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ABSTRACT 

Robust mechanism synthesis minimizes the impact of uncertainties on the 

mechanism performance. It has traditionally been performed by either a probabilistic 

approach or a worst case approach. Both approaches treat uncertainty as either random 

variables or interval variables. In reality, uncertainty can be a mixture of both. In this 

paper, methods are developed for robustness assessment and robust mechanism synthesis 

when random and interval variables are involved. Monte Carlo simulation is used to 

perform robustness assessment under an optimization framework for mechanism 

synthesis. 
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1. INTRODUCTION 

Kinematic synthesis is the process of systematic design of a mechanism to 

achieve a specific task [1]. The task can be motion generation, path generation, or 

function generation. Kinematic synthesis is classified into two groups, type synthesis and 

dimensional synthesis. Type synthesis deals with finding the best suitable mechanism 

(cam mechanisms, linkages, gear trains, etc), number of links, degree of freedom and so 

on, to achieve the required performance. Dimensional synthesis deals with determining 

the significant dimensions of the mechanism to achieve a specific task. In this paper, we 

concentrate on dimensional synthesis of a mechanism.  

Mathematical techniques such as algebraic method, matrix method, and complex 

numbers are used to model mechanism synthesis problems [1]. After building a 

mathematical model, optimization techniques can be used to obtain an optimal solution. 

In the traditional optimization method, the difference between the desired performance 

and the actual performance of a mechanism is minimized [2-5]. The traditional 

deterministic mechanism synthesis does not consider any uncertainties in the mechanism 

and its environment. But in reality, uncertainties exist. Examples of uncertainty include 

the randomness in dimensions and variations in external forces [6-10]. Due to these 

uncertainties, the actual mechanism performance is subjected to variations around the 

designed performance.  

Robust design, introduced by Taguchi [11, 12], is a powerful design method for 

achieving high quality and productivity. Robust design tries to achieve a minimum 

variation in the performance by controlling design variables without eliminating the 

cause of uncertainty [13-23]. The objective of robust design is to optimize the mean 
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performance and minimize the performance variation due to uncertainties. The former 

can be achieved by finding the relation between the mean performance and the design 

variables. Here the challenge lies in the latter where we need to precisely quantify the 

performance variation due to the uncertainties, and the task is known as robustness 

assessment [19]. By assessing the robustness accurately and reducing variations in the 

performance, robust design ensures that a product perform its intended function 

regardless the uncertainties. 

Every mechanism is subjected to uncertainties. Uncertainties can be in the form of 

dimensional tolerances in the links, clearances in the joints and so on. The output of the 

mechanism is affected due to the uncertainties. Probabilistic, fuzzy, and interval methods 

are generally used to model the uncertainties in an engineering system. The probabilistic 

method describes an uncertain parameter as a random variable following a specific 

probability distribution [24-28]. If the information is not sufficient to form a probability 

distribution, interval approach or fuzzy theory can be used. In interval approach, the 

uncertainty of a parameter is denoted by a simple range [29-32]. In fuzzy theory, the 

desirability of using different values within the range is described by a membership 

function to the range [31, 33]. The interval approach can be conveniently used when there 

is no sufficient information available about the probability distribution of the uncertain 

variable.  

As shown in literature [34-40], in many engineering applications, uncertain 

variables can be in the form of random variables and interval variables at the same time. 

In this paper, methods are developed to quantify robustness in such a situation. A robust 

mechanism synthesis method is proposed considering uncertainties with both random and 
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interval variables. In Section 2, robustness assessment is presented followed by robust 

mechanism synthesis in Section 3. Two examples are given in Section 4. Section 5 is the 

closure of the paper. 

 

2. ROBUSTNESS ASSESSMENT 
 
2.1 Parameter uncertainty 

 Uncertainty is the difference between the model prediction and actuality. 

Uncertainty could occur in many ways in a system, for example, in the parameters of a 

mathematical model of a system or in the sequence of possible events in a discrete event 

system. Uncertainty is generally distinguished as aleatory uncertainty and epistemic 

uncertainty [35].  

Aleatory uncertainty, also termed as objective or stochastic uncertainty, describes 

the inherent variation associated with the physical system or the environment under 

consideration. Epistemic uncertainty is described mainly as the lack of knowledge or 

information in any phase or operation of a design process [10].  

Parameter uncertainty can be aleatory (due to inherent variation) or epistemic 

(due to limited information) in the physical system or environment in assessing the 

parameter characteristics [37]. If the parameter uncertainty is aleatory in nature, a 

probabilistic approach can be used to model uncertainty. In the probabilistic approach, 

uncertainty is treated as random variables following specific probability distributions. If 

the parameter uncertainty is epistemic in nature, an interval approach can be used to 

model the uncertainty. In the interval approach, uncertainty may be denoted by simple 

ranges.  
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2.2 Robustness Assessment with Only Random Variables 

Mathematically, robustness is measured by the variance (or standard deviation) of 

the performance [2, 17]. Let a random variable Z  be a response variable that represents a 

performance in mechanism synthesis as shown in Fig. 1 and be in the form of  

( )XZ g=                                                                                                                          (1) 

where ( )1 2, , ,
XnX X X=X   is a vector consisting of Xn  random variables. 

 

Fig. 1. Robustness assessment with only random variables 

In this paper, all the random variables in ( )1 2, , ,
XnX X X=X   are assumed to be 

independent. The methods discussed in this paper can be extended to correlated random 

variables. The elements of X contain both design variables (e.g. dimensions of a 

mechanism) that can be controllable by a designer and noise factors that are 

uncontrollable (e.g. external forces). 

 

Mechanism Response 

( )Z g X=  

 

X  Z  

Xµ  Zµ  
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Theoretically, the variance 2
Zσ  of Z  is calculated by  

( ) 222σ ( ) ( )Xx x xZ Z ZE Z g f dµ µ
∞

−∞
   = − = −   ∫                                                                 (2) 

where E  stands for expectation, ( )fX x  is the joint probability density function (PDF) of 

X, and Zµ  is the mean of Z , which is computed by 

[ ] ( ) ( )Z E Z g f dµ
∞

−∞
= = ∫ Xx x x

 
                                                                                          (3) 

Due to high dimensionality, analytical solutions to both of the above equations are 

difficult to obtain. Many approximation methods [17, 19] have been proposed, including 

Monte Carlo simulation (MCS). MCS is the simplest method and results in accurate 

estimations. In this paper we use MCS. 

The response variable Z can be evaluated from Eq. (1). The estimate of the mean 

and variance of Z  is calculated from the samples of Z obtained from MCS. The 

equations are:  

[ ]22

1

1σ ( )
1

N

Z i Z
i

g
N

µ
=

≅ −
− ∑ x

 
                                                                                             (4) 

where the mean zµ  is estimated by 

1

1 ( )
N

Z i
i

g
N

µ
=

≅ ∑ x                                                                                        (5) 

and  ( 1,2, , )i i N=x   are the samples of random vector X, which are drawn from the 

distributions of X. N is the number of samples (simulations). The accuracy of MCS 

depends on the number of simulations N. A large number of simulations must be 

performed to achieve an accurate estimate.  
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The robustness of a system is assessed by the standard deviation Zσ . For a robust 

system, a low Zσ  value with Zµ  equal to a desired target value is to be achieved. 

Consider two designs, Design A and Design B, as shown in Fig. 2. Let the two designs be 

subjected to similar conditions. Both the designs met the primary requirement of mean 

value Zµ , which is equal to the desired target value. From Fig. 2, it is evident that Zσ  of 

both the designs are different. 
AZσ (standard deviation of Design A) is less than 

BZσ (standard deviation of Design B). This suggests that Design A is more robust than 

Design B. 

 
Fig. 2. Robustness comparison between Design A and Design B 

 

2.3 Robustness Assessment with Only Interval Variables 

Mathematically, robustness is measured by the width of the interval of the 

performance [30, 31]. Let Z  be a response variable that represents a performance of a 

mechanism as shown in Fig. 3 and be in the form of  

Design A 

Design B 
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( )Z g= Y                                                                                                                           (6) 

where  ) ..., , ,( 21 ynYYY=Y  is a vector consisting of Yn  interval variables. 

 
Fig. 3. Robustness assessment with only interval variables 

 

  In this paper, all the interval variables in ) ..., , ,( 21 ynYYY=Y  are assumed to be 

independent. The elements of Y can be design variables and noise factors. Y  resides 

over its interval ,L U  Y Y . The midpoint, Z  and width, δZ, of the interval Z , are 

calculated by 

( )1
2

U LZ Z Z= +                 (7) 

and 

U LZ Z Zδ = −                                                                (8)                  

respectively, where UZ  and LZ  represents the upper bound and lower bound of Z , 

respectively.  

The robustness of the system is assessed by Zδ . Zδ  should be as low as possible, 

while Z  is equal to the desired target value. Consider two designs as shown in Fig. 4 

subjected to similar conditions. The midpoints for both of the designs are equal to Z , 

satisfying the mean requirement. Now, comparing the widths of the intervals for the two 

Y  Z  

Mechanism Response 
 
( )Z g= Y  

Y  Z  

LY  UY  LZ  UZ  
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designs, we see that BZδ  is narrower than AZδ . Design B is therefore more robust than 

Design A. 

 
Fig. 4. Robustness assessment between Design A and Design B 

 

2.4 Robustness Assessment with the Mixture of Random and Interval Variables 

As shown in the last two subsections, the current robustness assessment 

methodologies usually treat uncertainties as random variables or as interval variables. 

However, in many practical engineering applications both random variables and interval 

variables exist at the same time. The focus of this work is to deal with the presence of 

both random and interval variables for mechanism synthesis. The details are given below 

and in Section 3. 

When the distributions of the design variables are precisely known, the design 

variables can be treated as random variables. If the evaluation of the probabilistic 

characteristics of design variables is prohibitively expensive or may not be precisely 

known, the design variables can be treated as interval variables.   

Z  

L
AZ  

L
BZ  

U
BZ  

U
AZ  Design B 

BZδ  

AZδ  

Design A 
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When both random variables ( )1 2, , ,
XnX X X=X   and interval variables 

( )1 2, , ,
YnY Y Y=Y   exist, the model becomes  

( , )Z g= X Y                                                              (9) 

Fig. 5 explains the existence of both random and interval variables in the design 

model.  Consider a response variable Z , which is dependent on the random variables 

( )1 2,X X=X  and interval variables ( )1 2,Y Y=Y . Let us exam all of the four 

combinations of the interval bounds for both the interval variables. In each combination, 

Z  has a probability distribution as shown in Fig. 6. The mean values and standard 

deviations of Z  are also intervals. 

 
Fig. 5. Mixture of random and interval variables 

Xµ  

X  

Y  

Y  

Mechanism Response 
 
( , )Z g X Y=  

PDF 

Z  
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Fig. 6. Example of the mixture of random and interval variables 

The probability distributions indicate the uncertainty due to the effect of random 

variables on Z . The intervals of distributions indicate the effect of interval variables 

on Z . The average mean value of Z  can be calculated by  

( )max min1
2z z zµ µ µ= +                          (10) 

where max
zµ  and min

zµ  are the maximum and minimum means, respectively. The interval 

of standard deviations of Z  should also be used to assess the robustness. Imagine that if 

there was no effect of random variables on Z , then Z  would be only in the form of 

intervals due to Y. The randomness in Z  is therefore due to the random variables X. To 

quantify the effect of randomness on Z , the average of standard deviations of Z is used, 

which is given by 

( )max min1
2z z zσ σ σ= +                          (11) 

Mechanism 
Response 

 
( , )Z g X Y=  

1 1 2( , , )L LZ g Y YX=      

2 1 2( , , )U LZ g Y YX=       

3 1 2( , , )L UZ g Y YX=       

4 1 2( , , )U UZ g Y YX=  
 

Xµ 2
 

( )1 2,X X=X  

2Y  

( )1 2,Y Y=Y  

Xµ 1
 

1Y  

2
LY1

UY  2
UY  1

LY  
1Zµ  

2Zµ  
3Zµ  

4Zµ  

1Zσ  
2Zσ  

3Zσ  
4Zσ  

Z  
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where max
zσ  and min

zσ  are the maximum and the minimum standard deviations, 

respectively.  

Now imagine that if there was no effect on Z  from the interval variables Y, then 

Z would be only in the form of a probability distribution. Therefore, the interval of Z is 

due to the effect of interval variables Y. To quantify the effect of interval variables on Z , 

zδσ  is used, which is the difference between max
zσ and min

zσ and is computed by  

max min
z z zδσ σ σ= −                          (12) 

In summary, the average standard deviation zσ  is mainly due to aleatory 

uncertainty (random variables X) while the standard deviation difference δσZ is mainly 

due to epistemic uncertainty (intervals Y). Both a lower value of zσ  and lower value of 

zδσ  are desired for achieving a robust design. To understand this better, consider four 

designs, which are subjected to similar conditions. Fig. 7 represents the bounds of 

probability distributions of a mechanism performance. Total uncertainty on the 

performance can be divided as the uncertainty due to randomness ( )Zσ  and the 

uncertainty due to interval variables ( )Zδσ . The design with less Zσ  and Zδσ  is a more 

robust design. From the distribution curves, comparing Zσ  for the four designs, we have 

1 2 3 4Z Z Z Zσ σ σ σ< < < . The effect of randomness on the performance of Design 1 is the 

lowest compared with other designs.  Design 1 is the most robust design when only 

randomness is considered. Comparing Zδσ  for the four designs, we have 

1 3 2 4Z Z Z Zδσ δσ δσ δσ< < < . It is seen that Design 1 has the smallest difference between 
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the distribution bounds. Design 1 is therefore the most robust in terms of interval and 

random variables. It is also seen that Design 4 is the least robust design. 

 
Fig. 7. Robustness assessment with the mixture of random and interval variables 

 

It is however not easy to compare Designs 2 through 3. With the narrower 

distributions, Design 2 is more robust than Design 3 in terms of randomness. Design 3, 

however, is more robust than Design 2 in terms of interval variables because the two 

distribution bounds of Design 3 are closer. In such a case, a decision is left to designers 

about whether to consider Design 2 or Design 3. A trade-off is usually needed.  

As discussed before, the key to mechanism robustness assessment is to calculate 

zσ  and zδσ . A double loop MCS method is proposed to calculate zσ  and zδσ . Fig. 8 

shows the flowchart of the double loop MCS method.  This method consists of an outer 

Design 1 Design 2 

Design 3 Design  4 

Zµ  

Zµ  Zµ  

Zµ  



 

14 
 

 

loop, which evaluates the effect of interval variables on the variation of the performance. 

It also includes an inner loop, which evaluates the effect of random variables on the 

variation of the performance. In the outer loop, all the interval variables are divided into a 

number of small segments ( )iN . The combinations of all intervals are simulated.  

 
Fig. 8. Double loop Monte Carlo simulation 

Outer Loop 
Generating the combination of intervals 

 

Number of intervals ( )iN  

Number of samples ( )N  

Generating samples of X according to their distributions 
in each combination of intervals 

Evaluating performance Z for each sample Analysis Model 
( ),Z g= X Y  

Evaluating the mean ( )Zµ  and standard 

deviation ( )Zσ of performance Z  

Calculate the average of mean values of Z ( )Zµ , average of standard 

deviations ( )Zσ  and the difference between maximum and minimum 

standard deviations ( )Zδσ  

Inner Loop 
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There are a total of Y in N×  combinations of intervals. For each of the 

combinations an inner loop is performed. In the inner loop, the samples of random 

variables X are generated according to their distributions. After evaluating Z , for each 

sample, Zµ  and Zσ  are calculated. After completing the simulations, the output contains 

Y in N×  samples of Zµ  and Zσ . If the average of all the means is taken, Zµ  is obtained. 

Zµ  should be equal to the desired target value. max
Zσ  and min

Zσ  of Zσ  can also be 

identified from the obtained Zσ  values. After identifying max
Zσ  and min

Zσ , Zσ  and Zδσ  

can be calculated from Eqs. (11) and (12), respectively. From Zσ  and Zδσ , the 

robustness of a system can be assessed. A minimum value of Zσ  and Zδσ  is desired for a 

robust design.  

 

3. MECHANISM SYNTHESIS 

 In this section, we first review the traditional deterministic mechanism synthesis 

and mechanism synthesis by probabilistic approach and worst-case approach. We then 

present the proposed mechanism synthesis when both random variables and intervals 

exist. 

3.1 Deterministic Mechanism Synthesis  

Optimization techniques are used for mechanism synthesis. For performing 

optimization, the objective, the design variables, and the constraints need to be identified. 

The objective may be the minimization of the difference between the desired 

performance and the actual performance. The design variables may be the mechanism 



 

16 
 

 

dimensions, and the constraints may be the existence of crank and a desired transmission 

angle.  

Suppose the objective function ( )f d  of a mechanism with design variables 

( )1 2,, ....., nd d d=d  is to be minimized. Let the mechanism be subjected to design 

constraints ( ) ( )0 1,2,...,i gg i n≤ =d   and ( ) ( )0 1,2,...,j hh j n= =d  . When uncertainties 

are not considered, the optimal design model of the synthesis problem is given by  

min ( )

. .  ( ) 0,              1,  2,  ...,  

      ( ) 0,              1,  2,  ...,  

      ,        1,  2,  ...,  

i g

i h
L U
k k k

Z f

s t g i n
h j n
d d d k n

=

≤ =

= =

≤ ≤ =

d
d

d
d

                                                       (13)
 

where L
kd  and U

kd
 
are lower and upper bounds of kd , respectively. 

3.2 Robust Mechanism Synthesis with only Random Variables 

When design variables are treated as random variables, robustness can be 

quantified by a standard deviation. We use X to represent the random design variables. 

For a robust mechanism a minimum standard deviation value is to be achieved. The 

objective of a robust mechanism synthesis would be not only to minimize the difference 

between the desired performance and actual performance but also to minimize the 

variation of the performance due to the uncertainties in the design variables. The 

probabilistic optimization model for the mechanism synthesis can be represented as [14]  

1 2min

. .  0,      1,  2,  ...,  

     ( ) 0,             1,  2,  ...,  

          ,      1,  2,  ...,  

Z Z

gi gi g

j h

L U
k k k

w w

s t k i n
 h j n

k n

µ σ

µ σ

µ µ µ

+

+ ≤ =

= =

≤ ≤ =

xμ

d
                                                       (14) 
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where w1 and w2 are weighting factors; L
kµ  and U

kµ  
are lower and upper bounds of kµ , 

respectively; k  is a constant, which indicates the probability of constraint satisfaction. 

The probability is given by ( )kΦ , where Φ  is the cumulative distribution function of a 

standard normal variable. For example, if k is 3.0, the probability will be ( )3 0.9987Φ = . 

Fig. 9 illustrates the difference between the deterministic mechanism synthesis 

and robust mechanism synthesis. It is seen that the probabilistic mechanism synthesis can 

achieve a more robust design with the reduced standard deviation. 

  
Fig.9. Comparison of deterministic mechanism synthesis and robust mechanism synthesis 

 

3.3 Robust Mechanism Synthesis with only Interval Variables 

When uncertainty in design variables is treated as interval variables, an interval 

approach is used for robust mechanism synthesis. We use Y to represent the interval 

design variables. The robustness is quantified by the width of the interval of the 

mechanism performance ( )Zδ .  The objective of the robust mechanism synthesis would 

be to minimize the average error between the desired performance and the actual 

Deterministic 
Mechanism Synthesis 

Robust Mechanism 
Synthesis with 

Random Variables 

Mechanism Design A 

Design B 

Zµ
 

Zµ
 

•  

•  

•  

•  
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performance of the mechanism and at the same time, to minimize the effect of 

uncertainty on the mechanism performance. The optimization model for the robust 

mechanism synthesis with interval variables can be represented as  

1 2

max

min

. .  0,                    1,  2,  ...,  

     ( ) 0,                  1,  2,  ...,  

          ,      1,  2,  ...,  

g

j h

L U
k k k

w Z w Z

s t g i n

 h j n

Y Y Y k n

δ+

≤ =

= =

≤ ≤ =

Y

Y
     

                               (15) 

where L
kY  and U

kY  are lower and upper bounds of kY , respectively. 

Fig. 10 shows the comparison of the deterministic mechanism synthesis and 

robust mechanism synthesis with interval variables.   

 

Fig. 10. Comparison of deterministic mechanism synthesis and interval robust 
mechanism synthesis  
 

 

 

Deterministic 
Mechanism Synthesis 

Robust Mechanism 
Synthesis with  

Interval Variables 

Mechanism 

Design B 

Z 

Z  

Design A 

•  

•  

•  

•  
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3.4 Robust Mechanism Synthesis with Random and Interval Variables 

In the real-world engineering systems, uncertainty is in the form of a mixture of 

random variables and interval variables. In such situations, to quantify robustness, we 

propose to use a combined method of probabilistic approach and interval approach. The 

robustness will be quantified by Zσ  and Zδσ . Mathematically, the design objective for a 

robust design is represented as ( ) 1 2 3, Z Z Zf w w wµ σ δσ= + +X Y . The double loop MCS 

(see section 2.3) is proposed for evaluating  Zσ  and Zδσ . w1, w2, and 3w  are the 

weighting factors. The flowchart of the design optimization for the robust mechanism 

synthesis with random and interval variables is shown in Fig. 11.  

 
Fig. 11. Optimization for robust mechanism synthesis with random and interval variables 

 

The constraint functions need to be changed to maintain robustness of the design 

feasibility in the worst case of design variables. A constraint function, therefore, is 

Initial Design 

Converge? 
 

Y 

 
New Design 
 

Stop 

 
Objective and constraint functions are 
calculated using Double Loop MCS 
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modified as ( )max max 0 1,2,...., 
i ig g ik i nµ σ+ ≤ = . max

igµ  and max
igσ are the maximum of the 

mean value and the maximum of standard deviation of the constraint function ( ),ig X Y , 

respectively. The optimization model for the robust mechanism synthesis with random 

and interval variables is given by 

1 2 3,

max max

min

. .  0,      1,  2,  ...,  

     ( , ) 0,           1,  2,  ...,  

        ,         1,  2,  ...,  

          ,      1,  2,  ...,  

X
Z Z Z

gi gi g

j X h

L U
k k k Y
L U
m m m X

w w w

s t k i n

 h j n

Y Y Y k n
m n

µ σ δσ

µ σ

µ µ µ

+ +

+ ≤ =

= =

≤ ≤ =

≤ ≤ =

μ Y

μ Y
          (16)

 

 The flowchart of solving the above optimization model is shown in Fig. 11. There 

are two major iterative loops. The inner loop is for robustness assessment. The outer loop 

is the overall design optimization. Double loop MCS is used in the inner loop for 

robustness assessment. The process is iterated until a design satisfies the design 

constraints and converges to the optimal objective function.  

Fig. 12 shows a comparison between deterministic mechanism synthesis and 

robust mechanism synthesis. It is evident that the robust mechanism synthesis results in a 

more robust design compared to the deterministic mechanism synthesis. 
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Fig. 12. Comparison of deterministic mechanism synthesis and robust mechanism 
synthesis with random and interval variables 
  

4. EXAMPLES 

 The proposed method is validated and demonstrated with two example problems. 

The first example is a slider crank mechanism design problem, and the second example is 

a four-bar linkage design problem.  

4.1. Example 1 –Slider Crank Mechanism Design  

The objective of this example is to design a slider crank mechanism as shown in 

Fig. 13 such that, for crank angles ( )θ  of 10˚ and 60˚, the slider distance ( )s  should be 

35.0 mm and 25.0 mm, respectively. The length of the crank ( )a , the length of the 

connecting rod ( )b , and the offset ( )e  are design variables. Both a  and b  are random 

variables, which are given in Table 1. Because different installation positions of the slider 

are needed, the offset distance e  is specified within a tolerance given in Table 2. The 

distribution of e  is not available. Therefore, e  is treated as an interval variable. In Table 

2, e  is the average of e . 

Deterministic 
Mechanism Synthesis 

Robust Mechanism 
Synthesis with 

Random and Interval 
Variables 

Mechanism 

Zµ  

Zµ  

•  

•  

•  

•  



 

22 
 

 

 

 
Fig. 13. Slider crank mechanism 

 
 

Table1. Random Variables 

Variable Mean ( µ ) Standard Deviation (σ ) Distribution 

1X ( )a  aµ  1% of aµ  Normal 

2X ( )b  bµ  1% of bµ  Normal 
 

Table 2. Interval Variable 

Variable LY  
UY  

1Y ( )e  e - 5% of e  e + 5% e  
 

The task is to determine the length of the links a  and b , and the offset distance e  

satisfying the design requirement. First the mechanism synthesis is completed 

deterministically without considering any uncertainty, and then a robust mechanism 

synthesis is performed considering the uncertainties in the design variables. Both the 

designs are then compared.   

 

 

 

s  

e  

a  

b  
θ  

β  
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Deterministic Mechanism Synthesis  

When deterministic mechanism synthesis is employed, the nominal values of the 

design variables are used without considering any uncertainties. The deterministic 

mechanism synthesis is modeled as 

( ) ( )2 2

1

2

min ( ) 10 60

. .  ( ) ( ) 0

      ( ) ( ) sin 45 0
      0.1 20,  0.1 20,  0.1 20

f

s t g e b a
g e a b

a b e

e e e   = = +   
= − − ≤

= + − ≤
≤ ≤ ≤ ≤ ≤ ≤

d
d

d
d

a a

a

                                                                    (17)                                           

where
 

( ) ( ) 0.3510sin10cos10 22 −



 +−+= aaa aebae                                                            (18)                                               

( ) ( ) 0.2560sin60cos60 22 −



 +−+= aaa aebae                      (19) 

The task is to find a design having the minimum error at both the positions and 

satisfying the constraints functions. The design constraints of this mechanism include the 

existence of the crank ( 1g ) and the transmission angle greater than 45˚( 2g ). The 

Sequential Quadratic Programming (SQP) is used to perform this optimization. The 

starting point d =( a ,b , e )=(4.0, 8.0, 1.0) mm is used. The optimal solution obtained 

from the deterministic mechanism synthesis is listed in Table 3.  

 
Table 3. Deterministic Optimal Solution 

Error (mm) a (mm) b (mm) e (mm) s  at 10˚ (mm) s  at 60˚ (mm) 

72.40e-12 11.33 25.31  6.52  35.0 25.0 
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The design obtained from the deterministic mechanism synthesis results in the 

slider distances 35.0 mm and 25.0 mm at 10˚ and 60˚, respectively and satisfies the 

design constraints, such as the existence of crank and the transmission angle (45.16˚) 

greater than 45.0˚. 

 

Robust Mechanism Synthesis 

In the proposed design optimization model, tolerances in the links and the 

installation error are considered as uncertainty. As described in the preceding section, the 

average standard deviation Zσ  and the width of the standard deviation Zδσ  are 

minimized to ensure robustness. Herein z  denotes the error specified in the objective 

function, namely, ( )a101 e=z  and ( )a602 e=z . In this design problem, Zσ  and Zδσ  need 

to be minimized at crank angles of 10˚ and 60˚. The two inequality constraints, the 

existence of a crank and the transmission of energy are maintained at the worst case of 

interval variables.  

The errors of the actual displacements at 10º and 60º at the means of random 

variables and the averages of interval variables are also treated as two equality 

constraints. A double loop MCS is used to evaluate Zσ  and Zδσ . In the double loop 

MCS, 20 intervals ( )iN  for the interval variables and 2000 samples ( )N  for the random 

variables are taken.  

The robust mechanism synthesis is modeled as  
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 2 3 4,

max max

22
1

22
2

min  10 10 60 60

  0,  1,2

     , cos10 sin10 35.0

     , cos60 sin 60 25.0

     0.1 20,  0.1 20,  0.1 20

x

i ig g

a b a

a b a

a b

w w w w

s.t. k i

h e

h e

e

σ δσ σ δσ

µ σ

µ µ µ

µ µ µ

µ µ

+ + +

+ ≤ =

= + − + −

= + − + −

≤ ≤ ≤ ≤ ≤ ≤

μ Y

x

x

μ Y

μ Y

a a a a

a a

a a

                                  (20)
 

Weighting factors are used to formulate the multiple objective functions. 

( )a10/11
∗= eσw , ( )a10/12

∗= eδσw , ( )a60/13
∗= eσw , and ( )a60/14

∗= eδσw . All w’s are 

calculated at the deterministic optimal solution. For example, in ( )a10/11
∗= eσw , ( )a10∗

eσ  

is the average standard deviation of ( )a10e  at the deterministic optimal point. w’s are used 

to normalize the multiple objectives. 

The robust mechanism synthesis solution is listed in Table 4. It is noted that the 

nominal displacements are exactly at the required values. 

Table 4. Robust Mechanism Synthesis Solution 
aµ  

(mm) 
bµ  

(mm) 
e  

(mm) 
sµ  at 10˚ 
(mm) 

sµ  at 60˚ 
(mm) 

 
13.24  

 
22.21  

 
1.0 

 
35.0 

 
25.0 

 
 

Next we estimate the robustness of the designs from both deterministic synthesis 

and robust synthesis. The number of intervals ( )iN  for the interval variable is taken as 

20. The Number of samples ( )N  is taken as 2000.  The solution obtained from the 

double loop MCS is shown in Table 5. It is seen that the proposed robust mechanism 

synthesis method results in a more robust design. Both of average standard deviations and 
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the widths of the standard deviations of the slider displacements from robust synthesis are 

smaller than those from deterministic synthesis. 

 
Table 5 Robustness Assessment of Deterministic Mechanism Synthesis and Robust 

Mechanism Synthesis 
 

Variables 
Deterministic synthesis Robust synthesis Deterministic 

synthesis 
Robust 

synthesis 

a aµ  11.33 mm 13.24 mm 

b bµ  25.31 mm 22.21 mm 

e e  6.52 mm 1.00mm 

10s °  35.00mm 35.00mm 

60s °  25.00mm 25.00mm 

10Zσ °
 2.94×10-1mm 2.64×10-1 mm 

10Zδσ
°
 2.23×10-3 mm 8.18×10-5 mm 

60Zσ °
 3.33×10-1 mm  2.70×10-1mm 

60Zδσ
°
 9.67×10-3 mm 9.95×10-4 mm 

 

The output is also graphically represented. The graphs obtained from both the 

methods are compared. The family of distribution curves at the crank angle of 10˚ is 

shown in Figs. 14 and 15, respectively. The graphics clearly show that the range (band) 

of the distributions from robust synthesis is much narrower than those from deterministic 

synthesis.  
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Similarly, Figs. 16 and 17 show the family of distribution curves at the crank 

angle of 60˚. It is evident that the design obtained from robust synthesis is more robust 

compared to the design obtained from the deterministic synthesis. 
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Fig. 14. Distributions at the crank angle of 10˚ from deterministic synthesis 
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Fig. 15. Distributions at the crank angle of 10˚ from robust mechanism synthesis 
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Fig. 16. Distributions at the crank angle of 60˚ from deterministic synthesis 
  



 

29 
 

 

23.5 24 24.5 25 25.5 26 26.5 27
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Slider displacement (mm) at 60 degrees

pd
f

 
Fig. 17. Distributions at the crank angle of 60˚ from robust synthesis 

 

4.2. Example 2 – A Four-Bar Mechanism Design Problem 

 A four bar mechanism as shown in Fig. 18 is to be designed such that when the 

angles ( )2θ  of the input link are 10˚ and 60˚, the position of P (x, y) should be (55, 108) 

mm and (45.0, 142.0) mm, respectively. 

 
Fig. 18. Four-bar linkage 
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The lengths of ground link OC ( )1r , link OA ( )2r , link AB ( )3r , link BC ( )4r , and 

link AP ( )pr , and the angle ( )β  are design variables. The links 2r , 3r , 4r  and pr  are 

random variables, which are given in Table 6. As there is no information available about 

the type of distribution of the variables 1r  and β , they are considered as interval 

variables, which are given in Table 7. r  and β  are the averages of r and β , 

respectively. 

Table 6. Random Variables 

Variable 
Mean 
(µ ) 

Standard 
Deviation (σ ) Distribution 

1X ( )2r  
2r

µ  mm 0.20 mm Normal 

2X ( )3r  
3r

µ  mm 0.20 mm Normal 

3X ( )4r  
4r

µ  mm 0.20 mm Normal 

4X ( )pr  
prµ  mm 0.20 mm Normal 

 
 

Table 7. Interval Variables 
Variable LY  UY  
Y1 ( )1r  1 0.5r − mm 1 0.5r +  mm 

Y2 ( )β  1β − a  1β + a  
 
 

Deterministic Mechanism Synthesis 

In deterministic mechanism synthesis, uncertainties in the design variables are not 

considered. The governing equations for finding the position of P (x, y) are given below: 

( )2 2 3cos cosX pP r rθ β θ= + +                        (21) 

( )2 2 3sin sinY pP r rθ β θ= + +                        (22)
 

2 2 3 3 4 4 1cos cos cos 0r r r rθ θ θ+ − − =                        (23) 
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2 2 3 3 4 4sin sin sin 0r r rθ θ θ+ − =             (24) 

The constraints of this mechanism design include the existence of a crank and the 

transmission angle constraint, which are given by 

0)( 3212 ≤+−+ rrrr                                     (25)     

0)( 1432 ≤+−+ rrrr                                                           (26) 

0)( 3142 ≤+−+ rrrr                                                                                                         (27) 

a40
2

)(cos
43

2
21

2
4

2
31

1 ≥






 +−+
= −

rr
rrrrλ                                   (28) 

a40
2

)(cos
43

2
21

2
4

2
31

2 ≥






 −−+
= −

rr
rrrrλ                        (29) 

where 1λ  and 2λ  are the possible minimum transmission angles.  

The objective is to find the design variables 1 2 3 4, , , , pr r r r r  and β  such that, the 

errors between the actual positions and desired positions of ( , )P x y  at 10° and 60° of 

crank angles are minimum. The design should also satisfy the design constraints in Eqs. 

(25) through (29).  

The deterministic mechanism synthesis is then modeled as
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     (30)                   

where ( ) ( )10 10 55x xe = −a a , ( ) ( )10 10 108y ye = −a a , ( ) ( )60 60 45x xe = −a a , and 

( ) ( )60 60 142y ye = −a a . The starting point d= ( 1r , 2r , 3r , 4r , pr , β ) =  (100, 40, 180, 

150, 200, 100). 

The optimal solution from the deterministic mechanism synthesis is listed in 

Table 8. It is seen that the position requirement in the objective function and all the 

constraints are satisfied at the optimal design point. 

 
Table 8. Deterministic Optimal Solution 

Variable Solution 

1r  258.11 mm 

2r  51.68 mm 

3r  264.17 mm 

4r  154.44 mm 

pr  99.11 mm 
β  54.38˚ 

(x, y) at 10° (55.0, 108.0) mm 
(x, y) at 60° (45.0, 142.0) mm 
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Robust Mechanism Synthesis 

In the proposed robust mechanism synthesis model, the tolerances in the links and 

the installation error are considered uncertain. Due to the uncertainties, the position 

( ),P x y , deviates from the desired value. The objective will be not only to maintain the 

position of ( ),P x y  to the desired value but also to minimize the average standard 

deviation and the difference between the maximum and minimum standard deviations of 

the performance. The robust mechanism synthesis is modeled as  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

i

1 2 3 4 5

6 7 8

max max
g

1

2

min 10 10 10 10 60

                    60 60 60

. .   0,  1,2, ... ,5

        ( ,  ) (10 ) 55.0 0

        ( ,  ) (10 ) 108.0 0

     

i

x x y y x

x y y

g

f w w w w w

w w w

s t k i

h x
h y

σ δσ σ δσ σ

δσ σ δσ

µ σ

= + + + +

+ + +

+ ≤ =

= − =

= − =

d

x

x

d

μ Y
μ Y

a a a a a

a a a

a

a

3

4

1 2 3

4

   ( ,  ) (60 ) 45.0 0

        ( ,  ) (60 ) 142.0 0
        20 500,  20 500,  20 500

        20 500,  20 500,  0 180p
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r r r
r r β

= − =
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x

x

μ Y
μ Y

a

a

a a

  (31) 

where 3 =k , and 1 2 3 4( ,  ,  ,  ,  ,  )r r r rpr µ µ µ µ β=d . x and y  are nominal values of the 

coordinates  of point P  evaluated at the means of random variables and averages of  

interval  variables. 

Weighting factors are used to formulate the multiple objective functions. 

( )a10/11
∗= xw σ , ( )a10/12

∗= xw δσ , ( )a10/13
∗= yw σ , ( )a10/14

∗= yw δσ , ( )a60/15
∗= xw σ , 

( )a10/16
∗= xw δσ , ( )a60/17

∗= yw σ , and ( )a60/18
∗= yw δσ . All w’s are calculated at the 

deterministic optimal solution. For example, in ( )a10/11
∗= xw σ , ( )a10∗

xσ  is the average 
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standard deviation of ( )a10x  at the deterministic point. w’s are used to normalize the 

multiple objectives. 

The constraint is modified to maintain the robustness of the design feasibility at 

the worst case of the design variables. In the double loop MCS, 2 intervals are taken for 

each of the interval variables and 100 samples are taken for the random variables. The 

optimal solution obtained from the robust mechanism synthesis is listed in Table 9. It is 

seen that the nominal values of the positions are exactly the desired ones. 

 

Table 9. Optimal Solution Obtained from Robust Mechanism Synthesis 
 

Variable Solution 

1r  438.70 mm 

2r
µ  51.68 mm 

3r
µ  297.06 mm 

4r
µ  197.08 mm 

Pr
µ  99.11 mm 

β  59.10˚ 

( ),x yµ µ  at 10° (55.0, 108.0) mm 

( ),x yµ µ  at 60° (45.0,142.0) mm 

 

Robustness Assessment 

The double loop MCS is used for assessing the robustness of the designs obtained 

from the deterministic synthesis and robust synthesis. The comparison of the robustness 

of the two designs is listed in Table 10. 
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Table 10. Comparison of Designs Obtained from Deterministic Mechanism Synthesis and 
Robust Mechanism Synthesis 

Variable 
Deterministic synthesis 

Robust synthesis 

Deterministic 
synthesis 

Robust 
synthesis  

1r  1r  258.11 mm 438.70 mm 

2r  
2r

µ  51.68 mm 51.68 mm 

3r  
3r

µ  264.17 mm 297.06 mm 

4r  
4r

µ  154.44 mm 197.08 mm 

pr  
Pr

µ  99.11 mm 99.11 mm 

β  β  54.38˚ 59.10˚ 

( ),x yµ µ  at 10° (55.00, 108.0) mm (55.00, 108.0) mm 

( ),x yµ µ  at 60° (45.00, 142.0) mm (45.00, 142.0) mm 

( )yx σσ ,  at 10° (2.19×10-1, 2.04×10-1) mm (1.57×10-1, 2.05×10-1) mm  

( )yx δσδσ ,  at 10° (5.93×10-3, 7.18×10-4) mm (1.92×10-3, 5.56×10-5) mm 

( )yx σσ ,  at 60° (1.80×10-1, 2.50×10-1) mm (1.36×10-1, 2.55×10-1) mm 

( )yx δσδσ ,  at 60° (5.03×10-3, 3.79×10-3) mm (3.84-3, 2.32-3) mm 

 

Even though 105.2 −= eyσ  at 10° from robust design is slightly greater than 

104.2 −= eyσ  from deterministic design and 155.2 −= eyσ  at 60° from robust design is 

slightly greater than 150.2 −= eyσ  from deterministic design, the results clearly show that 
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the design obtained from robust synthesis is more robust than that from deterministic 

synthesis.  

 

5. CONCLUSIONS 

When both random and interval variables exist in a mechanism, a mechanism 

performance will have a family of distributions instead of a single distribution. The mean 

and standard deviation of the performance will also be intervals. To measure the 

robustness of the mechanism, we propose to use the average standard deviation and the 

width of the standard deviation of the mechanism performance. Both of the measures are 

minimized during robust mechanism synthesis.  

To calculate the average standard deviation and the width of the standard 

deviation of the mechanism performance, we propose a double-loop Monte Carlo 

simulation (MCS) procedure. The outer loop is for interval variables while the inner loop 

is for random variables. The overall robust mechanism synthesis is solved by an 

optimization technique. The two examples have shown that the proposed method 

generates more robust designs than the deterministic mechanism synthesis. Since 

optimization and MCS are used, it is easy and flexible to use the proposed method. The 

method is applicable to all distribution types. 

MCS, however, is not efficient in evaluating the mean and standard deviation of a 

mechanism performance. To find the extreme values of the standard deviation of the 

performance, each interval variable has to be divided into a number of segments. The 

double-loop procedure must compute the probabilistic characteristics of the performance 

for all combinations of interval segments. If the number of the segments of each interval 
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variable is not large enough, the extreme values of the mean and standard deviation of the 

performance may be missed. As a result, the computational efficiency needs to be 

improved, especially for a problem involving a large number of interval variables. Our 

future research is targeted to increase computational efficiency. 
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