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Nomenclature 

g = performance function  

I  = vector of interval variables 

I  = average of I  
lI  = lower bound of I  
uI  = upper bound of I  

I  = interval variable, element of I  
N  = number of function evaluations 

iN  = number of analyses in subsystem i 
nI  = number of interval variables 

nR  = number of random variables 

nS  = number of subsystems 

R  = vector of random variables 

R  = mean value of R  

R  = random variable, element of R  
U  = identity matrix 

i⋅Y   = vector of linking variables, which are inputs to subsystem i  and outputs of 
other subsystems 

iZ  = vector of outputs of subsystem i 
δσ   = difference between the maximum and minimum standard deviations 

2∇     = Hessian matrix of g  with respect to both R and I  
∇I  = gradient of g  with respect to I  
∇R   = gradient of g  with respect to R  
σ   = standard deviation 

maxσ  = maximum standard deviation 
minσ  = minimum standard deviation  
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Abstract 

In many engineering applications, both random and interval variables exist. The mixture 

of both types of variables has been dealt with in robust design for single-disciplinary 

systems. This work focuses on robustness assessment for multidisciplinary systems with 

both random and interval variables. To alleviate the intensive computational demand, a 

Semi-Second-Order Taylor Expansion method is proposed to evaluate robustness. A 

performance function is approximated with linear terms of random and interval variables, 

as well as the interaction terms between the two types of variables. Then the maximum 

and minimum standard deviations of the performance function are computed. With the 

proposed method, the impact of both random and interval variables on the system 

robustness can be evaluated efficiently. 
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1 INTRODUCTION 

Robust design reduces variations in product performances by minimizing the 

sensitivity to uncertainties, rather than by eliminating the source of uncertainty [1,2]. 

High robustness can be achieved by selecting optimal design variables through nonlinear 

optimization [3-5], where robustness assessment is the most important step. The task of 

robustness assessment is to evaluate if the design is robust at a given design point. When 

uncertainty comes from randomness, robustness is achieved by optimizing the mean 

performance and minimizing the standard deviation of the performance. The standard 

deviation must be calculated with robustness assessment during an optimization process. 

This type of analysis is referred to as probabilistic robustness assessment. Common 

methods of probabilistic robustness assessment are reviewed in [6]. 

In many engineering applications, some uncertainties are not due to randomness 

and therefore cannot be described by probability distributions [7-12]. For example, 

uncertainty may come from limited information or the lack of knowledge. In those cases, 

the interval presentation may be an alternative way to quantity uncertainty. Situations of 

interval variables are given in [11-14]. When only interval variables are involved, a 

design performance is also an interval. It is not appropriate to assign a probability 

distribution, e.g., a uniform distribution, to an interval variable; doing so may result in 

misleading or erroneous decisions. Instead, robustness must be measured with the width 

of a performance. The task of robustness assessment is then to find the width of the 

performance. This kind of analysis is referred to as interval robustness assessment. The 

width of the performance is minimized during a robust design process. 
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The robustness assessment methods in the third category handle both random and 

interval variables. Because of their generality, they are termed as the general robust 

design methods. The possible robustness measures are the average standard deviation of a 

performance and the difference between the maximum and minimum standard deviations 

of the performance [15]. The process of finding those standard deviations is referred to as 

general robustness assessment.  

A vast amount of literature has accumulated on robust design for single-disciplinary 

systems. The methods fall into three categories. The most common one is the 

probabilistic robust design [3-6, 16-18]. It relies on probabilistic robustness assessment 

when only random variables are involved. The second category is interval robust design 

[9-12] when only interval variables are involved. It therefore relies on interval robustness 

assessment. The third category is the general robustness design, which, of course, 

depends upon general robustness assessment. This category deals with both random 

variables and interval variables [22]. 

Robustness assessment and robust design for multidisciplinary systems is much 

more complicated than its counterpart for single-disciplinary systems. The complexities 

come from (1) coupling between disciplines (subsystems), (2) the propagation of 

uncertainty between subsystems, and (3) the huge computational demand. The methods 

for coping with those complexities still fall into the three categories. In the probabilistic 

analysis category, several probabilistic uncertainty analysis methods have been developed 

[23-32]. These methods deal with the efficient integration of robust design and 

multidisciplinary design optimization (MDO), as well as the efficient integration of 

robustness assessment and multidisciplinary analysis (MDA). These methods are 
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applicable for robustness assessment and robust design for multidisciplinary systems 

when uncertainties are represented by probability distributions. In the interval analysis 

and design category, uncertainty is modeled by intervals, and efficient uncertainty 

propagation methods have been developed, including those reported in [33, 34]. The 

evidence theory with the interval presentation has also been considered in 

multidisciplinary systems design [35].  Reliability analysis methods [36] and Taylor 

expansion are normally employed in the methods in categories 1 and 2.   

A recently developed method, the unified reliability analysis method [37], falls into 

the third category (general robustness assessment), where both random variables and 

interval variables exist. The method is also applicable for robustness assessment. It is, 

however, computationally expensive because of an iterative process for probabilistic 

analysis and optimization for interval analysis. To maintain good efficiency with 

acceptable accuracy, in this work, we use the First Order Second Moment (FOSM) 

method [38]. The original FOSM is for single-disciplinary systems and has been 

modified for multidisciplinary analysis [26, 39]. The current methods, however, cannot 

handle interval variables directly. The objective of this work, therefore, is to develop an 

efficient general robustness assessment method that extends the FOSM and the 

probabilistic multidisciplinary analysis [26, 39] to situations where both random and 

interval variables are present. 

The rest of the paper is organized as follows. A general robustness assessment 

method for single-disciplinary systems is described in Section 2. Then the method is 

extended to multidisciplinary systems in Section 3. Numerical examples are presented in 

Section 4 followed by conclusions in Section 5. 
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2 ROBUSTNESS ASSESSMENT FOR SINGLE-DISCIPLINARY SYSTEMS  

In this section, we discuss our proposed general robustness assessment method for 

single-disciplinary systems. The extension of the method to multidisciplinary systems is 

presented in the next section. Before the discussion of the method, the notations that we 

use are explained as follows: A bold letter stands for a vector, a capital letter for an 

uncertain variable, and a lower case letter for a deterministic variable or a realization of 

an uncertain variable. A vector is a column vector. 

As shown in Fig. 1, a performance Z is a function of random variables R  and 

interval variables I ; namely,  

 ( , )Z g= R I   (1) 
 

 
 

Figure 1.  A single-disciplinary system 

In the above equation, g  is a performance function that specifies the relationship 

between the performance Z and input variables R  and I . The performance function g  

could be a black box. 

Due to the interval variables I , the standard deviation of Z, Zσ , is also an interval. 

In other words, Zσ  is bounded within its maximum value max
Zσ  and minimum value 

min
Zσ . The robustness of a design can be measured by the average standard deviation, Zσ , 

and the difference, Zδσ , between max
Zσ  and min

Zσ  [15]. The equations are given by 

( , )g R I  Z  R , I  
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 ( )max min1
2

Z Z Zσ σ σ= +   (2) 

and 

 
max min

Z Z Zδσ σ σ= −                                                      (3)  

The standard deviation Zσ  comes from the randomness in random variables X. If 

there were no interval variables I, Zσ  would reduce to a point, which could be close to 

the average standard deviation Zσ . Therefore, Zσ  could be used to measure the effect of 

random variables on Z. On the other hand, the standard deviation difference Zδσ  is due 

to interval variables I and indicates the effect of I on Z [15]. The task of the general 

robustness assessment is to find Zσ  and Zδσ , or max
Zσ  and min

Zσ .  

( , )g R I  is usually a nonlinear, multidimensional function, and a closed-form 

expression of Zσ  is rarely available. The most accurate method would be the 

combination of Monte Carlo simulation (MCS) and nonlinear global optimization. The 

former is for probabilistic analysis (PA), whose task is to find Zσ  due to random 

variables R ; and the latter is for interval analysis (IA), whose task is to identify the 

bounds of Zσ  over interval I . Both PA and IA are nested; and MCS and nonlinear 

optimization are expensive. As a result, the overall robustness assessment would be 

computationally intensive.  

In this work, we employ the First Order Second Moment (FOSM) method [38], a 

popular method in structural reliability. The FOSM uses the first order Taylor series 

expansion to linearize the performance function g at the means of random variables. Then 
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the standard deviation of g can be easily obtained. The FOSM is efficient because of the 

first order approximation. Hence the first order Taylor series expansion could be our first 

choice due to its high efficiency. The major problem, however, is that no standard 

deviation bounds can be produced. With the first order approximation, the linearized 

performance function will contain only the first order terms of R  and I . In calculating 

the standard deviation, the I  terms are deterministic; their contribution to the standard 

deviation is therefore zero. Consequently, only a single standard deviation can be 

generated. The effect of interval variables I  will be omitted due the simple linearization, 

and hence the error might be large.  

To avoid the above problem, we may use the second order Taylor series expansion 

and then produce a standard deviation bound. But the computation will be intensive 

because the second derivatives are needed. To have a good balance between accuracy and 

efficiency, we propose a Semi-Second-Order Taylor Expansion method. The 

approximated function keeps all the first order terms of R (such as 1 2, ,R R ) and the 

interaction terms between R and I (such as 1 1 1 2 2 1 2 2, , , , ,R I R I R I R I ). Neither 

interaction terms within R (such as 1 2 ,R R ) and I (such as 1 2 ,I I  ) nor their squared 

terms (such as 2 2
1 1, ,R I ) appear in the approximation. The approximated function is 

given by 

 21(  , ) (  , ) (  , )
2

T T Tg g g∆ ≈ − = ∇ ∆ +∇ ∆ + ∆ ∇ ∆R IR I R I R I R I X X  (4) 

In the above equation,  

 ∆ = −R R R  (5) 
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where 1 2( ) ( , ,..., )T
i nRR R R R= =R , 1,2,...,i nR= , in which nR  is the number of random 

variables, and  1 2( ) ( , ,..., )T T
i nRR R R R= =R , in which iR ( 1, 2,...,i nR= ) is the mean of iR . 

  ∆ = −I I I   (6) 

where 1 2( ) ( , ,..., )T
j nII I I I= =I  , 1, 2,...,j nI= , in which nI  is the number of interval 

variables; 1 2( ) ( , ,..., )T
j nII I I I= =I , in which jI ( 1, 2,...,j nI= ) is the average of the j-th 

interval variable jI  and is given by  

 1 ( )
2

l u
j j jI I I= +  (7) 

where l
jI  and u

jI  are the lower and upper bounds of jI , respectively. 

∇R  is the gradient of g  with respect to R  at R  and I . It is given by 

 
,

,
1 2

, ,...,
T

nR

g g g g
R R R

 ∂ ∂ ∂ ∂
∇ = =  ∂ ∂ ∂ ∂ R I

R I

R R
 (8) 

∇I  is the gradient of g  with respect to I  at R  and I . It is given by 

 
, 1 2

,

, ,...,
T

nR

g g g g
I I I

 ∂ ∂ ∂ ∂
∇ = =  ∂ ∂ ∂ ∂ 

I
R I

R I
I

 (9) 

2∇  in Eq. (4) is the Hessian matrix. Since we need only the interaction terms of R  

and I , the Hessian matrix is incomplete and is given by  
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2 2

1 1 1

2 2

12
2 2

1 1 1

2 2

1

...

... ... ...

...

...

... ... ...

...

nI

nR nR nI

nI

nR nR nI

g g
R I R I

g g
R I R I

g g
R I R I

g g
R I R I

 ∂ ∂
 ∂ ∂ ∂ ∂ 
 
 

∂ ∂ 
 ∂ ∂ ∂ ∂

∇ =  
∂ ∂ 

 ∂ ∂ ∂ ∂
 
 
 ∂ ∂ 
 ∂ ∂ ∂ ∂ 

0

0

 (10) 

∆X  contains both ∆R  and ∆I  and is given by 

 ( , )T T T∆ = ∆ ∆X R I  (11) 

Because the I  terms are deterministic, their contribution to the standard deviation is 

zero; only the R  terms are therefore needed to compute Zσ . We then group the R  and I  

terms in Eq. (4) and obtain 

 ( , ) T Tg∆ ≈ ∆ +∇ ∆IR I A R I   (12) 

where 

 1 2( ) ( , ,..., )T
i nRA A A A= =A  , 1, 2,...,i nR=  (13) 

in which  

 
2

1, ,

nI

i m
mi i m

g gA I
R R I=

∂ ∂
= + ∆
∂ ∂ ∂∑

R I R I

 (14) 

We now assume that the elements of R  and I  are independent. Let the standard 

deviations of R  be 1 2( , ,..., )T
nRσ σ σ σ=R . Then the standard deviations of ( , )Z g= R I   

is given by  



11 

 
2

2
2 2 2

1 1, ,

( )
nR nI

T
Z m i

i mi i m

g g I
R R I

σ σ σ
= =

 ∂ ∂
≈ = + ∆  ∂ ∂ ∂ 

∑ ∑R
R I R I

A  (15) 

where 2( )TA  is a vector whose elements are equal to the squares of the elements of 

TA .This notation is also applied to other vectors throughout the paper.  

As shown in Eq. (15), Zσ  is now a function of I . The extreme values of Zσ  could 

occur at an interior point over the interval [ l
jI , u

jI ] ( 1, 2,...,j nI= ), or at l
jI  or u

jI . 

Finding the maximum and minimum Zσ  can then be formulated as a bound constrained 

quadratic programming problem. For the minimum standard deviation min
Zσ , the 

optimization model is given by  

 

2
2

2

1 1, ,

min  

. .  

nR nI

m i
i mi i m

l u

g g I
R R I

s t

s
= =

 ∂ ∂
+ ∆  ∂ ∂ ∂ 

≤ ≤

∑ ∑I
R I R I

I I I

                      (16) 

where ( )1 1 , ,l l l l
nII I I=I   and ( )1 1 , ,u u u u

nII I I=I  . 

For the maximum standard deviation max
Zσ , the optimization model becomes  

 

2
2

2

1 1, ,

max  

. .  

nR nI

m i
i mi i m

l u

g g I
R R I

s t

s
= =

 ∂ ∂
+ ∆ 

 ∂ ∂ ∂ 

≤ ≤

∑ ∑I
R I R I

I I I

    (17) 

The objective functions in Eqs. (16) or (17) are function of I with known 

coefficients 
,i

g
R
∂
∂

R I

  and 
2

1 ,

nI

m i m

g
R I=

∂
∂ ∂∑

R I

. Therefore, after these coefficients are found, 
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solving the optimization problems does not call the original performance function g. 

However, calculating the coefficients before the optimization needs to call g. Suppose 

that the forward finite-difference method is used to numerically evaluate the derivatives  

and that the step sizes of a random variable and an interval variable are Rδ  and Iδ , 

respectively. The derivatives can then be calculated as follows [40].  

 
,

iR

i R

g gg
R δ

−∂
=

∂
R I

 (18) 

 
2

i j i jR I R I

i j R I

g g g gg
R I δ δ

− − +∂
=

∂ ∂
 (19) 

where 

 ( ),g g= R I  (20) 

 ( )1 2 1 1, , , , , , , ;
i

i i i nRR Rg g R R R R R Rδ− += + I   (21) 

 ( )1 2 1 1; , , , , , , ,
j

j j j nII Ig g I I I I I Iδ− += +R    (22) 

 ( )1 2 1 1 1 2 1 1, , , , , , , ; , , , , , , ,
i j

i i i nR j j i nIR I R Ig g R R R R R R I I I I I Iδ δ− + − += + +     (23) 

The numbers of g function the calls for g ,  ( 1,2, )
iRg i nR=  ,  ( 1,2, )

jIg j nI=  , 

and 
i jR Ig  are 1, nR, nI, and nR×nI , respectively. Therefore, the total number of function 

calls is 

 1N nR nI nR nI= + + × +  (24) 

For example, if there are five random variables ( 5nR = ) and two interval variables 

( 2nI = ), 5 2 5 2 1 18N = + + × + = . This means that g will be called 18 times.  
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3 ROBUSTNESS ASSESSMENT FOR MULTIDISCIPLINARY SYSTEMS  

In this section we discuss how to extend the above method to multidisciplinary 

systems. 

3.1 MULTIDISCIPLINARY SYSTEMS 

Fig. 2 shows an example of a multidisciplinary system consisting of three disciples 

(subsystems). 

 

Figure 2.  A Multidisciplinary System 

The symbols used in Fig. 2 are explained in Table 1. 

Table 1.  Variables in Fig. 2 

Variables Description 
sR  Random sharing input variables 

sI  Interval sharing input variables 
iR  Random input variables to subsystem i 

iI  Interval input variables to subsystem i 

ijY  Linking variables, which are outputs of  
subsystem  i and inputs to subsystem j 

iZ  Outputs of subsystem i 
 

2Z
 

12Y  21Y
 

Subsystem 1 

3Z  

23Y  32Y
 

13Y
 

31Y  

Subsystem 2 

Subsystem 3 

1 1,  ;  ,  s sR I R I  

2 2,  ;  ,  s sR I R I  

3 3,  ;  ,  s sR I R I  

1Z  
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As shown in Fig. 2, all the subsystems are coupled through linking variables. The 

vector of linking variables ijY  is the output of subsystem i ( 1, 2,...,i nS= ) and also the 

input to subsystem j ( 1, 2,...,j nS= , j i≠ ), where nS is the number of subsystems. ijY  is 

given by 

 ( , , , , )
ijij Y s s i i i=Y g R I R I Y

Y

 (25) 

where 
ijYg  is a vector of all the functions for all the elements in ijY . If the size of ijY  is  

ijn , then Eq. (25) can be expanded as 

 

,1

,2

,

,1

,1

,

( , , , , )

( , , , , )

( , , , , )

ij

ij

ij ij nij

ij Y s s i i i

ij Y s s i i i

ij n Y s s i i i

Y g

Y g

Y g

=


=


 =

R I R I Y

R I R I Y

R I R I Y

Y

Y

Y



 (26) 

In the above equations, iY
Y

 are the linking variables from other subsystems and are 

given by 

 1 2 ( 1) ( 1) ( )( , , , , , , )T T T T T T
i i i i i i i nS i− +=Y Y Y Y Y Y
Y

                                   (27) 

The task of multidisciplinary analysis (MDA) is to calculate the output 

iZ ( 1, 2,...,i nS= ) given all the inputs sR , sI , iR , and iI . In subsystem i, iZ  is given by 

 ( , , , , )
ii Z s s i i i=Z g R I R I Y

Y

 (28) 

MDA first solves the nonlinear simultaneous equations in Eq. (26). Once the 

linking variables ijY  are obtained, the coupling between subsystems is cut off. Then iZ  

can be computed by Eq. (28). Solving the nonlinear simultaneous equation in Eq. (26) 
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requires calling 
ijYg  repeatedly. In this paper, the evaluation of a function in 

ijYg  and 
iZg  

( , 1,2,...,i j nS= , i j≠ ) is called a subsystem analysis. 

At first one MDA should be performed to obtain all the linking variables 

( , , , , )
ij

ij s s i i iY=Y g R I R I Y
Y

 at the means of random variables and averages of interval 

variables. Any MDA method can be used for this purpose. Then two steps at the 

subsystem level are followed. The first step is to cut off the coupling between 

subsystems. This step solves the nonlinear simultaneous equations in Eq. (26) by calling 

subsystem analyses repeatedly. Then in the second step, the output iZ  is now a function 

of only random and interval input variables; the linking variables are no longer in 
iZg  

( 1, 2,...,i nS= ). We can then apply the single-disciplinary analysis method described in 

Section 2 to calculate the standard deviation of a system output. 

3.2 Step 1 – Eliminating Linking Variables 

Eliminating linking variables requires solving the nonlinear simultaneous equations 

in Eq. (26). It is usually computationally expensive. We also use the Semi-Second-Order 

Taylor Expansion method to simplify 
ijYg  in Eq. (26). 

ijYg  is approximated with linear 

terms of sR , iR , and iY
Y

, as well as the interaction terms between sR  and sI , sR  and iI , 

iR and sI , and iR  and iI . Similarly to Eq. (12), the approximations of 
ijYg  are given by 

 ( , , , , ) ( , )ij

ij

Y
ijij Y s s i i i ij s ij i i ij s i

i

∂
∆ = − ≈ ∆ + ∆ + ∆ +

∂
Y

g
Y g R I R I Y Y A R B R Y M I I

YY Y

Y

 (29) 

where 
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1 2 ( 1) ( 1)

, ,..., , ,...,ij ij ij ij ij ijY Y Y Y Y Y

i i i i i i i nS− +

∂ ∂ ∂ ∂ ∂ ∂ 
=   ∂ ∂ ∂ ∂ ∂ ∂ 

g g g g g g
Y Y Y Y Y Y
Y

 (30) 

in which  

 

,1 ,1 ,1

,2 ,2 ,2

, , ,

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

...

...
 ( 1,2,..., 1,

... ... ... ...

...

ij ij ij

ki

ij ij ij

ij

ki

ij n ij n ij nij ij ij

ki

Y Y Y

ki ki ki n

Y Y Y
Y

ki ki ki n
ki

Y Y Y

ki ki ki n

g g g
Y Y Y

g g g
Y Y y k i

g g g

Y Y Y

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂
 ∂ ∂ ∂= = −

∂  
 
 ∂ ∂ ∂
 
 ∂ ∂ ∂ 

g
Y

1,..., )i nS+  (31) 

 ( )1 2 ( 1) ( 1) ( ), ,..., , ,...,
TT T T T T

i i i i i i i nS i− +∆ = ∆ ∆ ∆ ∆ ∆Y Y Y Y Y Y
Y

 (32) 

 

,1 ,1 ,1 ,1

, , , ,

2 2

1 1,1 ,1 , , , ,

2 2

1 1,1 ,1 , , , ,

....

... ... ...

...

ij ij ij ij

ij n ij n ij n ij nij ij ij ij

nSI nSI
Y Y Y Y

k ks s s k s nSR s nSR s k

i

nSI nSIY Y Y Y

k ks s s k s nSR s nSR s k

g g g g
R R I R R I

g g g g

R R I R R I

= =

= =

 ∂ ∂ ∂ ∂
 + +
∂ ∂ ∂ ∂ ∂ ∂ 

= 
 ∂ ∂ ∂ ∂
 + + ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑

A  




 (33) 

where nSI is the number of the sharing interval variables, nSR  is the number of the 

sharing random variables, ,s mR  is the m-th element of sR , and 
,ij kYg  is the k-th element of 

ijYg . 

 

,1 ,1 ,1 ,1

, , , ,

2 2

1 1,1 ,1 , , , ,

2 2

1 1,1 ,1 , , , ,

....

... ... ...

...

i i
ij ij ij ij

i i

i i
ij n ij n ij n ij nij ij ij ij

i i

nI nI
Y Y Y Y

k ki i i k i nR i nR i k

i

nI nI
Y Y Y Y

k ki i i k i nR i nR i k

g g g g
R R I R R I

g g g g

R R I R R I

= =

= =

 ∂ ∂ ∂ ∂
 + +
∂ ∂ ∂ ∂ ∂ ∂ 


= 
 ∂ ∂ ∂ ∂
 + +
 ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑

B  




 (34) 
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where inR  and inI  are the numbers of the random variables and interval variables in the 

i-th subsystem, respectively. ,i kR  is the k-th element of iR . ( , )ij s i
YM I I  contains all the 

first-order terms of sI  and iI . It should be noted that all the derivatives are calculated at 

the means of random variables and averages of interval variables. The derivatives are 

therefore constants. Assembling all linking variables together yields the following linear 

simultaneous equations  

1 1

2 2

2
11 1

2 22 2
1

1 2

...

...
......

... ... ... ...

...nS nS

Y Y

nS

Y Y

snS

nSnS nS
Y Y

nS

∂ ∂ 
− − ∂ ∂  ∆     ∂ ∂     − − ∆      ∆ = ∆ + +∂ ∂            ∆      ∂ ∂ − − ∂ ∂ 

1

g g
U

Y Y
RA B 0

g g
U RA B

Y R MY Y
0

RA B
g g

U
Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

      

                          (35) 

where U  stands for an identity matrix, ( )1 2 ( 1) ( 1) ( )
, , , , , ,

i i i i i i i i nS

TT T T T T
Y Y Y Y Y Y− +
=g g g g g g

Y

  , 

( )1 2 ( 1) ( 1), , , , , ,  ( 1,2, , )
TT T T T T T

i i i i i i i inS i nS− +∆ = ∆ ∆ ∆ ∆ ∆ =Y Y Y Y Y Y
Y

   , 

1

( 1)

( 1)

( )

...

...

i

i i
i

i i

i nSi

−

+

 
 
 
 

=  
 
 
  
 

A
0

A
A

A
0

A

, and  
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1

( 1)

( 1)

( )

...

...

i

i i
i

i i

i nSi

−

+

 
 
 
 

=  
 
 
  
 

B
0

B
B

B
0

B

 ,  = 1, 2,...,i nS  

Eq. (35) can be rewritten as 

 s∆ = ∆ + ∆ +C Y A R B R M  (36)

 where 

1 1

2 2

2

2
1

1 2

...

...

... ... ... ...

...nS nS

Y Y

nS

Y Y

nS

Y Y
nS

∂ ∂ 
− − ∂ ∂ 

 ∂ ∂
− − 

= ∂ ∂ 
 
 

∂ ∂ − − ∂ ∂ 

1

g g
U

Y Y
g g

U
C Y Y

g g
U

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

, 

1

2

...

nS

 
 
 =
 
 
 

A
A

A

A

, 

1

2

nS

 
 
 =
 
 
 

B 0
B

B
0

B

, and 

1

2

...

nS

∆ 
 ∆ ∆ =
 
 
∆ 

R
R

R

R

 

Solving the system of equations in Eq. (36) yields 

  s∆ = ∆ + ∆ +-1 -1 -1Y C A R C B R C M  (37) 

∆Y  is now functions of the input variables. 

3.2 Step 2 – Solving Standard Deviations of Z  

After ∆Y  are obtained, all the outputs can be expressed in terms of the input 

variables. Similarly to Eq. (29), outputs i∆Z  are approximated as  



19 

 ( , )iz
i i s i i i i s i

i⋅

∂
∆ ≈ ∆ + ∆ + ∆ +

∂
Zg

Z ∆ R E R Y M I I
Y Y

 (38) 

where 

,1 ,1 ,1 ,1

, , , ,

2 2

1 1,1 ,1 , , , ,

2 2

1 1,1 ,1 , , , ,

....

... ... ...

...

I
i i i i

I
i n i n i n i nij ij ij ij

nSnSI
z z z z

k ks s s k s nSR s nSR s k

i

nSnSIz z z z

k ks s s k s nSR s nSR s k

g g g g
R R I R R I

g g g g

R R I R R I

= =

= =

 ∂ ∂ ∂ ∂
 + +
∂ ∂ ∂ ∂ ∂ ∂ 

 =  
 ∂ ∂ ∂ ∂
 + + ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑

D ,                               

,1 ,1 ,1 ,1

, , , ,

2 2

1 1,1 ,1 , , , ,

2 2

1 1,1 ,1 , , , ,

....

... ... ...

...

i i
i i i i

i i

i i
i n i n i n i nij ij ij ij

i i

nI nI
z z z z

k ki i i k i nR i nR i k

i

nI nIz z z z

k ki i i k i nR i nR i k

g g g g
R R I R R I

g g g g

R R I R R I

= =

= =

 ∂ ∂ ∂ ∂
 + +
∂ ∂ ∂ ∂ ∂ ∂ 

 =  
 ∂ ∂ ∂ ∂
 + + ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑

B , and                                     

1 2 ( 1) ( 1)

, , , , , ,i i i i i iz z z z z z

i i i i i i i nS− +

 ∂ ∂ ∂ ∂ ∂ ∂
=   ∂ ∂ ∂ ∂ ∂ ∂ 

g g g g g g
Y Y Y Y Y Y
Y

                                 

in which  

,1 ,1 ,1

,2 ,2 ,2

, , ,

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

...

...

... ... ... ...

...

i i i

ki

i i i

i
ki

i n i n i nij ij ij

ki

z z z

ki ki ki n

z z z
z

ki ki ki n
ki

z z z

ki ki ki n

g g g
Y Y Y

g g g
Y Y Y

g g g

Y Y Y

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂
∂ ∂ ∂ =

∂  
 
 ∂ ∂ ∂
 
 ∂ ∂ ∂ 

g
Y

, 1, 2,..., 1, 1,...,k i i nS= − +  

Assembling Eq. (38) for all subsystems and plugging Eq. (37) into Eq. (38), we 

obtain ∆Z  in the following matrix form 
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[ ] [ ]Z Y Z
s s∆ = ∆ + ∆ + ∆ + = + ∆ + ∆ + +-1 -1 -1Z ∆ R E R F Y M ∆ F(C A) R E + F(C B) R FC M M

  (39)   

where 

1 1

2 2

1 1

2

1

( ) ( )

1 2

...

...

... ... ... ...

...

z z

nS

z z

nS

z nS z nS

⋅ ⋅

⋅ ⋅

⋅ ⋅

∂ ∂ 
− − ∂ ∂ 

 ∂ ∂
− − 

= ∂ ∂ 
 
 

∂ ∂ − − ∂ ∂ 

g g
0

Y Y
g g

0
F Y Y

g g
0

Y Y

, 

1

2

...

nS

 
 
 =
 
 
 

D
D

D

D

 and 

1

2

...
...

... ... ... ...
. ... nS

 
 
 =
 
 
 

E 0 0
0 E 0

E

0 0 E

. 

Then the variance of Z  can be expressed as 

 2 2 2
z Rs R= +σ Qσ Tσ  (40）  

where 

1

2

2

2

2

...

nS

Z

 
 
 =  
 
 
 

Z

Z

Z

σ

σ
σ

σ

 , 

1

2

2

2

2

...

nS

R

R
R

R

σ

σ

σ

 
 
 =  
 
 
 

σ ,
2

( ) = + 
-1Q D F C A , and 

2
( ) = + 

-1T E F C B .  

Zσ  now is a function of sI and iI . The optimization is used again to calculate the 

maximum standard deviation max
Zσ  and the minimum standard deviation min

Zσ . Similarly 

to Eq. (16), the optimization model for min
Zσ  is 

 
min  ( )

. .  

Z

l us t

s

≤ ≤
I

I

I I I
                      (41) 

where ( )1 2, , , ,s nS=I I I I I , ( )1 2, , , ,l l l l l
S nS=I I I I I , and ( )1 2, , , ,u u u u u

S nS=I I I I I . Zσ  is one 

element of Zσ . 

The optimization model for max
Zσ  is 
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max  ( )

. .  

Z

l us t

s

≤ ≤
I

I

I I I
                      (42) 

ijYg  and 
izg ( , 1,2,...,i j nS= , i j≠ ) are expanded at the mean values of sR  and iR , 

and the averages of sI  and iR . And all the derivatives of  
ijYg  and 

izg discussed above are 

evaluated locally at the subsystem level. Therefore, only one MDA at the system level 

should be performed initially. Similarly to Eq. (24), the computational cost of the 

proposed method is measured by  

 [ ]( ) ( )( )i s i i s i s i iN nR nR nY nR nR nI nI n= + + + + +  (43) 

where iN  is the number of  analyses in subsystem i, inY  is the number of linking 

variables in iY
Y

 that are the input to subsystem i, and in  is the total number of output in 

iY
Y

 and iZ . The first term ( )s i i inR nR nY n+ +  on the right-hand side is for the first 

derivatives of 
ijYg  and 

izg with respect to sR , sI , iR , iI , and iY
Y

, and the second term 

( )( )i s i s i iN nR nR nI nI n= + +  is for the second derivatives of 
ijYg  and 

izg with respect to 

iR  and sI , iR  and iI , sR  and sI , and  sR  and iI . 

4. EXAMPLES 

Two examples are used to for demonstration. The first one is simple, and therefore 

all the details are presented. It allows the reader to repeat the process easily.  

4.1   A Math Example 

Two subsystems are involved as shown in Fig. 3 .The details of the problem are 

given as follows. 
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Figure 3.   Example 1 

Subsystem 1 

Input: ( )1s R=R , ( )1s I=I , ( )1 2 3, TR R=R , ( )1 2I=I , and ( )1 21Y=Y
Y

 

Output: ( )1 12Y=Y
Y

 and ( )1 1Z=Z  

where ( ) ( )2
12 1 1 2 2 3 212 2Y R I R I R Y= + + + − + , and  

( ) ( ) ( ) 21
2

1 1 1 2 2 3 2 22 YZ R I R I R R I e−= + + + + + +  

Subsystem 2 

Input: ( )1s R=R , ( )1s I=I , ( )2 4 5, TR R=R , ( )2 3I=I , and ( )2 12Y=Y
Y

 

Output: ( )2 21Y=Y
Y

 and ( )2 2Z=Z  

where ( )( ) ( )2
21 1 1 4 3 4 3 5 12Y R I R I R I R Y= + + + + + + , and 

( ) ( )2 1 1 4 3 5 1 10.4Z R I R I R R I= + + + + +  

The distributions of the random variables are given in Table 2. The averages of the 

interval variables 1I ~ 3I  are 1.0, and their widths are 0.1. The values are given in Table 3. 

 

2Z  
12Y  21Y  

Subsystem 1 
 

1 2 3, ,R R R  
1Z

 

Subsystem   2 
 1 3,I I  

1 2,I I  

1 4 5, ,R R R  



23 

Table 2. Random Variables 

Variable Mean Standard Deviation Distribution 
1R  1.0 01 Normal 

2R  1.0 0.1 Normal 

3R  1.0 0.1 Normal 

4R  1.0 0.1 Normal 

5R  1.0 0.1 Normal 
 

Table 3. Interval Variables 

Variable LI  UI  

1I  1.0 0.05−  1.0 0.05+  

2I  1.0 0.05−  1.0 0.05+  

3I  1.0 0.05−  1.0 0.05+  
 

The proposed method is used to estimate the standard deviations of the output of 

each subsystem.  The results are given in Table 4. The number of MDA is 1, and the 

number of subsystem analyses for each subsystem is 26. Monte Carlo simulation (MCS) 

is used to confirm the results. For MCS, each of interval variable is divided into 10 

smaller intervals, and 500 samples are taken for each random variable. The number of 

MDA is therefore equal to 510 10 10 500 5 10× × × = × . The results from the proposed 

method match well with those from MCS, while the former method is much more 

efficient.  
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Table 4.  Robustness Assessment Result 

 GRA MCS 

1

max
Zσ  0.467 0.479 

1

min
Zσ  0.450 0.457 

2

max
Zσ  0.150 0.151 

2

min
Zσ  0.148 0.145 

 

4.2   Cylinder Problem 

For a further illustration, we present an engineering application example [29]. The 

example is a compound cylinders design (Fig. 4). The two cylinders are treated as a 

multidisciplinary system, where the inner and outer cylinders are considered as 

subsystems 1 and 2, respectively. The internal and external radii of the inner cylinder are 

a and b, respectively, and the internal and external radii of the outer cylinder are b and c, 

respectively. The internal pressure is P0. 

 

Figure 4.  Compound cylinder system 

 

c 
b 

P
 

a 
0P  

b 

Subsystem 1: Inner cylinder Subsystem 2: Outer cylinder Compound cylinder system 
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The notations used in this example are given in Fig.5. 

 

Figure 5. System structure of the compound cylinders 

Subsystem 1: the inner cylinder 

Input: ( )0, T
S S p=R  , ( ), , T

S E bρ=I , 1 ( )a=R , 1 =∅I , 

( )1 21Y=Y
Y

 where 21 ( )p=Y , 2 1δ δ δ= − , and 

2 2 2 2
2 1

2 2 2 2
( )E Eb c b cp

b c b b c b
δ δ δρ ρ

   −+ +
= + = +   − −   

 

Output: ( )1 12Y=Y
Y

, ( )1 1,1 1,2,
T

Z Z=Z , 12 1( )δ=Y , 

2 2

1 2 2

pb b a
E b a

δ ρ
 +

= − − 
, 1,1 aZ σ S= − , 1,2

in
bZ σ S= − , 

2 22
0

2 2 2 2

( )2
a

a c ppbσ
b a c a

+−
= +

− −
, and 

2 2 22 2
0

2 2 2 2 2

( )( )
( )

in
b

a b c pp b aσ
b a c a b

+− +
= +

− −
 

Subsystem 2: the outer cylinder 

Input: ( )0, T
S S p=R , ( ), , T

S E bρ=I , ( )2 δ=R , ( )2 c=I , ( )2 12Y=Y
Y

 where 

12 1( )δ=Y  

Subsystem  1 
Inner cylinder 

Subsystem   2 
Outer cylinder 

( )12 1δ=Y  

( )21 p=Y  
(1) (2)

1 1 1( , )Z Z=Z  

0

( , , )
( , )

S

S

E b
S p
ρ=

=
I
R

 
0

( , , )
( , )

S

S

E b
S p
ρ=

=
I
R

 2

2

( )
( )c
δ=

=
R
I

 

(1) (2)
2 2 2( , )Z Z=Z  

1

1

( )a=
=∅

R
I
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Output: ( )2 21Y=Y
Y

, ( )2 2,1 2,2,Z Z=Z , 21 ( )p=Y ,  2,1
out
bZ σ S= − , 2,2 cZ σ S= − , 

2 1δ δ δ= − , 
2 2 2 2

2 1
2 2 2 2

( )E Eb c b cp
b c b b c b

δ δ δρ ρ
   −+ +

= + = +   − −   
, 

2 2 2 2 2

02 2 2 2 2

( )
( )

out
b

b c a b cσ p p
c b c a b

 + +
= + − − 

, and 
22

0
2 2 2 2

22
c

a pb pσ
c b c a

= +
− −

 

In the above equations, 

E  is the modulus of elasticity, 

S   is the allowable stress, 

p  is  the contact stress at the interface, 

δ  is the total shrinkage allowance of the two cylinders at the interface, 

1δ   is the radial deformation of the inner cylinder at radius b, 

2δ   is the radial deformation of the outer cylinder at radius b, 

ρ  is the Poisson’s ratio, 

aσ  is the tangential stress of the inner cylinder at the internal radius a, 

in
bσ is the tangential stress of the inner cylinder at the external radius b, 

out
bσ  is the tangential stress of the outer cylinder at the internal radius b, and  

cσ  is the tangential stress of the outer cylinder at the external radius c. 

The distributions of the random variables and interval variables are given in Tables 

5 and 6, respectively. 
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Table 5.  Distributions of Random Variables 
Variables Mean Standard Deviation Distribution 
S 310.0 10  psi×  31.0 10  psi×  Normal 
p0 320.0 10  psi×  32.0 10  psi×  Normal 
a 75 in 0.1 in Normal 
δ 0.004 in 0.0004 in Normal 

 

Table 6.  Distributions of Interval Variables 
Variables LI  UI  

E 630 10 (1 2%) psi× × −  630 10 (1 2%) psi× × +  
ρ  0.3 (1 2%)× −  0.3 (1 2%)× +  

b 9.95 in 10.05 in 
c 14.95 in 15.05 in 

 

The proposed method is used to estimate the standard deviations of the output of 

each subsystem.  The results are given in Table 7. Monte Carlo simulation (MCS) is used 

to confirm the results. For MCS, 4 smaller intervals are taken for each of the interval 

variables, and 410  samples are taken for each of the random variables. The number of 

MDA is equal to 65 5 5 5 10000 6.25 10× × × × = × . The results obtained by the proposed 

method match well with those by MCS, while the efficiency of the proposed method is 

much higher.  

Table 7.  Comparison of Standard Deviation 

 GRA MCS 

( )1,1 1,2

max max, (psi)ss Z Z  ( )3 33.485 10 , 2.444 10× ×  ( )3 33.597 10 , 2.570 10× ×  

( )1,1 1,2

min min, (psi)ss Z Z  ( )3 33.484 10 , 2.419 10× ×  ( )3 33.562 10 , 2.515 10× ×  

( )2,1 2,2

max max, (psi)ss Z Z  ( )3 32.40 10 , 1.667 10× ×  ( )3 32.544 10 , 1.750 10× ×  

( )2,1 2,2

min min, (psi)ss Z Z  ( )3 32.373 10 , 1.667 10× ×  ( )3 32.50 10 , 1.724 10× ×  
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5. CONCLUDING REMARKS 

The general robustness assessment method computes the bound of the standard 

deviation of an output of multidisciplinary systems given both random and interval input 

variables. The challenge is to maintain the computational efficiency. The proposed Semi-

Second-Order Taylor Expansion method performs well in terms of efficiency. At first one 

MDA is performed to solve the linking variables at the means of random input variables 

and the averages of interval input variables. And then two steps are followed. In the first 

step, each of the linking variables in one subsystem is approximated with the Semi-

Second-Order Taylor Expansion. Solving the simplified functions eliminates all the 

linking variables. And hence in the second step all the outputs are functions of only input 

variables, without any linking variables. The Semi-Second-Order Taylor Expansion is 

used again to approximate the output functions, and then their standard deviations are 

estimated. All the analyses in the two steps are performed locally at subsystem level. 

The examples have demonstrated the good performance of the proposed method. 

The advantages of the proposed method include high efficiency and ease of use. If the 

derivatives of the performance function are evaluated numerically, the general robustness 

analysis method can be used for black-box functions. However, it should be noted that 

the accuracy may not be good in the following situations. (1) When the performance 

functions are highly nonlinear, the Semi-Second-Order Taylor Expansion may not give 

accurate approximations. (2) When uncertainties are huge, or in other words, when the 

standard deviations of random variables and the widths of interval variables are large, the 

accuracy will not be high. The reason is that the accuracy of the Taylor expansion 

decreases at a point that is far away from the expansion point. (3) When a performance 
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function is expanded at a saddlepoint, the proposed method will not be applicable. 

Detailed explanations of the saddle point situation are given in [6]. The possible ways to 

increase accuracy include using higher order Taylor expansion or Monte Carlo 

simulation. Of course, doing so in general will require more computational efforts. The 

method can be modified for dependent random variables, but it is not applicable for 

situations where random variables R and interval variables I are dependent. 
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