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SUMMARY 

 

In reliability analysis and reliability-based design, sensitivity analysis identifies the 

relationship between the change in reliability and the change in the characteristics of 

uncertain variables. Sensitivity analysis is also used to identify the most significant 

uncertain variables that have the highest contributions to reliability. Most of the current 

sensitivity analysis methods are applicable for only random variables. In many 

engineering applications, however, some of uncertain variables are intervals. In this 

work, a sensitivity analysis method is proposed for the mixture of random and interval 

variables. Six sensitivity indices are defined for the sensitivity of the average reliability 

and reliability bounds with respect to the averages and widths of intervals, as well as 

with respect to the distribution parameters of random variables. The equations of these 

sensitivity indices are derived based on the First Order Reliability Method (FORM). 

The proposed reliability sensitivity analysis is a byproduct of FORM without any extra 

function calls after reliability is found. Once FORM is performed, the sensitivity 

information is obtained automatically. Two examples are used for demonstration. 
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1. INTRODUCTION 

In reliability analysis [1~3] and reliability-based design [4~7], sensitivity analysis 

provides information about the relationship between reliability and the distribution 

parameters of a random variable. Sensitivity analysis can therefore identify the most 

significant uncertain variables that have the highest contribution to reliability. When 

only random variables are involved, sensitivity analysis is usually performed for the 

probabilistic characteristics of a limit-state function, such as its moment, probability 

density function, and reliability. Such sensitivity analysis is usually named probabilistic 

sensitivity analysis (PSA). Various PSA approaches have been reported in a wide range 

of literature, including differential analysis [8, 9], variance-based methods [10], and 

sampling-based methods [10]. These types of probabilistic sensitivity analysis are 

briefly reviewed below. 

(1) Differential analysis (probability sensitivity coefficient) 

The probability-based sensitivity measure is defined as the rate of change in a 

probability (P) (reliability or the probability of failure) due to the change in a 

distribution parameter ( iq ) of a random input, namely / iP q∂ ∂ . / iP q∂ ∂  can be 

calculated by the finite difference method given by [2]:  

( ) ( )
i

i i i
q

i

P q q P qS
q

+ ∆ −
=

∆
                    (1) 

where iq  is a distribution parameter, such as the mean or the variance of a random 

variable; iq∆ is a small step size of iq .  

Various probability sensitivity measures have been proposed in literature [11~14]. 

Wu [11] and Wu and Mohanty [12] propose a normalized cumulative density function 
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(CDF)-based sensitivity coefficient for the probability of failure with respect to the 

distribution parameters of random variables. The sensitivity is defined by: 

/ ( )( ) ( )
/ ( ) ( )

XX X

X X

XX X x
X Xi

f f i i
q

i i i f i

p p q q ff fS d E
q q f q p f qΩ Ω

 ∂  ∂∂
= = ⋅⋅⋅ =   ∂ ∂ ∂    

∫ ∫     (2) 

where fX  is the joint probability density function of all random variables, fp is the 

probability of failure, X is a vector of random variables, and Ω  denotes the failure 

region. The calculation of this sensitivity measure involves evaluating a 

multidimensional integral. A sampling method is usually used to estimate this integral, 

which makes this method computationally expensive. Mavris et al. [13] extend Wu’s 

method to evaluate the sensitivity of any probabilistic characteristics, such as the 

variance and mean of a limit-state function.  

Another sensitivity measure related to reliability is the Most Probable Point (MPP) 

based sensitivity coefficients [14], defined as the gradient of a limit-state function at the 

MPP in the standard normal space, normalized by the reliability index. Let G be a 

response calculated by a limit-state function ( )G g= X , where X is the vector of 

random variables. After X is transformed into standard normal random variables U, the 

MPP, ( )* * * *
1 2, , , nxu u u= ⋅⋅⋅u , the shortest distance point from the limit state ( )Ug c= , 

where c is a limit state, to the origin O is identified. (The equation for the MPP search 

will be given in Eq. (4).) The sensitivity of reliability with respect to the ith random 

variables is then calculated by 

 
( )2*

2
i

i

u
S

β
=                           (3) 

where β is the magnitude of *u  or the reliability index. For the MPP-based reliability 
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analysis, the probability sensitivity coefficient does not require any additional 

computational efforts after the MPP is found. The sensitivity coefficient iS  is just a 

byproduct of reliability analysis.  

(2) Variance-based methods 

Variance-based sensitivity analysis methods rely on the decomposition of the 

variance of a response into items contributed by various sources of input variations 

[Comment 1-17]. These sources can be classified into two types: main effects and total 

effects. A main effect refers to the effect of only one random variable, while a total 

effect is used to include both the individual effect of a random variable and the 

interaction of the random variable with other random variables. Although the methods 

provide a global sensitivity measure, their major limitation is that a variance is assumed 

to be sufficient to describe the uncertainties encountered. This type of methods may 

lose accuracy when the variance is not a good measure of the distribution dispersion, 

such as in the case where a response distribution has high skewness and kurtosis [15]. 

(3) Sampling methods 

Sampling approaches, such as Monte Carlo sampling for sensitivity analysis, 

usually involve three steps: (1) generating samples for uncertain input variables; (2) 

numerically evaluating a limit-state function and then obtaining samples of response 

variables; (3) statistically analyzing responses and quantifying their uncertainties, and 

then exploring the effects of the uncertainty of input variables on responses. Sampling 

methods are easy to use but computationally expensive when reliability is high. 

Because the probability of failure is low in this case, a large number of samples are 
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required to capture a failure event.  

The current PSA methods handle only random variables that are assumed to follow 

certain probability distributions. However, in many engineering applications, the 

information or knowledge might be too insufficient to build probability distributions. 

As discussed in [16, 17], uncertainty is sometimes represented by intervals due to the 

lack of knowledge. One example is that the true contact resistance in the vehicle 

crashworthiness design is hard to know; an interval is then used based on the engineers’ 

best judgment [18]. Another example is in a new design. It is difficult to determine the 

precise distribution of design variables, such as dimensions. Engineers often define 

their design variables in the form of nominal values plus and minus certain tolerances, 

like 10±0.01mm. More examples of intervals can be found in [4, 16]. Sometimes even 

though a variable is random and follows a non-uniform distribution, only one interval 

estimate is available due to limited information or sparse samples. In this case, 

assigning an assumed distribution to the variable may lead to erroneous results [19]. 

When intervals are involved, the current PSA methods are no longer applicable.  

Several methods of dealing with only interval variables have been reported for 

reliability analysis and reliability-based design [17, 20~34]. A few sensitivity analysis 

methods [35~38] for epistemic uncertainty (uncertainty due to the lack of knowledge) 

are potentially capable of dealing with interval variables. These methods use intervals 

to represent epistemic uncertainty. For example, a sensitivity analysis approach on the 

basis of belief and plausibility measures is proposed by Bae, et al [35, 36]. The results 

of this approach can help guide the data collection to improve the accuracy of 
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reliability analysis and distinguish the dominant contributors of uncertainty. A 

sampling-based sensitivity analysis method is developed by Helton, et al [37]. It 

consists of three steps: an initial analysis to explore the model behavior, a stepwise 

analysis to indicate the effects of uncertain variables on belief and plausibility functions, 

and a summary analysis to show a series of variance-based sensitivity analysis results. 

Considering the complexity of the mixture of aleatory and epistemic uncertainties, Guo 

and Du [38] propose an approach to conduct sensitivity analysis with this mixture. In 

their method, the most important epistemic variables are captured under the framework 

of the unified uncertainty analysis.  

All of the above methods are capable of identifying the most significant interval 

variables, but they have some limitations. For example, it is difficult to use them to 

obtain information about how individual intervals impact reliability, especially how 

reliability bounds will change after narrowing interval bounds. In this work, we 

propose a sensitivity analysis method to handle the situation where both interval 

variables and random variables are involved. The intervals are treated as is without any 

distribution assumptions. With this method, we attempt to answer the following 

questions: 

1) How will the width of the reliability bounds change if the width of an interval 

is reduced or if the average of the interval is changed? 

2) How will the average reliability change if the width of an interval is reduced 

or if the average of the interval is changed? 

3) How will the width of the reliability bounds change if a distribution parameter 
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of a random variable is changed? 

4) How will the average reliability change if a distribution parameter of a 

random variable is changed? 

The answers to the above questions will provide useful information about 

improving reliability and reducing the impact of intervals and random variables on 

reliability. Hence, six sensitivity indices are proposed for answering these questions. 

Equations for the sensitivity indices are then derived and corresponding computational 

procedures are developed. The calculation of sensitivity indices requires searching the 

minimum and maximum reliability, or the probabilities of failure, over the intervals. To 

alleviate the computational burden, we use an efficient FORM-based unified reliability 

analysis framework [39]. 

This paper is organized as follows: Sec. 2 provides a brief review of the unified 

reliability analysis. In Sec. 3, the six sensitivity indices are defined, and the equations 

for calculating these sensitivity indices are derived. In Sec. 4, two engineering 

examples are used to illustrate the proposed method. Conclusions and future work are 

summarized in Sec. 5. 

 

2. UNIFIED RELIABILITY ANALYSIS  

Reliability analysis is one of the main steps of reliability sensitivity analysis. The 

proposed sensitivity analysis is based on the First Order Reliability Method (FORM) 

[40, 41] which is applicable for random variables, and the unified reliability analysis 

(URA) [39], which is applicable for the mixture of random and interval variables. Both 
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methods are briefly reviewed in this section. 

2.1. Reliability analysis 

In the reliability analysis where only random variables X are involved, reliability is 

defined by  

Pr{ ( ) } 1 Pr{ ( ) } 1 fR G g c G g c p= = ≥ = − = < = −X X            (4) 

where Pr{}⋅  denotes a probability, G is a response, c is a specific limit state,  

( )1 2X ,X , ,X , ,Xi nx= ⋅⋅ ⋅ ⋅ ⋅ ⋅X  is a vector of random variables, g is a performance 

function, also called a limit-state function [42], and fp  is the probability of failure.  

If the joint probability density function (PDF) of X is Xf , the probability of failure 

fp  is calculated by 

( )

Pr{ ( ) } ( )f
g c

p G g c f d
<

= = < = ∫ X
X

X x x               (5) 

The limit-state function ( )g X is usually a nonlinear function of X; therefore, the 

integration boundary is nonlinear. Since the number of random variables is usually high, 

multidimensional integration is involved. There is rarely a closed-form solution to Eq. 

(5). The First Order Reliability Method (FORM) is widely used to easily evaluate the 

integral in Eq. (5).  

FORM involves three steps to approximate the probability integral: 1) transforming 

original random variables X into standard normal random variables U, 2) searching for 

the Most Probable Point (MPP), and 3) calculating fp .  

Step 1: Transformation, which is given by 

{ }1 ( )
ii X iu F x−F=                         (6) 
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where 
iXF is the CDF of  iX , and 1−F is the inverse CDF of a standard normal 

distribution.  

Step 2: MPP search, where the MPP *u  is identified by 

 
min

s.t. ( )
U

U

  Ug c=
              (7) 

in which ⋅  stands for the magnitude of a vector. Geometrically, the MPP is the 

shortest distance point from the limit state ( )Ug c=  to the origin in U-space. The 

minimum distance *β = u  is called the reliability index. 

Step 3: Estimation of fp , which is given by 

( )fp β= F −                            (8) 

whereF is the CDF of a standard normal distribution.  

The most computationally intensive work of FORM is the MPP search. The 

following recursive algorithm [43] is used for the MPP search, 

1
( ) ( 1)
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−
−
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−

−


= + ∇


∇ = − ∇

                 (9) 

where ( )kg∇ ( )u is the gradient of g at ( )u k , (( ))u kg∇ is its magnitude, and k is the 

iteration counter. 

2.2. Unified reliability analysis (URA)  

  When both random and interval variables are present, random variables X are 

characterized by probability distributions while interval variables Y reside on [ ly , uy ]. 

The unified uncertainty analysis framework and computational method proposed in [39] 

is applicable to handle this situation. As shown in [39], the cumulative distribution 
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function (CDF) of the response G = g(X, Y) has its upper and lower bounds, and so 

does reliability Pr{ }G c≥ . The unified reliability analysis (URA) [39] is used to find the 

reliability bounds.  

The URA framework is illustrated in Figure 1. The inputs to the framework are 

random variables X defined by a joint PDF and interval variables Y. The outputs are 

CDF bounds and reliability bounds.  

 

 

Figure 1. The unified reliability analysis framework 

 

 

The set of intervals Y is denoted by ∆Y , and the event of failure is defined 

by ( )g c<X,Y . According to [39], the upper and lower bounds of the probability of 

failure, U
fp and L

fp , are calculated by  

{ }maxPr ( , )L
fp G c= < ∈∆YX Y Y                 (10) 

and 

{ }minPr ( , )U
fp G c= < ∈∆YX Y Y                 (11) 

respectively. minG and maxG are the global minimum and maximum values, respectively, 

of G over ∆Y . 

The evaluation of the upper and lower bounds of the probability of failure is 

essentially the evaluation of the minimum and maximum CDF of the limit-state 

function. Therefore, traditional probabilistic analysis methods can be used for the 
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unified reliability analysis (URA). The First Order Reliability Method (FORM) is 

employed for the URA. 

Figure 2 depicts the numerical procedure of the URA method. The procedure 

involves two types of analysis. The first one is probabilistic analysis (PA), which is 

responsible for the MPP search and the calculation of the probability of failure. The 

second one is interval analysis (IA), which is responsible for the search of the 

maximum and minimum values of G. The direct combination of PA and IA will involve 

a double loop procedure, where PA is an outer loop and IA is an inner loop. For 

example, to find the lower bound of fp , at every iteration of the MPP search in the 

outer loop, interval analysis inner loops will be called to find the maximum G in terms 

of Y. This method is inefficient due to the double-loop procedure. The efficient 

computational method is then developed in [44]. The method involves an efficient 

sequential single-loop procedure, where PA is decoupled from IA. The flowchart of this 

efficient procedure is shown in Figure 2 for the L
fp  calculation. The solution is the 

MPP where G is maximized. The MPP for L
fp  is then named *,u L in this paper. And 

the MPP for the maximum probability of failure U
fp is called *,u U . 

 

 

 

 

Figure 2. Flowchart of sequential single-loop procedure for L
fp calculation  
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The probability { }maxPr ( , )G c< ∈∆YX Y Y  in Eq. (10) is then computed by 

 { } *
maxPr ( , ) ( ) ( )YX Y Y uG c β< ∈∆ = F − = F − .        (12) 

For the U
fp  calculation, the model of the MPP search is the same as in Figure 2 

except that IA becomes a minimization problem. 

 

3. RELIABILITY SENSITIVITY ANALYSIS 

When only random variables are involved, reliability sensitivity analysis is used to 

find the rate of change in the probability of failure (or reliability) due to the changes in 

distribution parameters (usually means and standard deviations). When both random 

variables and interval variables are involved, reliability analysis will generate two 

bounds of reliability or of the probability of failure fp . The gap between the maximum 

probability of failure U
fp  and the minimum probability of failure L

fp  represents the 

effect of interval variables on the probability of failure. In addition to the traditional 

sensitivity analysis in terms of random variables, sensitivity analysis in terms of 

interval variables is also needed. In this work, six types of sensitivity are proposed with 

respect to both random variables and interval variables. The proposed sensitivity 

indexes are summarized in Table I . 

 

Insert Table I here 

3.1. Type I sensitivity /p iδ δ∂ ∂  

/p iδ δ∂ ∂  is the sensitivity of the width of the fp  bounds, pδ , with respect to the 

interval width of the ith interval variable iY , iδ . pδ  is defined by 
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U L
p f fp pδ = −                          (13) 

The width of iY  is calculated by  

U L
i i iy yδ = −                          (14) 

where L
iy  and U

iy are the lower and upper bounds of iy , respectively.  

To obtain a unique sensitivity index, we define the change of iδ , ( )iδ∆  in such a 

way that iY expands in both directions equally; namely, L
iy  is decreased by 

( )
2

iδ∆ and U
iy  is increased by ( )

2
iδ∆ . There are infinite ways that iY  can change by 

( )iδ∆ , for example, [ , ]L U
i iy y can change to 

3 ( ) ( ),
4 4

L Ui i
i iy yδ δ∆ ∆ − +  

or 

( ) 3 ( ),
4 4

L Ui i
i iy yδ δ∆ ∆ − +  

. Our definition makes the change unique. 

This type of sensitivity can identify interval variables that have the largest impact 

on the width of the fp  bounds. If the gap of the fp  bounds is too wide, decisions will 

be difficult to make. To narrow the width of fp  bounds efficiently, more information 

about the important interval variables should be collected, and then their widths can be 

reduced. Sensitivity analysis will provide a useful guidance to the collection of more 

information. 

To derive the equations for /p iδ δ∂ ∂ , we consider all the situations where the 

maximum or minimum fp  occurs on the lower bound, upper bound, or at an interior 

point of iY . Next we demonstrate how to derive /p iδ δ∂ ∂  when the maximum fp  

occurs on the upper bound of iY  and the minimum fp  occurs on the lower bound of 

iY . The derivations of other cases are given in Appendix B, and the common equations 

used in derivations are given in Appendix A. 
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The problem can be stated as: 

Given: G = g(X, Y), ~ 1 2 1 1( , , , , , )i i i nyY Y Y Y Y− +=Y   , 
2

L U
i i

i
y yy +

= , L
fp  occurs at 

L
iy , and U

fp  occurs at U
iy . 

Find: /p iδ δ∂ ∂ . 

( ) ~ ~

~ ~

1 1, ,
2 2

1 11 1, ,
2 22 2
1 1
2 2

1
2

U L
U L f i i i f i i i
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i i i
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f i i i f i i ii i i i

i i
i i i i
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p y p yy y
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         ∂ + ∂ −∂ + ∂ −                   = −
∂ ∂   ∂ + ∂ −   

   

∂
 =  
 

Y Y

Y Y

~ ~
1 1, ,
2 21
1 12
2 2

1
2

U L
i i i f i i i

i i i i

U L
f f
U L
i i

y p y

y y

p p
y y

δ δ

δ δ

      + ∂ −             − −     ∂ + ∂ −   
   

 ∂ ∂
= +  ∂ ∂ 

Y Y

 (15) 

    
U
f
U
i

p
y
∂

∂
 and 

L
f
L
i

p
y
∂

∂
 then need to be calculated. In this case, the MPP’s of L

fp  or 

U
fp  are on one bound of iY . Let h be the bound and fp  be U

fp  or L
fp  . Then,  

[ ( )] ( )fp
h h h

β βf β
∂ ∂ F − ∂

= = − −
∂ ∂ ∂

                 (16) 

where ( )f ⋅ is the PDF of a standard normal distribution. Next, we will show how to 

calculate 
h
β∂
∂

.  

Let the MPP be ( )* * * *
1 2, , , nxu u u= ⋅⋅⋅u  and the corresponding intervals Y be y. In the 

U-space after X are transformed into U, the limit-state function becomes ( , )U Yg , 

and at the MPP the limit-state function is *( , )g u y , where y  is the vector of Y at the 

MPP. Let *( )g u∇  be the gradient of ( , )U Yg  in terms of U at the MPP; namely, 
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* * *
*

, , ,
1 2

( ) , , , ,
n

g g gg
U U U

 ∂ ∂ ∂
=   ∂ ∂ ∂ 

u y u y u y
u ∇ . For brevity, without losing generality, we 

will drop Y or y in the limit-state function expression in the following derivations. At 

the MPP, the following equation holds [40, 41],  

   
*

*
*

( )
( )i

gu
g

β= −
u
u

∇
∇

                     (17) 

*

*

( )
( )

g
g

u
u

∇
∇

 is the unit vector of the gradient, and the gradient is calculated at the 

MPP, therefore a constant. Then,  

*

*( )

iu
i i

g
u U
h h g

β
∂

∂ ∂∂
= −

∂ ∂ u∇
                      (18) 

Recall that iy  is on one bound h of the interval variable iY  at the MPP, where 

*( , )uG g h=  reaches the limit state and hereby becomes a constant. Then  

1
0

xn
i

i i

UG g g
h U h h=

∂∂ ∂ ∂
= + =

∂ ∂ ∂ ∂∑                     (19) 

Therefore, Eq. (19) becomes  

**

2

1
* *

1 1

*

( ) ( )

( ) 0

x

x x ii

n

n n uu
i ii i

i ii i

gg
UU Ug g g g g

U h h U h h h hg g

gg
h h

β β

β

=

= =

 ∂∂ 
   ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂  + = − + = − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 
 

∂ ∂
= − + =

∂ ∂

∑
∑ ∑ u u

u

∇ ∇

∇

  (20) 

We then obtain 

*( )

g
h

h g
β

∂
∂ ∂=
∂ u∇

                           (21) 

    Substituting / hβ∂ ∂  in Eq. (16) with Eq. (21) yields 
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* *

( )( ) ( )
( ) ( )

f

g
p gh
h h hg g

β f βf β f β

∂
∂ ∂ − − ∂∂= − − = − − =
∂ ∂ ∂u u∇ ∇

            (22) 

Using the results from Eqs.(22) and (15), we get the equation of Type I sensitivity 

when max
fp  occurs on the upper bound of iY  and min

fp  occurs on the lower bound of 

iY as follows:   

*, *,

1 1 ( ) ( )
2 2 ( ) ( )

U L
i i

U L U L
p f f

U L U Ly y
i i i i i

p p g g
y y Y Yg g

δ f β f β
δ

  ∂ ∂ ∂ − ∂ − ∂ = + = − +    ∂ ∂ ∂ ∂ ∂   u u∇ ∇
   (23) 

where Uβ is the reliability index at the maximum fp , Lβ is the reliability index at the 

minimum fp , *,Uu is the MPP for the maximum fp , and *,Lu is the MPP for the 

minimum fp . The equations of Type I sensitivity for other situations are given in 

Appendix B. 

3.2. Type II sensitivity /f ip δ∂ ∂  

/f ip δ∂ ∂  is the sensitivity of the average fp , fp , with respect to iδ . fp is defined 

by 

2

U L
f f

f

p p
p

+
=                           (24) 

The relationship among U
fp , L

fp , pδ and fp  is illustrated in Figure 3. This type of 

sensitivity quantifies the rate of change of the mean value of fp  due to the change of 

the interval width of iY . The equations of this type of sensitivity are given in Appendix 

C. 

Figure 3. U
fp , L

fp , iδ , and fp  
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3.3. Type III sensitivity /p iyδ∂ ∂  

/p iyδ∂ ∂  is the sensitivity of the width of the probability of failure pδ  with 

respect to the average of the ith interval variable, iy . iy  is defined by 

2

U L
i i

i
y yy +

=                           (25) 

The relationship among L
iy , U

iy , iδ and iy  is illustrated in Figure 4. This type of 

sensitivity is useful when we can control the averages of the interval variables during 

reliability based-optimization. We can efficiently decrease the reliability gap by shifting 

averages of interval variables to which the probability of failure is highly sensitive. The 

equations of this type sensitivity are given in Appendix D. 

 

 

Figure 4. L
iy , U

iy , iδ , and iy  

 

3.4. Type IV sensitivity /f ip y∂ ∂  

/f ip y∂ ∂  is the sensitivity of the average probability of failure fp  with respect 

to iy . It tells us how much the average probability of failure will change given the 

change in the midpoint of an interval variable. The equations of this type of sensitivity 

are given in Appendix E. 

3.5. Type V sensitivity /p iqδ∂ ∂  

/p iqδ∂ ∂  is the sensitivity of the width of the probability of failure pδ with respect 

to a distribution parameter, iq , of random variable iX . For example, for a normal 

distribution, iq  would be the mean iµ or standard deviation iσ while for uniform 
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distribution, iq  could be one of the interval bounds. As shown previously, the fp  

gap pδ  is mainly caused by interval variables [38]. On the other hand, the value of fp  

primarily depends on random variables. The equations of this type of sensitivity are 

given in Appendix F. 

3.6. Type VI sensitivity /f ip q∂ ∂  

/f ip q∂ ∂  is the sensitivity of the average probability of failure fp  with respect to 

a distribution parameter, iq , of random variable iX . The equations of this type of 

sensitivity are given in Appendix G. The equations of Type V and VI sensitivities for a 

normal distribution are also given in Appendices F and G, respectively. 

3.7. Equations of all the sensitivity indices 

The equations for all the above sensitivity indices are summarized in Tables II, III 

and IV [Comment 1-17].  

 

 

Insert Table II here 

 

Insert Table III here 

 

Insert Table IV here 

 

In the above table, w is given in Equation (A11) in Appendix A. 

The procedure to calculate the sensitivity indices is illustrated in Figure 5. First, 
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unified reliability analysis is conducted to obtain MPPs and interval variables at 

 U
fp and  L

fp . Then depending on the location of the interval variables, either interior or 

on a bound, at the MPP, the corresponding equations from Table II, III, and IV are used 

to calculate the sensitivity indices. 

 

 

Figure 5. The procedure to calculate sensitivity indices 

 

4. NUMERICAL EXAMPLES 

Two examples are used to demonstrate our proposed sensitivity measures with 

random and interval variables. The first example deals with normally distributed 

variables while the second example handles random variables with non-normal 

distributions. 

4.1. Example 1- Adhesive Bonding Example 

A double-lap joint design of a rubber-modified epoxy based adhesive [45] is 

illustrated in Figure 6. The design consists of aluminum outer adherends and an inner 

steel adherend. The assembly is cured at 250 °F and is stress-free at temperature 1T . 

The completed bond is subjected to an axial load P at a service temperature 2T . The 

coefficients of thermal expansion for the outer and inner adherend oα and iα  are 

66 10−×  and 613 10−× oin/(in F)⋅ , respectively. The modulus oE and the thickness ot , 

of the outer adherend, and the modulus iE  and the thickness it , of the inner adherend   

[Comment 1-17], are random variables. The shear modulus G, width b, length L, of the 
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adhesive, and the lap-shear strength of adhesive Sa are also random variables. Their 

distributions are given in Table V.  

 
 

Figure 6. A double-lap joint design of adhesive 
 
 

Insert Table V here 

 

Because it is difficult to spread the adhesive uniformly over the surface, the 

thickness of the adhesive is estimated to be in an interval shown in Table VI. The 

temperature change, 2 1T T T∆ = − , is difficult to fit into some probability distribution 

since the temperature field is unknown. An interval is therefore assigned for T∆  as 

listed in Table VI. 

Insert Table VI here 

 

The limit-state function is the safety margin for strength requirement of the joint, 

which is defined by the difference between the lap-shear strength of adhesive and the 

maximum shear stress maxτ . The equation is obtained at x = 0.5 where the maximum 

shear stress occurs. The function is given by 

( ) maxaG g S τ= = −X,Y  

where max (0.5)τ τ= , and 

          

2( ) cosh( )
4 sinh( / 2) 4 cosh( / 2) 2

( )          sinh( )
(1/ 2 / ) cosh( / 2)

o o i i

o o i i

i o

o o i i

E t E tP Px x
b L b L E t E t

T x
E t E t L

ω ωτ ω
ω ω

α α ω ω
ω

  −
= +   + 

− ∆
+ + 
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and 1 2

o o i i

G
h E t E t

ω
 

= + 
 

. 

The failure event is defined by ( ){ }0F g= <X,Y X,Y .  

The analysis results are listed in Tables VII, VIII, IX and X. To verify the 

proposed method, additional reliability analyses are also conducted. The results are 

shown as “Numerical verification” in Table VIII (for interval variables) and Table X 

(for random variables). Each parameter (the average or width of an interval variable, or 

a distribution parameter of a random variable), with respect to which a sensitivity index 

would be calculated, is increased by a small step size. An additional reliability analysis 

for that parameter is then performed. The rate of change in the reliability analysis 

results with respect to the parameter was computed. The rate should be very close to 

the sensitivity index calculated from the proposed method. Both Tables VIII and X 

show good consistency and verify the accuracy of the proposed method.  

The sign of a sensitivity index gives a possible direction for improvement. For 

example, in Table VIII 1/pδ δ∂ ∂  and 2/pδ δ∂ ∂  are both positive while 1/p yδ∂ ∂  and 

2/p yδ∂ ∂  are both negative. Therefore, if we wish to reduce the bounds of fp , we 

could narrow the intervals of thickness of adhesive ( 1δ ) and the temperature change 

( 2δ ) or increase their averages of them ( 1y  and 2y ). A similar conclusion can be 

drawn for /p iyδ∂ ∂  and /f ip y∂ ∂ .  

To better interpret the sensitivity analysis results, the percentage change in Table 

IX is also included. 1%
iy
+∆  indicates the change in pδ  or fp  corresponding to the 

1% increase in iδ  or iy , respectively. For instance, if 1δ  increased by 1%, or 1δ  

increased by ( ) ( ) 5
1 1 1% 0.0205 0.0195 1% 1.0 10 inchU Ly y −− × = − × = × , the width of the 
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probability of failure bounds pδ  would increase by 

( ) ( )-2 5 -75.009 10 1.0 10  = 5.009 10−× × × × , where the multiplier is the change in 1δ  

while the multiplicand is the Type I sensitivity index. Similarly, the average probability 

of failure fp  would change by ( ) ( )2 5 72.494 10 1.0 10 2.494 10− − −− × × × = − × . Since the 

sign is negative, fp  would actually decrease. This example indicates how the change 

in input uncertainty impacts reliability or the probability of failure. A sensitivity index 

also tells us the relative importance of uncertain variables. For example, Y1 has higher 

1%+∆ of Type I ~ IV sensitivity indices than those of Y2; Y1 is therefore more significant 

than Y2 in terms of its impact on pδ and fp . 

Insert Table VII here 

 

Insert Table VIII here 

 

Insert Table IX here 

 

Table X shows sensitivities in terms of the mean and standard deviation of 

random variables. The positive signs of /p qδ∂ ∂  and /fp q∂ ∂  imply that the 

distribution parameters need to be lowered to reduce pδ  and fp . And the negative 

ones suggest that distribution parameters need to be increased to reduce pδ  and fp . 

From this table, it can be concluded that X7 has the highest impact on pδ  and fp  

because it has the highest sensitivity index values. Given the positive signs of Type V 

and VI sensitivity indices of X7 , reducing the mean and variance of  X7  would be 

more efficient than adjusting other random variables in order to lower pδ and fp . 
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Insert Table X here 

 

4.2. Example 2- Cantilever Tube 

In Example 1, all random variables are normally distributed. In this example, 

some random variables follow non-normal distributions. The cantilever tube shown in 

Figure 7 is subject to external forces 1F , 2F , and P , and torsion T  [44]. The 

limit-state function is defined as the difference between the yield strength S  and the 

maximum stress maxσ , namely,  

( ) maxG g S σ= = −X,Y  

where maxσ  is the maximum von Mises stress on the top surface of the tube at the 

origin and is given by 

2 2
max 3x zxσ σ τ= + . 

 

 

Figure 7. Cantilever tube 

 

 

The normal stress xσ  is calculated by 

1 1 2 2sin + sin
x

P F F Mc
A I
θ θσ +

= +  

where the first term is the normal stress due to the axial forces, and the second term is 

the normal stress due to the bending moment M, which is given by 

1 1 1 2 2 2cos + cosM F L F Lθ θ=  



 25 

and  

( )22 2
4

A d d tπ  = − −   

/ 2c d= , 

( )44 2
64

I d d tπ  = − −   

The torsional stress zxτ  at the same point is calculated by 

2zx
Td

J
τ =  

where 2J I= . 

The random and interval variables are given in Tables XI and XII, respectively. 

 

Insert Table XI here 

 

Insert Table XII here 

 

The results of reliability analysis and sensitivity are listed in Table XIII, XIV, and 

XV. It is noted that sensitivity indices of /p iδ δ∂ ∂ , and /p iyδ∂ ∂  are all positive while 

sensitivity indices of /f ip δ∂ ∂  and /f ip y∂ ∂  are all negative. In this case, the 

direction of the change in pδ will be opposite to the direction of change in fp  

whenever we adjust iδ and iy . For instance, decreasing 1δ will result in a lower pδ  

and a higher fp . 

Insert Table XIII here 

 

Insert Table XIV here 
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Insert Table XV here 

 

In this example, uniform distributions and a Gumbel distribution are involved. In 

Table XVI, the sensitivities in terms of the parameters of these two distributions are 

also calculated. It is indicated that Type V and VI sensitivities of uniformly distributed 

variables, X3 and X4, are all positive. Hence, if we raise or lower the bounds of X 3 and 

X4, the change of pδ and fp will follow the same direction.  

 

Insert Table XVI here 

 

5. CONCLUSIONS 

When information or knowledge is not adequate to build probability distributions, 

interval variables may be used. In this case, probabilistic sensitivity analysis 

approaches are no longer applicable. An effective sensitivity analysis method is 

proposed to handle the mixture of random variables and interval variables.  

With the presence of both random and interval variables, reliability and the 

probability of failure resides between their lower and upper bounds. In this work, based 

on the unified uncertainty analysis framework [39], we have explored various 

sensitivity indices with respect to both random and interval variables. Four new types 

of sensitivity for interval variables include the sensitivities of the width and average of 

the probability of failure bounds with respect to the interval width and with respect to 

the mean of each interval variable. Two new types of sensitivity for random variables 
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include the sensitivities of the width and average of the probability of failure with 

respect to the distribution parameters of each random variable. Equations for the six 

sensitivity indices are derived. Through the unified reliability analysis and the First 

Order Reliability Method (FORM), the sensitivity indices are calculated after reliability 

analysis is completed without calling the limit-state function again. The sensitivity 

indices are therefore a byproduct of reliability analysis.  

The advantages of the proposed methods are as follows: (1) The method is easy to 

use because it employs the First Order Reliability Method (FORM), which is widely 

used in industry. (2) Sensitivity information is just a byproduct of reliability analysis. (3) 

Both random and interval variables can be handled by reliability analysis at the same 

time. And (4) the computation is efficient without a double-loop procedure or Monte 

Carlo simulation involved. 

The method has some limitations. Since it is based on only the First Order 

Reliability Method (FORM), the method cannot be directly extended to the Second 

Order Reliability Method (SORM).  The method assumes the global optimal solution 

if optimization is used for interval analysis. The method may not provide an accurate 

solution if a global optima is not reached. It is well known that FORM may not be 

accurate when multiple MPPs exist. The proposed method exhibits the same behavior 

for the multiple MPPs situation. 

Future work would be the further improvement of efficiency and the inclusion of 

more sensitivity indices. For higher efficiency, the efficient interval arithmetic could be 

used for interval analysis. Other sensitivity methods, such as those suggested in [46], 
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could also be incorporated. 

 

APPENDIX A: COMMON EQUATIONS 

1. Derivative of fp  with respect to one bound of an interval variable iY  

fp
h

∂
∂

 is given in Eq. (22) and is rewritten below. 

   
*

( )
( )u

f β∂ − − ∂
=

∂ ∂
fp g

h hg∇
                     (A1) 

where fp  could be L
fp or U

fp , and β  could be β L  and βU . 

2. Derivative of fp  with respect to the width of an interval, iδ  

If fp  occurs at U
iy ,  

( ) ~ ~
~

1 1 1, , ( ), 2 2 2
1( )
2

U f i i i f i i i i if i if

i i i i
i i

p y p y yp yp

y

δ δ δ

δ δ δ δδ

   ∂ + ∂ + ∂ +   ∂∂    = = =
∂ ∂ ∂ ∂∂ +

Y YY
 (A2) 

Eq. (A2) can then be simplified to 

 
~

1 ,
1 12

12 2( )
2

f i i i
f f

U
i i

i i

p yp p
yy

δ

δ δ

 ∂ + ∂ ∂ = =
∂ ∂∂ +

Y
               (A3) 

Similarly, if fp  occurs at L
iy , the equation becomes 

~
1 ,

1 12
12 2( )
2

f i i i
f f

L
i i

i i

p yp p
yy

δ

δ δ

 ∂ − ∂ ∂ = − = −
∂ ∂∂ −

Y
             (A4) 

If fp  occurs at an interior point iy , which is not a function of iδ , it can   

then be shown that 
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( ) ( ) ( )~ ~ ~, , ,
0 0f f i i f i i f i ii

i i i i i

p p y p y p yy
y yδ δ δ

∂ ∂ ∂ ∂∂
= = = ⋅ =

∂ ∂ ∂ ∂ ∂

Y Y Y  



 

      (A5) 

3. Derivative of fp  with respect to the average of an interval, iy  

If fp  occurs at U
iy , one can obtain 

( ) ~ ~
~

1 1 1, ,, 2 2 2
1
2

U f i i i f i i i i i
f i if

i i i i
i i

p y p y yp yp
y y y yy

δ δ δ

δ

     ∂ + ∂ + ∂ +     ∂∂      = = =
∂ ∂ ∂ ∂ ∂ + 

 

Y YY
 (A6) 

and therefore  

  
~

1 ,
2
1
2

f i i i
f f

U
i i

i i

p yp p
y yy

δ

δ

 ∂ + ∂ ∂ = =
∂ ∂ ∂ + 

 

Y
                (A7) 

Similarly, if fp  occurs at L
iy ,  

~
1 ,
2
1
2

f i i i
f f

L
i i

i i

p yp p
y yy

δ

δ

 ∂ − ∂ ∂ = =
∂ ∂ ∂ − 

 

Y
                (A8) 

If fp  occurs at an interior point iy , 

( ) ( ) ( )~ ~ ~, , ,
0 0f f i i f i i f i ii

i i i i i

p p y p y p yy
y y y y y

∂ ∂ ∂ ∂∂
= = = ⋅ =

∂ ∂ ∂ ∂ ∂

Y Y Y  



 

  (A9) 

4. Derivative of fp  bound with respect to a distribution parameter iq  

*

*

( ) ( )f i

i i i i

p u
q q u q

β βf β
∂ ∂∂F − ∂

= = − −
∂ ∂ ∂ ∂

            (A10) 

If the CDF of Xi is ( )
iX iF x , then 

( )* 1 *
1 2( , , , , , )

ii X i i nu F x w q q q q−  = F = ⋅⋅⋅ ⋅⋅ ⋅            (A11) 

where n is the number of distribution parameters. 

Then from *
iβ = u , one obtains 
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*

( )f i

i i

p u w
q q

f β
β

∂ ∂
= − −

∂ ∂
                 (A12) 

APPENDIX B: EQUATIONS FOR TYPE I SENSITIVITY /p iδ δ∂ ∂  

Case 1: L
fp  occurs at L

iy  and U
fp  occurs at U

iy ( see Section 3). 

Case 2: L
fp  occurs at U

iy  and U
fp  occurs at L

iy . 

~ ~
1 1, , )
2 2

U L
f i i i f i i i

p

i i

p y y p y yδ δ
δ
δ δ

    ∂ − − +    ∂     =
∂ ∂

          (B1) 

Using Eqs. (A3) and (A4) gives  

1
2

U L
p f f

L U
i i i

p p
y y

δ
δ

 ∂ ∂ ∂
= − +  ∂ ∂ ∂ 

                   (B2) 

Then from Eq. (A1),  
 

*, *,

1 1 ( ) ( )
2 2 ( ) ( )

L U
i i

U L U L
p f f

L U U Ly y
i i i i i

p p g g
y y Y Yg g

δ f β f β
δ

  ∂ ∂ ∂ − − ∂ − − ∂
 = − + = − +  ∂ ∂ ∂ ∂ ∂    u u∇ ∇

  (B3) 

Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at U
iy . 

( )~ ~
1 , ,
2

U L
f i i i f i i

p

i i

p y p yδ
δ
δ δ

  ∂ + −  ∂   =
∂ ∂

Y Y

            (B4) 

Using Eqs. (A3) and (A5), one obtains 

1
2

U
p f

U
i i

p
y

δ
δ

∂ ∂
=

∂ ∂
.                       (B5) 

Applying the results from Eq. (A1) yields 

*,

1 1 ( )
2 2 ( )

U
i

U U
p f

U U y
i i i

p g
y Yg

δ f β
δ

 ∂ ∂ − − ∂
 = =

∂ ∂ ∂  u∇
             (B6) 

Case 4: L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy . 

( )~ ~
1 , ,
2

U L
f i i i f i i

p

i i

p y p yδ
δ
δ δ

  ∂ − −  ∂   =
∂ ∂

Y Y

           (B7) 

Using Eqs. (A4) and (A5) yields 
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1
2

U
p f

L
i i

p
y

δ
δ

∂ ∂
= −

∂ ∂
                      (B8) 

Applying Eq. (A1) yields  

*,

1 ( )
2 ( )

L
i

U
p

U y
i i

g
Yg

δ f β
δ

 ∂ − − ∂
 = −

∂ ∂  u∇
               (B9) 

Case 5: L
fp  occurs at U

iy  and U
fp  occurs at an interior point iy . 

~ ~
1( , ) ,
2

U L
f i i f i i i

p

i i

p y p y δ
δ
δ δ

  ∂ − +  ∂   =
∂ ∂

Y Y

          (B10) 

Using Eqs. (A3) and (A5), one obtains 

1
2

L
p f

U
i i

p
y

δ
δ

∂ ∂
= −

∂ ∂
                       (B11) 

Using Eq. (A1) yields 
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1 ( )
2 ( )

U
i

L
p

L y
i i

g
Yg

δ f β
δ

 ∂ − − ∂
 = −

∂ ∂  u∇
               (B12) 

Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 

~ ~
1( , ) ,
2

U L
f i i f i i i

p

i i

p y p y δ
δ
δ δ

  ∂ − −  ∂   =
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Y Y

          (B13) 

Using Eqs. (A4) and (A5) gives 
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1 1 ( )
2 2 ( )

L
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L L
p f

L L y
i i i

p g
y Yg

δ f β
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             (B14) 

Using Eq. (A1) yields 
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L y
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δ f β
δ
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 =

∂ ∂  u∇
                 (B15) 

Case 7: L
fp  and U

fp  occur at two interior points 1iy  and 2iy , respectively. 

( )1 ~ 2 ~( , ) ,U L
f i i f i ip

i i

p y p yδ
δ δ

 ∂ −∂  =
∂ ∂

Y Y 

             (B16) 

Using Eq. (A5) yields 

0p

i

δ
δ

∂
=

∂
.                        (B17) 



 32 

 

APPENDIX C: EQUATIONS FOR TYPE II SENSITIVITY /f ip δ∂ ∂  

Case 1: L
fp  occurs at L

iy  and U
fp  occurs at U

iy . 

~ ~
1 1 1, ,
2 2 2

U L
f i i i f i i i

f

i i

p y p y
p

δ δ

δ δ

     ∂ + + −     ∂      =
∂ ∂

Y Y
         (C1) 

Using Eqs. (A3) and (A4) yields 

1
4

U L
f f f

U L
i i i

p p p
y yδ

 ∂ ∂ ∂
= −  ∂ ∂ ∂ 

                      (C2) 

From Eq. (A1) 
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          (C3) 

Case 2: L
fp  occurs at U

iy  and U
fp  occurs at L

iy . 

~ ~
1 1 1, ,
2 2 2

U L
f i i i f i i i

f

i i

p y p y
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δ δ

δ δ
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∂ ∂
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Using Eqs. (A3) and (A4) yields 

1
4

U L
f f f

L U
i i i

p p p
y yδ

 ∂ ∂ ∂
= − +  ∂ ∂ ∂ 

                 (C5) 

From Eq. (A1) 
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Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at U
iy . 

~ ~
1 1 , ( , )
2 2

U L
f i i i f i i

f

i i

p y p y
p

δ

δ δ

   ∂ + +   ∂    =
∂ ∂

Y Y

           (C7) 

Using Eqs. (A3) and (A5) yields 

 1
4

U
f f

U
i i

p p
yδ

∂ ∂
=
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                       (C8) 

From Eq. (A1) 
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*,
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f β
δ
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∂ ∂  u∇
                (C9) 

Case 4: L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy . 
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f i i i f i i
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Using Eqs.(A4) and (A5) yields 
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4

U
f f

L
i i

p p
yδ

∂ ∂
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                      (C11) 

Applying Eq. (A1), one obtains 
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Case 5: L
fp  occurs at U

iy  and U
fp  occurs at an interior point iy  
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Using Eqs. (A3) and (A5) gives 
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                      (C14) 

Applying Eq. (A1) yields 
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Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 
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Using Eqs. (A4) and (A5) yields 
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                      (C17) 

From Eq. (A1) 
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Case 7: L
fp  and U

fp  occur at two interior points 1iy  and 2iy , respectively. 
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Using Eq. (A5) yields 
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APPENDIX D: EQUATIONS FOR TYPE III SENSITIVITY /p iyδ∂ ∂  

Case 1: L
fp  occurs at L

iy  and U
fp  occurs at U

iy . 
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Using Eqs. (A7) and (A8) yields 
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From Eq. (A1) 
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Case 2: L
fp  occurs at U

iy  and U
fp  occurs at L

iy . 
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Using Eqs. (A7) and (A8) gives 
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Applying the results of Eq. (A1) yields 



 35 

*, *,

( ) ( )
( ) ( )

L U
i i

U L
p

U Ly y
i i i

g g
y Y Yg g
δ f β f β∂ − − ∂ − − ∂

= −
∂ ∂ ∂u u∇ ∇

          (D6) 

Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at U
iy . 
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Using Eqs. (A7) and (A9), one obtains 
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By Eq. (A1) 

*,

( )
( )

U
i

U
p

U y
i i

g
y Yg
δ f β∂ − − ∂

=
∂ ∂u∇

                 (D9) 

Case 4: L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy . 

( ) ( )~ ~
1 , ,
2

U L
U L f i i i f i i
f fp

i i i

p y p yp p
y y y

δ
δ

  ∂ − −  ∂ −∂   = =
∂ ∂ ∂

Y Y

(D10) 

Using Eqs. (A8) and (A9) gives 

U U
p f f

L
i i i

p p
y y y
δ∂ ∂ ∂

= =
∂ ∂ ∂

                   (D11) 

By Eq. (A1)  
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( )
( )

L
i

U
p

U y
i i

g
y Yg
δ f β∂ − − ∂

=
∂ ∂u∇

                (D12) 

Case 5: L
fp  occurs at U

iy  and U
fp  occurs at an interior point iy . 

( ) ( )~ ~
1, ,
2

U L
U L f i i f i i i
f fp

i i i

p y p yp p
y y y

δ
δ

  ∂ − +  ∂ −∂   = =
∂ ∂ ∂

Y Y

   (D13) 

Using Eqs. (A7) and (A9) gives 
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L L
p f f

U
i i i

p p
y y y
δ∂ ∂ ∂

= − = −
∂ ∂ ∂

                  (D14) 

Using Eq. (A1) yields 
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L
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               (D15) 

Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 

( ) ( )~ ~
1, ,
2

U L
U L f i i f i i i
f fp

i i i

p y p yp p
y y y

δ
δ

  ∂ − −  ∂ −∂   = =
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Y Y

 (D16) 

Using Eqs. (A8) and (A9) gives 
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L
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= − = −
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                 (D17) 

Using Eq. (A1) yields 
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L
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g
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               (D18) 

Case 7: L
fp  and U

fp  occur at two interior points 1iy  and 2iy , respectively. 

( )1 ~ 2 ~( , ) ,U L
f i i f i ip

i i

p y p y

y y
δ  ∂ −∂  =
∂ ∂

Y Y 

          (D19) 

Using Eq. (A9) yields 

0p

iy
δ∂

=
∂

                      (D20) 

 

 

APPENDIX E: EQUATIONS FOR TYPE IV SENSITIVITY /f ip y∂ ∂  

Case 1: L
fp  occurs at L

iy  and U
fp  occurs at U

iy . 
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~ ~
1 1 1, ,
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p
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Using Eqs. (A7) and (A9) gives 
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f f f f f
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Using Eq. (A1) yields 
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Case 2: L
fp  occurs at U

iy  and U
fp  occurs at L

iy . 

~ ~
1 1 1, ,

2 2 2 2

U L
f f U L

f i i i f i i i
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Using Eqs. (A7) and (A8) yields 
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Using Eq. (A1) yields 
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Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at U
iy . 
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2 2 2
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f f U L
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i i i
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p y p y

p
y y y

δ
 +    ∂ ∂ + +      ∂      = =

∂ ∂ ∂

Y Y
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Using Eqs. (A7) and (A9) gives 
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U U
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U
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p p p
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Using Eq. (A1) yields 
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Case 4: L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy . 
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Using Eqs. (A8) and (A9) yields 
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f f f

L
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Using Eq. (A1) yields 
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Case 5: L
fp  occurs at U

iy  and U
fp  occurs at an interior point iy . 
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f

i i i

p p
p y p y

p
y y y

δ
 +    ∂ ∂ + +      ∂      = =

∂ ∂ ∂

Y Y

  (E13) 

Using Eqs. (A7) and (A9) gives 
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U
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Using Eq. (A1) yields 
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Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 
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Using Eq. (A8) and (A9), one obtains 
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Applying Eq. (A1) yields 
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Case 7: L
fp  and U

fp  occur at two interior points 1iy  and 2iy , respectively. 
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1 ( , ) ,
2

U L
f i i f i i
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p y p yp
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             (E19) 

Using Eq. (A9) gives 
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APPENDIX F: EQUATIONS FOR TYPE V SENSITIVITY /p iqδ∂ ∂  

( )U L U L
p f f f f

i i i i

p p p p
q q q q
δ∂ ∂ − ∂ ∂

= = −
∂ ∂ ∂ ∂

                  (F1) 

Using Eq. (A12) gives 
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where *,U
iu is the MPP at U

fp  and *,L
iu is the MPP at L

fp . 

Specifically, for a normal distributed random variable ~ ( , )i i iX N µ σ , 

( )
* *

1 * 1( , )
i

i i i i
i i X i

i i

x xw F x µ µµ σ
σ σ

− −   − − = F = F F =      
,       (F3) 

so it can be obtained that 
* *

2

1 , i i i

i i i i i

x uw w µ
µ σ σ σ σ

−∂ ∂
= − = − = −

∂ ∂
.                 (F4) 

Therefore, from Eq. (F2), we can obtain the following sensitivities. 

1) i iq µ=  
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APPENDIX G: EQUATIONS FOR TYPE VI SENSITIVITY /f ip q∂ ∂  
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f f f

i i i i
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p p p
q q q q
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Using Eq. (A12), it can be easily shown that 

*, *,1 ( ) ( )
2

L L
f U Li i

U L
i i i

p u uw w
q q q

f β f β
β β

∂  ∂ ∂
= − − + − ∂ ∂ ∂ 

         (G2) 

Applying the results from Eq. (F4) for a normal distributed random 

variable ~ ( , )i i iX N µ σ , the following sensitivities are obtained. 
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Table I. Six sensitivity indices 

Sensitivity type Description Input 

Type I /p iδ δ∂ ∂  
Sensitivity of the width of the fp  bounds, pδ , 

with respect to the width of interval variable iY , 

iδ  

Interval 

Type II /f ip δ∂ ∂  
Sensitivity of the average fp , fp , with respect 

to the width of interval variable iY , iδ  
Interval 

Type III /p iyδ∂ ∂  
Sensitivity of the width of the fp  bounds, pδ , 

with respect to the average of interval variable 

iY , iy  

Interval 

Type IV /f ip y∂ ∂  Sensitivity of the average fp , fp , with respect 

to the average of interval variable iY , iy  
Interval 

Type V /p iqδ∂ ∂  
Sensitivity of the width of the fp  bounds, pδ , 

with respect to a distribution parameter, iq , of 

random variable iX  

Random 

Type VI /f ip q∂ ∂  
Sensitivity of the average fp , fp , with respect 

to a distribution parameter, iq , of random 

variable iX  

Random 
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Table II. Type I and II sensitivities for intervals 

Case 
Type I /p iδ δ∂ ∂  

(Appendix B) 
Type II /f ip δ∂ ∂  

(Appendix C) 
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Table III. Type III and IV sensitivities for intervals 

Case Type III /p iyδ∂ ∂  
(Appendix D) 
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Table IV. Type V and VI sensitivities for random variables 

Case 
Type V /p qδ∂ ∂  

(Appendix F) 

Type VI /fp q∂ ∂  

(Appendix G) 
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Table V. Random Variables X 

Variable Mean Standard deviation Distribution 
X1 (Eo) 10×106psi 0.1×106psi Normal 
X2 (Ei) 30×106psi 0.3×106psi Normal 
X3 (to) 0.15 in 0.0015 in Normal 
X4 (ti) 0.10 in 0.001 in Normal 
X5 (G) 0.2×106psi 0.002×106psi Normal 
X6 (b) 1 in 0.01 in Normal 
X7 (L) 1.1 in 0.011 in Normal 
X8 (P) 2000 psi 20 psi Normal 
X9 (Sa) 4100 psi 41 psi Normal 
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Table VI. Interval variables 

Variable Lower bound Upper bound 
Y1 (h) 0.0195 in 0.0205 in 

Y2 ( T∆ ) -131.0 °F -129.0 °F 
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Table VII. Bounds of the probability of failure 

Probability of Failure L
fp  U

fp  fp  pδ  

fp  7.797×10-5 1.067×10-2 5.374×10-3 1.059×10-2 

 



 53 

Table VIII. Sensitivity with respect to interval variables 

Type of sensitivity Proposed method Numerical verification 
Y1 Y2 Y1 Y2 

Type I /p iδ δ∂ ∂  5.009×10-2 9.309×10-6 5.071×10-2 9.379×10-6 
Type II /f ip δ∂ ∂   -2.494×10-2 -4.655×10-6 -2.525×10-2 -4.669×10-6 
Type III /p iyδ∂ ∂  -9.978×10-2 -1.862×10-5 -1.001×10-1 -1.868×10-5 
Type IV /f ip y∂ ∂  5.009×10-2   9.309×10-6 5.071×10-2 9.379×10-6 
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Table IX. The change of pδ  and fp  with 1% increases in iδ  and iy  

Type of sensitivity 1%
1
+∆  1%

2
+∆  

Type I /p iδ δ∂ ∂  5.009×10-7  1.862×10-7 
Type II /f ip δ∂ ∂   -2.494×10-7  -9.310×10-8 
Type III /p iyδ∂ ∂  -1.996×10-3  2.241×10-5 
Type IV /f ip y∂ ∂  1.002×10-3 -1.210×10-5 
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Table X. Sensitivity with respect random Variables 

 Proposed method Numerical validation 
Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  

X1 1( )µ  1.091×10-10 5.475×10-11 1.097×10-10 5.509×10-11 
X1 1( )σ  4.566×10-11   2.295×10-11 4.631×10-11   2.328×10-11 
X2 2( )µ  -2.097×10-11  -1.054×10-11 -2.083×10-11  -1.046×10-11 
X2 2( )σ  5.066×10-12   2.550×10-12   4.997×10-12   2.515×10-12   
X3 3( )µ  7.270×10-3   3.650×10-3     7.315×10-3   3.673×10-3     
X3 3( )σ  3.044×10-3     1.530×10-3   3.087×10-3     1.552×10-3   
X4 4( )µ  -6.292×10-3     -3.161×10-3   -6.250×10-3     -3.139×10-3   
X4 4( )σ  1.520×10-3     7.650×10-4   1.499×10-3     7.546×10-4   
X5 5( )µ  9.818×10-9   4.931×10-9    9.780×10-9   4.911×10-9    
X5 5( )σ  7.402×10-9    3.723×10-9   7.330×10-9    3.687×10-9   
X6 6( )µ  -1.913×10-3    -9.608×10-4     -1.912×10-3    -9.601×10-4     
X6 6( )σ  1.405×10-3    7.068×10-4    1.404×10-3    7.060×10-4    
X7 7( )µ  -8.018×10-3    -4.026×10-3    -8.011×10-3    -4.022×10-3    
X7 7( )σ  2.715×10-2    1.365×10-2    2.731×10-2    1.373×10-2    
X8 8( )µ  9.421×10-7    4.731×10-7      9.428×10-7    4.735×10-7      
X8 8( )σ  6.815×10-7      3.428×10-7    6.817×10-7      3.429×10-7    
X9 9( )µ  -1.079×10-6    -5.417×10-7    -1.078×10-6    -5.411×10-7    
X9 9( )σ  1.832×10-6    9.213×10-7    1.831×10-6    9.210×10-7    
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Table XI. Random Variables 

Variable Parameter 1 Parameter 2 Distribution 
X1 (t) 5 mm (mean) 0.1 mm (std*) Normal 
X2 (d) 42 mm (mean) 0.5 mm (std) Normal 
X3 (L1) 119.75 mm (lb**) 120.25 mm (ub***) Uniform 
X4 (L2) 59.75 mm (lb) 60.25 mm (ub) Uniform 
X5 (F1) 3.0 kN (mean) 0.3 kN (std) Normal 
X6 (F2) 3.0 kN (mean) 0.3 kN (std) Normal 
X7 (P) 12.0 kN (mean) 1.2 kN (std) Gumbel 
X8 (T) 90.0 N⋅m (mean) 9.0 N⋅m (std) Normal 
X9 (Sy) 220.0 MPa (mean) 22.0 MPa (std) Normal 

      *: std – standard deviation   
      **: lb – the lower bound of a uniform distribution 
      ***: ub – the upper bound of a uniform distribution 
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Table XII. Interval Variables 

Variable Lower bound Upper bound 
Y1 (θ1) 0° 10° 
Y2 (θ2) 5° 15° 

 



 58 

 

Table XIII. Bounds of Probability of Failure  

Probability of Failure L
fp  U

fp  fp  pδ  

fp  1.437×10-4    1.631×10-4    1.530×10-4    1.940×10-5 
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Table XIV. Sensitivity of Interval Variables 

Type of sensitivity Proposed Method Numerical Validation 
Y1 Y2 Y1 Y2 

Type I /p iδ δ∂ ∂  1.038×10-4        5.861×10-5    1.034×10-4        5.837×10-5    
Type II /f ip δ∂ ∂   -5.192×10-5       -2.930×10-5    -5.170×10-5       -2.919×10-5    
Type III /p iyδ∂ ∂  2.077×10-4        1.172×10-4    2.068×10-4        1.167×10-4    
Type IV /f ip y∂ ∂  -1.038×10-4       -5.861×10-5    -1.034×10-4       -5.837×10-5    
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Table XV. The Change of pδ  and fp  with 1% Increases in iδ  and iy  

Type of sensitivity 
1

1%
y
+∆  

2

1%
y
+∆  

Type I /p iδ δ∂ ∂  1.038×10-5    5.861×10-6    
Type II /f ip δ∂ ∂   -5.192×10-6   -2.930×10-6   
Type III /p iyδ∂ ∂  1.039×10-5    5.860×10-6    
Type IV /f ip y∂ ∂  -5.190×10-6    -2.931×10-6    
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Table XVI. Sensitivity of random variables 
 Proposed Method Numerical Validation 

Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  

X1 1( )µ  -5.822×10-2    -4.886×10-1    -5.820×10-2 -4.886×10-1    
X1 1( )σ  1.614×10-2    1.457×10-1    1.615×10-2    1.458×10-1    
X2 2( )µ  -2.413×10-2    -1.888×10-1    -2.413×10-2 -1.888×10-1    
X2 2( )σ  1.393×10-2    1.088×10-1    1.394×10-2    1.089×10-1    
X3 3( )a  1.093×10-3    8.412×10-3    1.093×10-3    8.413×10-3    
X3 3( )b  1.130×10-3    8.697×10-3    1.137×10-3    8.742×10-3    
X4 4( )a  1.123×10-3    7.893×10-3    1.124×10-3    7.894×10-3    
X4 4( )b  1.162×10-3    8.143×10-3    1.167×10-3    8.163×10-3    
X5 5( )µ  7.630×10-8    6.197×10-7    7.631×10-8    6.197×10-7    
X5 5( )σ  8.347×10-8    7.033×10-7    8.355×10-8    7.040×10-7    
X6 6( )µ  3.908×10-8    3.117×10-7    3.908×10-8    3.117×10-7    
X6 6( )σ  2.192×10-8    1.779×10-7    2.193×10-8    1.780×10-7    
X7 7( )µ  5.002×10-9    4.256×10-8    5.002×10-9    4.256×10-8    
X7 7( )σ  5.139×10-10    5.670×10-9    5.143×10-10    5.674×10-9    
X8 8( )µ  5.678×10-8    5.050×10-7    5.688×10-8    5.049×10-7    
X8 8( )σ  1.363×10-9    1.402×10-8    1.363×10-9    1.402×10-8    
X9 9( )µ  -2.887×10-12    -2.457×10-11    -2.886×10-12   -2.457×10-11   
X9 9( )σ  8.708×10-12    8.108×10-11    8.740×10-12    8.146×10-11    
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