BPA, 

( )Ym A , of a set A over a frame Y,  is a mapping function: ( ) [0,1]Y →P  such that the 

following three conditions hold, 

 ( ) 0Ym A ≥  (1) 

 ( ) 0Ym ∅ =  (2) 

 ( ) 1Y
A Y

m A
∈

=∑  (3) 

t0 

t0 t2 ti ti+1 

Time Y 
⊗ 

: working ⊗: failure 

t1 

t2 ti ti+1 

Time Y 

t1 

mY(CY1) = 0.5% 

m: Basic Probability Assignment  

CY1 CY2 CYi 

mY (CY2) = 5% mY (CYi) = 25% 

… 

… 
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 As shown in Fig. 1, 2( ) 5%Y Ym C =  indicates that 5% portion of one’s total belief is 

assigned to exactly the set 2 1 2( , ]YA C t t= = .  The BPA structure demonstrated in Fig. 1 is 

formed based on information from one source. If information is from multiple sources, the 

multiple BPA structures must be aggregated by so-called rules of combination [32].  

 Similar to a joint probability in probability theory, in evidence theory, if multiple 

uncertain variables are involved and are independent, then a joint BPA is defined by 

 1 2
( ) ( )      when 

( )
0                            otherwise         

Y Ym A m B C A B
m C

= ×
= 


Y  (4) 

where 1( )A Y∈P , 2( )B Y∈P , 1 2Y Y= ×Y , and ( )C∈ YP . 

 A set C, for which ( ) 0m C >Y , is called a focal set (or focal element). If the BPA 

structure of the time to failure of two independent systems 1 and 2 is given in Fig. 2, the 

joint BPA can be calculated by Eq. (4). For example, 

[ ] [ ] [ ]1 2( 0,1 ,[0, 2]) ( 0,1 ) ( 0,2 ) 0.1(0.25) 0.025Y Ym m m= = =Y . The result of the joint BPA is 

given in Table 1. 

 

 Figure 2. Lives of two systems 

0 

0 

Time Y1 

System 1 

Time Y1 

System 2 

Month 3 Month 4 

Month 2 Month 4 Month 5 

1 1( ) 0.1Y Ym C = 1 1( ) 0.3Y Ym C = 1 1( ) 0.6Y Ym C =

2 2( ) 0.25Y Ym C = 2 2( ) 0.45Y Ym C = 2 2( ) 0.3Y Ym C =

Month 1 
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Table 1 Joint BPA mY  

                          Y1 
Y2 1([0,1]) 0.1Ym =  1([1,3]) 0.3Ym =  1([3,4]) 0.6Ym =  

2 ([0,2]) 0.25Ym =  0.025 0.075 0.15 

2([2,4]) 0.45Ym =  0.045 0.135 0.27 

2([4,5]) 0.3Ym =  0.03 0.09 0.18 
 

 
 

 Let a response G be expressed abstractly by a performance function 

 ( )G g= Y  (5) 

where  1 2( , , , )
YnY Y Y=Y   is the vector of parameters with epistemic uncertainty. The 

uncertainty associated with the model input Y  is propagated through the model ( )g ⋅  to the 

model output G.   

 Next we use a reliability problem to conceptually demonstrate how to quantify the 

effect of epistemic uncertainty. A failure mode F is defined as the event that the 

performance is less than a threshold (a limit state) c, i.e. { }( )F g c= ≤Y Y . Due to the 

interval nature, the likelihood of the failure cannot be quantified by a single probability 

measure; instead, it is quantified by belief and plausibility measures, which are bounds of 

the probability.  

   Let mY  be the joint BPA over a frame 1 2 YnY Y Y= × × ×Y  . The belief measure 

Bel of the failure event F∈Y  induced by mY  is defined as follows: 

 ( ) ( )
A F

Bel F m A
∈

= ∑ Y  (6) 

( )Bel F  is interpreted as the degree of belief that the failure event F would occur. 

The idea is illustrated in Fig. 3. ( )Bel F  is the sum of the BPAs of the subsets (focal 
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elements) entirely within the failure region { }1 2( , )F g Y Y c= ≤Y . As shown in Fig. 3, 

subsets  6CY  and 9CY  are completely in the failure region; therefore, 

6 9( ) 0.27 0.18 0.45Bel F m m= + = + =Y Y . 

 

Figure 3. Joint BPA mY  and the limit state 

 The plausibility measure Pl of the failure mode F  induced by mY  is defined as 

 ( ) ( )
A F

Pl F m A
∩ ≠∅

= ∑ Y  (7) 

The degree of plausibility ( )Pl F  is calculated by adding the BPAs of the subsets 

that are in the failure region and the BPAs of the subsets that intersect with the failure 

region. It is obvious that ( ) ( )Pl F Bel F≥ . As shown in Fig. 4, the plausibility is 

0 1 3 4
0

2

4

5

Y
1

Y
2

m
Y1

=0.025 m
Y2

=0.075 m
Y3

=0.15

m
Y4

=0.045 m
Y5

=0.135 m
Y6

=0.27

m
Y7

=0.03 m
Y8

=0.09 m
Y9

=0.18

C
Y1 C

Y2
C

Y3

C
Y4

C
Y5

C
Y6

C
Y7

C
Y8

C
Y9

1 2

Limit state
( , )g Y Y c= 1 2

Failure region
( , )g Y Y c<1 2

Safe region
( , )g Y Y c>
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( ) ( )
( )
( )

2 5 8 3 6 9

2 5 8 3

( )

          ( )

           = 0.075 0.135 0.09 0.15 0.45 0.9

Pl F m m m m m m

m m m m Bel F

= + + + + +

= + + + +

+ + + + =

Y Y Y Y Y Y

Y Y Y Y  

The true probability of failure fp  is bounded in the interval between ( )Bel F  and 

( )Pl F , namely, 

 ( ) ( )fBel F p Pl F≤ ≤  (8) 

 In the above example, 0.45 0.9fp≤ ≤ . 

 

3.  Unified Framework for Uncertainty Analysis 

 When aleatory and epistemic uncertainties exist, their effects can be quantified with 

a unified uncertainty analysis framework [33]. Let parameters with aleatory uncertainty 

1 2( , , , )
XnX X X=X   be described by probability distributions. For easy demonstration, 

we assume that the elements of X  are independent. A performance function is then 

expressed by 

 ( , )G g= X Y  (9) 

The theoretical foundation of the unified uncertainty analysis relies on the generality 

of evidence theory. According to Klir and Wierman [29], a more general theory is capable 

of capturing uncertainties more faithfully than its less general competitors. However, the 

more general theory, e.g. evidence theory, requires greater computational demands than the 

less general theory, e.g. probability theory. The reason is that uncertainty analysis with 

both aleatory and epistemic uncertainties needs both probabilistic analysis and interval 

analysis and that both analyses are coupled.    
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 Let the number of the subsets (focal elements) of Y in the joint space be n and the 

focal elements of Y be denoted by  ( 1, 2, , )i i n=YC  .  The probability of failure pf is 

defined by  

 { }Pr ( , )fp g c= <X Y  (10) 

where c is a limit state. 

 The precise probability pf is not available because of the intervals in Y, but the 

minimum and maximum values of pf , or the belief and plausibility, can be obtained. As 

shown in [33], the equations of belief and plausibility can be derived from both evidence 

theory and probability theory as 

 { }min max
1

( ) ( ) ( ) Pr ( , )
n

f i i i
i

Bel F p m G c
=

= = < ∈∑ Y Y YC X Y Y C  (11) 

and 

 { }max min
1

( ) ( ) ( ) Pr ( , )
n

f i i i
i

Pl F p m G c
=

= = < ∈∑ Y Y YC X Y Y C  (12) 

where min ( , )G X Y  and max ( , )G X Y  are the respective global minimum and maximum 

values of G in the subset iYC . 

 Eqs. (11) and (12) require that the subsets iYC  be mutually exclusive as shown in 

Fig. 3.  However, sets in evidence theory are not necessarily mutually exclusive. If 

intervals are from multiple information sources or intervals overlap, aggregation needs to 

be performed. As shown in Ref. 21, through the aggregation, mutually exclusive subsets 

iYC  can be formed. 
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4.  Unified Uncertainty Analysis by the First Order Reliability Method (FORM) 

Solving Eqs. 11 and 12 requires interval analysis (IA) to calculate the minimum 

and maximum performances minG  and maxG . It also requires probability analysis (PA) to 

calculate the probabilities { }minPr ( , ) i iG c< ∈ YX Y Y C  and { }maxPr ( , ) i iG c< ∈ YX Y Y C . 

In principle, Monte Carlo simulation (MCS) can be used, but the computation is too 

expensive. Interval arithmetic could be used for IA to reduce computational efforts, but the 

method is not accurate and is inapplicable to black-box performance functions.  In this 

section, we introduce our proposed FORM-based unified uncertainty analysis method. The 

method is efficient than MCS and is applicable to black-box performance functions. 

 

4.1  FORM 

FORM is primarily used for probabilistic analysis (PA) when aleatory uncertainty 

exists with probability distributions. Let the joint probability density function (PDF) of 

X be fx . The probability of failure is calculated by the following integral 

 
( )

= Pr{ ( ) } ( )f
g c

p G g c f d
<

= < = ∫ x
x

X x x  (13) 

Random variables { }1 2,  ,  ,  
XnX X X=X   (in X-space) are first transformed into a 

set of random variables { }1 2,  ,  ,  
XnU U U=U   (in U-space) whose elements follow a 

standard normal distribution. The transformation is given by 

 { }1 ( )
ii X iu F x−= F  (14) 

where 
iXF  is the CDF of Xi, and 1−F  is the inverse CDF of a standard normal distribution. 

Then the Most Probable Point (MPP) *u  is identified with the following model. 
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 min ( )g c=
u

u u  (15) 

where  | |⋅  stands for the norm (length) of a vector, namely, 2 2 2
1 2 Xnu u u= + + +u  .  

 fp  is then approximated by 

 ( )fp β= F −  (16) 

where F  is the CDF of a standard distribution. 

 

4.2 The FORM-Based Unified Uncertainty Analysis  

Our proposed FORM-based unified uncertainty analysis (FORM-UUA) method 

evaluates the minimum probability { }maxPr ( , ) i iG c< ∈ YX Y Y C  for belief in Eq. 11 and 

the maximum probability { }minPr ( , ) i iG c< ∈ YX Y Y C  for plausibility in Eq. 12. The 

method employs FORM for probabilistic analysis (PA). It also uses nonlinear optimization 

for interval analysis (IA) to find the minimum and maximum G over the focal element  

iYC . Since both FORM and nonlinear optimization are applicable to black-box 

performance functions, so is the FORM-UUA method. 

Combining the MPP search and interval analysis, the maximum probability 

{ }minPr ( , ) i iG c< ∈ YX Y Y C  can be solved by the following model. 

 { }min ( , ) ,  min  ( , )
iYg c M g C= ∈ = ∈

u y
u u y y u y y           (17) 

For the minimum probability { }maxPr ( , ) i iG c< ∈ YX Y Y C , M is given by 

{ }max  ( , )
iYM g C= ∈

y
u y y . 



 13 

A double-loop procedure with fully nested FORM (PA) and optimization (IA) is 

developed in [33]. The outer loop (PA loop) identifies the MPP in terms of X and the inner 

loop (IA loop) searches the minimum g and maximum G in terms of Y. This method is 

inefficient due to the double-loop procedure. In the FORM-UUA method, IA is embedded 

in the iterative MPP search process, and the new method is much more efficient.  

The FORM-UUA method for the minimum probability 

{ }maxPr ( , ) i iG c< ∈ YX Y Y C  is outlined in Fig. 4. In each iteration of the MPP search, 

interval variables Y are fixed. After random variables U are updated by the MPP search 

algorithm, optimization is performed to find the maximum performance function with 

fixed U. After the MPP *u  is located, the maximum probability is computed by 

  { }maxPr ( , ) ( )i iG c β< ∈ = F −YX Y Y C  (18) 

 

 

Figure 4. Flowchart of FORM-UUA 

  

Interval Analysis (IA) 
Maximize g given u 
max  ( , ) ig ∈ Yy

u y y C  

u y 

Iteration k of the MPP search 
Update u given y 

Converge? 

k = k + 1 

N. 

Y. 
MPP u* 
 

Initial u, y 
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An efficient and robust MPP search algorithm is essential to the performance of 

the FORM-UUA method. The so-call HLRF algorithm [34, 35] is the most popular 

algorithm owing to its simplicity and efficiency. However, there is no proof that the 

algorithm will converge for a given problem. It actually diverges for many nonlinear 

performance functions. In this work, we use the improved version of HLRF algorithm 

denoted by iHRLF, which is proposed by Zhang and Der Kiureghian [30]. iHRLF is 

computationally efficient and globally convergent, meaning that it guarantees to converge 

to a local MPP from any starting point. The detailed algorithm is given in [30]. The 

adaptation of the algorithm that accommodates interval variables is developed in this 

work. Next, the algorithm for the minimum probability { }maxPr ( , ) i iG c< ∈ YX Y Y C  is 

presented.  

In iteration k+1, the MPP is given by 

  1k k kα+ = +u u d  (19) 

where the search direction kd  is defined by 

 2

( , ) ( , )
( , )

( , )

T
k k k k k

k k k k

k k

g g
g

g

∇ −
= ∇ −

∇
y

y

y

u y u u y
d u y u

u y
         (20) 

where 
1 2 ,

( , ) , , ,
k k

k k
n

g g gg
U U U

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

y
u y

u y  . 

 The step size  α  is determined by minimizing the merit function defined by 

 1( , ) ( , )
2

m c g= +u y u u y          (21) 

in which the constant c  should satisfies  
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( , )

c
g

>
∇

u
u y

       (22) 

 To reduce the computational cost, in practice, the step size is computed by finding 

a value α  that the merit function is sufficiently reduced.  The following rule is employed 

to find α . 

 { }max ( , ) ( , ) 0 , 0h h
k k k k kh

b m b m bα
∈

= + − < >u d y u y  
}

       (23) 

In the proposed algorithm, 0.5b =  and 
2

10
( , )

k

k k

c
g

= +
∇

u
u y

 are used.  

 Eq. 23 indicates that hα =  is the first integer such that ( , )h
k k km b+u d y  is less 

than ( , )k km u y . 

 In the above algorithm, interval variables ky are assumed fixed, which are 

obtained from optimization in iteration k. Once 1k+u  is found, interval analysis is 

conducted to find 1k+y  by the following model. 

 1 1max ( , ) ( , ) ,  
ik k Yg g c C+ + = ∈

y
u y u y y           (24) 

 In many engineering applications, the extreme values of a performance function 

occur at the endpoints of interval variables Y when the function is monotonic with respect 

to the interval variables. For example, the maximum design margin is at the maximum 

strength and minimum loading. In this case, there is no need to perform expensive 

optimization in Eq. 24. However, it is difficult to know whether a black-box performance 

function is monotonic. To improve computational efficiency, the following strategy is 

developed. 
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  In iteration 1k + , after 1k+u  is found, the KKT conditions for the optimization 

problem at 1k+u in Eq. 24 is checked. If the KKT conditions are satisfied, the interval 

variables ky  obtained in iteration k are still the solution to Eq. 24. There is no need to 

perform optimization again. Therefore, set 1k k+ =y y  and skip optimization, and then 

proceed to the next iteration.  

 For the optimization in Eq. 24, the KKT conditions are as follows. 

 
1 1, ,

( , ) ( , )( ) :  ,  0 :  ,  0
k k k k

L U
j j j j

j j

g gH j y y j y y
Y Y

+ +

   ∂ ∂   = = ≥ = ≤   ∂ ∂      u y u y

U Y U YY


 (25) 

and 

 
1 ,

( , ) 0,  ( )
k k

j

g j H
Y

+

∂
= ∉

∂
u y

U Y Y  (26) 

where  1,2, , Yj n=  , L
jy  is the lower bound of jY , and U

jy  is the upper bound of jY . 

The algorithm is summarized as follows. 

(1) Input the starting point 0u  and 0y ; initialize the iteration counter k = 0.  

(2) Calculate 1k+u  by  

1k k kα+ = +u u d  

2

( , ) ( , )
( , )

( , )

T
k k k k k

k k k k

k k

g g
g

g

∇ −
= ∇ −

∇
y

y

y

u y u u y
d u y u

u y
 

and 

{ }max ( , ) ( , ) 0 , 0h h
k k k k kh

b m b m bα
∈

= + − < >u d y u y  
}
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(3) If 1k > , check KKT conditions in Eqs. 25 and 26. If satisfied, 1k k+ =y y  and go 

to (5); otherwise, go to (4). 

(4) Find 1k+y  by solving 1 1max ( , ) ( , ) ,  
ik k Yg g c C+ + = ∈

y
u y u y y . 

(5) Check convergence. If 1 1 1( , )k kg c ε+ + − ≤u y  and 1 2k k ε+ − ≤u u  ( 1ε  and 2ε  

are small positive numbers 1.00  ), then 1kβ += u  and go to (6); otherwise, 

1k k= + , go to (2). 

(6) { } ( )maxPr ( , ) i iG c β< ∈ = F −YX Y Y C  when 1 1( , )k kG c+ + ≥u y ; 

{ } ( )maxPr ( , ) i iG c β< ∈ = FYX Y Y C  when  1 1( , )k kG c+ + <u y . 

 The flowchart of the above procedure is depicted in Fig. 5. 
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Figure. 5 Flowchart of the FORM-UUA Method 
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= ∇ −

∇
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 For the maximum probability { }minPr ( , ) i iG c< ∈ YX Y Y C , one just needs to 

change the optimization model for interval analysis to 

1 1min ( , ) ( , ) ,  
ik k Yg g c C+ + = ∈

y
u y u y y . 

 The proposed method converges in a few iterations. If the number of iterations is 

m, the whole procedure solves the minimization and maximization problem m times for 

interval analysis if the solution includes an interior point over an interval. The efficiency 

of solving the minimization (or maximization) problem depends on the number of interval 

variables Y and features of the performance function. The computational cost of the MPP 

search is directly proportional to the number of random variables X if the finite difference 

method is used to evaluate derivatives. In general, the computational demand of the entire 

process is dependent upon the numbers of intervals and random variables. Since the 

above process must be performed for each of the focus elements of Y, the overall 

efficiency is also determined by the number of the focal elements. 

 

5.   Numerical Examples 

The proposed FORM-UUA method is coded in MATLAB. The sequential 

Quadratic Programming (SQP) optimizer is used to solve interval analysis. Two 

engineering problems are used here for demonstration. Even though the performance 

functions in both examples are in analytical forms, they are coded as executable programs 

and are therefore implicit to the calling function. The derivatives of the performance 

functions with respect to random variables and interval variables are computed by the 

forward finite element approach. A black-box situation is therefore simulated.  
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5.1 Crank-slide mechanism 

A crank-slider mechanism (Fig. 6) is used in a construction machine. The length of 

the crank a, the length of the coupler b, the external force P, the Young’s modulus of the 

material of the coupler E, and the yield strength of the coupler S are random variables. The 

distributions of the random variables are given in Table 2.  

 
 

Figure 6. A Crank-Slider Mechanism 
 
 

Table 2 Random Variables X 
 

Variable Symbol used in Fig. 6 Mean Standard deviation Distribution 
X1 a 100 mm 0.01 mm Normal 
X2  b 400 mm 0.01 mm Normal 
X3  P 280 kN 28 kN Normal 
X4 E 200 GPa 10 GPa Normal 
X5 S 290 MPa 29 MPa Normal 

 

Because of the harsh environment in construction sites, a precise distribution of the 

coefficient of friction µ between the ground and the slider is unknown; only its intervals 

and BPA are available from the solicitation from experts. Different installation positions of 

a b 

M 

M 

P 

d1 

M-M section 

e 

O1 

N N 
O3 
 

O2 
 

ω 

d2 
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the slider are required in various construction sites. The intervals and BPA of the offset e 

are assigned based on limited historical data. Their BPAs are provided in Table 3.  

 

Table 3 Uncertain Variables with Epistemic Uncertainty 
 

Variable Symbol used in Fig. 6 Intervals BPA 
Y1   e [100, 120], [120, 140] , [140, 150] 0.2, 0.4, 0.4 
Y2   µ [0.15, 0.18], [0.18, 0.23], [0.23, 0.25] 0.3, 0.3, 0.4 

 
  

The two performance functions are defined by the difference between the material 

strength and the maximum stress, and the difference between the critical load and the axial 

load, respectively. They are  given by 

 ( ) ( )
( )( )( )

1 1 2 2 2 2
2 1

4P b a
G g S

b a e e d dπ µ

−
= = −

− − − −
X,Y  

and 

 ( ) ( ) ( )
( )

3 4 4
2 1

2 2 2 2 264
E d d P b a

G g
b b a e e

π

µ

− −
= = −

− − −
X,Y   

 
The failure events are defined by ( ){ }1 1 0F g= <X, Y X, Y  and  

( ){ }2 2 0F g= <X, Y X, Y . The belief and plausibility measures of failure are computed by 

the proposed FORM-UUA approach, and the results are given in Table 4. The true 

probability of failure of the first response is bounded with the belief and plausibility 

measures, i.e. 5 4
14.36 10 1.38 10fp− −× ≤ ≤ × . Because both belief and plausibility measures 

are almost zero for the second response, the probability of failure for the second 
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performance function 2 0fp ≈ . Both performance functions are monotonic with respect to 

the interval variables e and µ, and the extreme function values occur at the endpoints of the 

two interval variables. Therefore, optimization for interval analysis is performed only in 

the first iteration of the MPP search and is skipped thereafter. The reason is that the 

FORM-UUA detects that the KKT conditions are satisfied. The total numbers of function 

calls for the two performance functions are 522 and 576, respectively. To compare the 

accuracy, Monte Carlo simulation (MCS) is also used to solve the problem. MCS is 

applied to the four combinations of the endpoints of e and µ.  106 samples are used for each 

combination. The results indicate the good accuracy of the proposed method with the MCS 

solution as a reference. 

Table 4 Belief and Plausibility Measures 

Failure Belief Bel Plausibility Pl N1 N2 FORM-UUA MCS FORM-UUA MCS 
1F  54.36 10−×   54.44 10−×  41.38 10−×   41.44 10−×  522 4×106 

2F  0≈  0.0 0≈  0.0 576 4×106 
 
N1 – number of function evaluations by the FORM-UUA method 
N2 – number of function evaluations by MCS 
 
   

 The cumulative belief function (CBF) and cumulative plausibility function (CPF) 

are also calculated by changing the constant c in both ( ){ }1 1F g c= <X, Y X, Y  and 

( ){ }2 2F g c= <X, Y X, Y . The results are depicted in Figs. 7 and 8. The gap between the 

CBF and CPF of 1G  is much larger than that of 2G . This indicates that the effect of 

epistemic uncertainty on 1G  is greater than that on 2G . The difference between the CBF 
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and CPF of 2G  is small. Therefore, the effect of epistemic uncertainty on 2G is not 

significant. 

 
 

Figure 7. CBF of G1 

 
Figure 8. CPF of G2 
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5.2 Cantilever tube 

The cantilever tube shown in Fig. 9 is subjected to external forces 1F , 1F , and P , 

and torsion T . The performance function is defined as the difference between the yield 

strength yS  and the maximum stress yσ , namely,  

 ( ) maxyG g S σ= = −X, Y  

 

 
Figure 9. Cantilever Tube  

 

maxσ  is the maximum von Mises stress on the top surface of the tube at the origin, 

which is given by 

 2 2
max 3x zxσ σ τ= +  

The normal stress xσ  is calculated by 

 1 1 2 2sin ( )+ sin( )
x

P F F Mc
A I
θ θσ +

= +  

where the first term is the normal stress due to the axial forces, and the second term is the 

normal stress due to the bending moment M, which is given by 

L1 

L2 
P 

F1 F2 θ2 θ1 

T 

d 

t 
x 

y 

z 
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 1 1 1 2 2 2cos( )+ cos( )M F L F Lθ θ= , 

and  

 ( )22 2
4

A d d tπ  = − −  , / 2c d= , ( )44 2
64

I d d tπ  = − −  . 

The torsional stress zxτ  at the same point is calculated by 

 
2zx
Td

J
τ =  

where  

 2J I=  

 The random and interval variables are given in Tables 5 and 6, respectively. 

Table 5 Uncertain Variables with Aleatory Uncertainty 
Variables Symbols in Fig. 10 Parameter 1 Parameter 2 Distribution 

X1 t 5 mm (mean) 0.1 mm (std*) Normal 
X2 d 42 mm (mean) 0.5 mm (std) Normal 
X3 L1 119.75 mm (lb**) 120.25 mm (ub***) Uniform 
X4 L2 59.75 mm (lb) 60.25 mm (ub) Uniform 
X5 F1 3.0 kN (mean) 0.3 kN (std) Normal 
X6 F2 3.0 kN (mean) 0.3 kN (std) Normal 
X7 P 12.0 kN (mean) 1.2 kN (std) Gumbel 
X8 T 90.0 N⋅m (mean) 9.0 N⋅m (std) Normal 
X9 Sy 220.0 MPa (mean) 22.0 MPa (std) Normal 

*:      std – standard deviation 
**:    lb – lower bound of a uniform distribution 
***:  ub – upper bound of a uniform distribution 
 

Table 6 Uncertain Variables with Epistemic Uncertainty 
 

Variables Symbols in Fig. X Intervals BPA 
Y1 θ1 [0°, 10°] 1.0 
Y2 θ2 [5°, 15°] 1.0 

 
 The bounds of the probability of failure of the cantilever tube are calculated by the 

proposed method and are shown in Table 7. The result is compared with that of MCS. As 

demonstrated in Figs. 10 and 11, the minimum performance occurs at the interior points of 
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θ1 and θ2. To capture the minimum value of the performance function in MCS, the 

intervals of θ1 and θ2 are divided into 50 subintervals. 50×50 combinations of the two 

interval variables are simulated with 106 samples for each combination. The total number 

of MCS function calls is therefore equal to 50×50×106 = 2.5×109.  With the MCS solution 

as a reference, the proposed method is accurate and efficient. 

 

Table 7 Belief and Plausibility Measures 

Failure Belief Bel Plausibility Pl N1 N2 FORM-UUA MCS FORM-UUA MCS 
F  0.000143 0.000145       0.000163 0.000168 147 2.5×109 

 
N1 – number of function evaluations by the FORM-UUA method 
N2 – number of function evaluations by MCS 
 

 

Figure 10. G-θ1 at the means of random variables and the average of θ2 
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Figure 11. G-θ2 at the means of random variables and the average of θ1 

 
 
 To show the effect of the epistemic uncertainty in θ1 and θ2 for a full range of the 

performance, we also plot the CBF and CPF in Fig. 12. Since the gap between the two 

curves is small, the effect of the epistemic uncertainty is not significant.  

 
 

Figure 12. CBF and CPF of G 
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6. Conclusions and Future Work 

 The feasibility of performing unified uncertainty analysis using existing reliability 

method FORM is demonstrated in this paper.  Given probability distributions of aleatory 

parameters X and joint basic probability assignments of epistemic parameters Y, the belief 

measure and plausibility measure of a response variable ( )G g= X, Y  can be easily 

calculated. It is shown that the calculation of belief measure or plausibility measure can be 

converted to the calculation of the minimum or maximum probability of failure (or the 

CDF of G) at each focal element of Y. As a result, the unified uncertainty analysis needs a 

number of probabilistic analyses and interval analyses. 

 As shown in the two examples, both belief and plausibility measures provide more 

insight into the uncertainty impact on design performance than a single probability 

measure. The values of both measures indicate the effect of aleatory uncertainty on a 

response while the gap between them reflects the effect of epistemic uncertainty on the 

response. Considering both types of uncertainty helps us make more informed decisions.  

 Let us examine the following two cases for reliability issue. In case 1, the belief 

and plausibility measures about a failure event are large, and so is the effect of aleatory 

uncertainty; the gap between belief and plausibility measures small, so is the effect of 

epistemic uncertainty. In this case, we may focus on using our limited resources to deal 

with safety issues for the most critical components in a system. In case 2, the effect of 

epistemic uncertainty is large because of a large gap between belief and plausibility 

measures. In this case, simply using the worst case probability (plausibility) may result in a 

very conservative solution; it is also difficult to make decisions due to the large gap. In this 

case, the available resources should be used to reduce epistemic uncertainty by performing 
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experiments or collecting more information. The sensitivity information from the unified 

uncertainty analysis will guide one to collect more information for the most critical 

epistemic variables and their combinations before making decisions. 

The proposed FORM-UUA method enables us to propagate both aleatory and 

epistemic uncertainties in the model input to the model output for a black-box model. It is 

practical to use the algorithm to calculate the belief or plausibility measure for a single 

limit state. If it is used to generate the entire CBF and CPF curves, the MPP for each of the 

realizations of the response must be searched. As the result, the computation will be 

intensive.  

It should be pointed out that the iHLRF algorithm can identify only a single local 

MPP. If there are multiple MPPs or the MPP search converges to a local MPP, the FORM-

UUA method may produce a large error. If the nonlinear optimization for interval analysis 

does not converge to a global optimal solution, the error may also be large. In this case, a 

global optimizer may be considered. The starting points of the MPP search and interval 

analysis have large influence upon the overall performance of the FORM-UUA method. In 

this paper, we use the origin of the transformed normal space as the starting point for the 

MPP search. We use the optimal point of interval analysis from previous MPP search 

iteration as the starting point for interval analysis in the next iteration of MPP search.  

This work has demonstrated the feasibility of integrating probability and evidence 

theories for handling two types of uncertainty computationally. However, the following 

several prominent open issues must be resolved before the unified uncertainty analysis can 

be confidently used in engineering practices.     



 30 

(1) The unified uncertainty analysis with both types of uncertainty is much more 

computationally expensive than probabilistic analysis. The proposed method is only a 

starting point. More efficient and accurate approximation methods should be developed. 

(2) As seen in the two example problems, Monte Carlo simulation is extremely 

costly for the unified uncertainty analysis. Practical simulation techniques need to be 

investigated. One of the challenging issues is the extreme values of the response over the 

intervals of epistemic uncertainty may be missed even though large sample size is used. 

The current sampling methods for epistemic uncertainty should be further developed to 

overcome the drawback. 

(3) Sensitivity information should be a byproduct of the unified uncertainty 

analysis. Sensitivity analysis identifies the contributions of individual uncertain input 

variables to the output. Especially, the sensitivity of the gap between the lower and upper 

probability bounds of a response needs to be calculated because it provides the most useful 

information for reducing epistemic uncertainty. 

(4) How to formulate the joint BPA as the input to the unified uncertainty analysis 

is not addressed in this paper. When the information of epistemic uncertainty comes from 

multiple sources, the following question should be answered? How should multiple 

estimates of uncertain quantities be aggregated before uncertainty analysis calculation? 

(5) Results from the unified uncertainty analysis helps engineers understand how 

the mixture of both aleatory and epistemic uncertainties impacts design performance. This 

knowledge will ultimately be used at the design stage for mitigating such impact. 

Effectively integrating the unified uncertainty analysis with design schemes in both 

modeling and computational implementation should be the focus of the future research.  
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