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Tremendous efforts have been devoted to developing efficient approaches to 
reliability analysis for multidisciplinary systems. Most of the approaches are only 
capable of dealing with random variables modeled by probability distributions. 
Both random and interval variables, however, may exist in multidisciplinary 
systems. Their propagation through coupled subsystems makes reliability analysis 
computationally expensive. In this work, a unified reliability analysis framework is 
proposed to deal with both random and interval variables in multidisciplinary 
systems. The framework is an extension of the existent unified uncertainty analysis 
framework for single-disciplinary problems. The new framework involves 
probabilistic analysis (PA) and interval analysis (IA). Both PA and IA are decoupled 
from each other and are performed sequentially. The First Order Reliability 
Method (FORM) is used for PA. Three supporting algorithms are developed. The 
effectiveness of the algorithms is demonstrated with a mathematical example and an 
engineering application.  

c   = limit state 
FX   = cumulative distribution function of X 
fX   = joint probability function of X 
G   = response 
Gmax = maximum value of G 
Gmin = minimum value of G 
g   = limit state function 
h   = equality constraint 
Pr   = probability 
pf   = probability of failure 

L
fp    = lower bound of probability of failure 
U
fp    = upper bound of probability of failure 

R   = reliability 
U   = vector of standard normal random variables transformed from X 

u*   = Most Probable Point 
Wi   = vector of interval input variables of the i-th discipline  
wL = vector of lower bounds of W 
wU = vector of upper bounds of W 
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X   = vector of random variables 
Xi   = vector of random input variables of the i-th discipline  
Yij   = vector of coupling variables from the i-th discipline to the j-th discipline  
Zi   = vector of outputs from the i-th discipline  
β = reliability index 
Φ = cumulative distribution function of a standard normal variable 
Φ-1 = inverse function of Φ 
 

I. Introduction 

Compared with single-disciplinary reliability analysis, multidisciplinary reliability 

analysis is much more complicated. The subsystems (disciplines) of a multidisciplinary 

system are often highly coupled with each other. The output of one subsystem may be the 

input to other subsystems, and vice versa. Uncertainty in one discipline can then be 

propagated to other disciplines through the interdisciplinary interfaces. A large number of 

uncertain variables may also be involved in a multidisciplinary system. 

 Due to these complexities, computationally efficient reliability analysis becomes 

essential. Several multidisciplinary reliability analysis methods have been reported [1-11]. 

Sues et al. [1] use response surface models to replace the computationally expensive 

simulation models in reliability analysis for multidisciplinary design optimization (MDO). 

A multi-stage and parallel implementation strategy is developed to integrate reliability 

analysis and the MDO framework [2]. The reliability analysis methods in [3, 4] employ a 

concurrent subspace optimization framework; and in a similar manner, the collaborative 

reliability analysis [5] concurrently performs reliability analysis and multidisciplinary 

analysis (MDA). On the contrary, Ahn et al. [6] employ a sequential approach to 

reliability analysis with MDA. They also develop a strategy to associate single-level 

reliability-based design with the bi-level integrated system synthesis; and the sequential 
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single loops of reliability analysis and optimization are conducted based on the 

approximated functions [7]. To avoid the tremendous computational burden caused by 

the direct integration of reliability-based design (RBD) with MDO, a method of 

Sequential Optimization and Reliability Assessment (SORA) for MDO is developed in 

[8]. The SORA decouples reliability analysis from MDO. 

 On the other hand, Analytical Target Cascading (ATC) is formulated for design 

optimization under uncertainty for hierarchically decomposed multilevel systems [9]. The 

advanced mean value (AMV) based technique and a bottom-to-top coordination are used. 

ATC is also reported in [10], where reliability-based MDO is decomposed into several 

individual RBD problems at the subsystem level, and then the SORA is used to solve the 

individual RBD problems. The study in [11] focuses on the tradeoff between system 

performances and the probabilities of failure of subsystems. The study employs an all-in-

one approach to the coupling analysis, where the First Order Reliability Method (FORM) 

and multi-objective optimization are integrated. A methodology of non-deterministic 

design optimization for hierarchically coupled structural systems is proposed in [12], 

where parameter uncertainties are considered with deterministic multilevel 

decomposition formulations. 

 All of the aforementioned methods deal with only random variables with 

probability distributions. In many engineering applications, however, information or 

knowledge might not be sufficient to build probability distributions. Intervals are usually 

suitable for those uncertain variables, about which we may have too limited information 
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to fit distributions. Examples of using intervals in multidisciplinary systems are given in 

[13, 14].   

Random variables and interval variables may present in a system simultaneously. A 

framework of Unified Reliability Analysis is developed to quantify the effect of random 

and intervals variables [15]. In this work, we extend the strategy in [15] to reliability 

analysis for multidisciplinary systems when both random and interval variables are 

involved. In Section II, the Unified Reliability Analysis (URA) framework for a single 

disciplinary system is briefly reviewed. A multidisciplinary system model with random 

and interval input variables is also provided therein. In Section III, three algorithms, 

which support the extension of the URA to multidisciplinary systems, are presented. 

These algorithms are demonstrated by a mathematical example and an aircraft wing 

design application in Section IV. Conclusions are given in Section V. 

II. Modeling and Methodology 

A. Reliability Analysis 

For a single-disciplinary system where only random variables X are involved, 

reliability is defined by  

 Pr{ ( ) 0}R G g= = ≥X  (1) 

where Pr{}⋅  denotes a probability, G is a response, and ( )1 2, , ,
XnX X X= ⋅⋅ ⋅X  is a vector 

of random variables, and g  is a limit-state function [16]. In this paper, we assume that 

 ( =1,2,..., )i XX i n  are independent.  
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If the joint probability density function (PDF) of X is Xf , the probability of failure 

fp , which  is 1 R− , can be calculated by 

 
( ) 0

Pr{ ( ) 0} ( )f
g

p G g f d
<

= = < = ∫ X
X

X x x  (2) 

The limit state function ( )Xg  is usually a nonlinear function of X; the integration 

boundary, ( ) 0g =X , therefore, is nonlinear. The probability integration in Eq. (2) is also 

multidimensional. There is rarely a close-form solution to Eq. (2). Numerical integration 

methods are also computationally expensive when the dimension is high. To this end, the 

efficient First Order Reliability Method (FORM) is widely used to obtain an approximate 

solution to Eq. (2).  

The FORM is performed with the following three steps. 

Step 1: Transform random variables X into standard normal random variables U. 

The i-th random variable  iX  is transformed by 

 1 ( )−  Φ  = 
ii X iu Φ x   (3) 

where 
iXF is the cumulative distribution function (CDF) of  iX , and 1−Φ is the inverse 

CDF of a standard normal distribution.  

Step 2: Search the Most Probable Point (MPP). The MPP *u  is located by 

 
min

( ) 0s.t. g




=
u

u

  u
 (4) 
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in which ⋅  stands for the norm (length) of a vector. Geometrically, the MPP is the 

shortest distance point from the limit state ( ) 0g =U  to the origin in the U-space. The 

minimum distance *β = u  is called a reliability index. 

Step 3: Compute the probability of failure. fp  is obtained by 

 ( )β= Φ −fp  (5) 

where Φ is the CDF of a standard normal distribution.  

The most computation-intensive work of the FORM is the MPP search. The 

following recursive algorithm [17] is commonly used for the MPP search, 

 

1
( ) ( 1)

1

1
( )

( 1

)
( )

( )
( )

β β

β

−
−

−

−

−


= + ∇


∇ = − ∇

( )

( )

( )
( )

)

(u
u

uu
u

k
k k

k

k
k k

k

g
g

g
g

 (6) 

where ( )∇ ( )u kg  is the gradient of g at ( )u k , (( )∇ )u kg  is its magnitude, and k is the 

iteration counter. 

 

B. Unified Reliability Analysis Framework 

The purpose of this work is to establish a Unified Reliability Analysis (URA) 

framework that can handle both random and interval variables in multidisciplinary 

systems. For this purpose, we employ the URA framework that has been developed for 

single-disciplinary systems [15]. The framework is illustrated in Fig.1. The input to the 

framework are random variables X characterized by probability distributions and interval 
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variables W represented by their bounds [ wL , wU ]. It is obvious that the uncertain output 

(response) ( , )= X WG g  is also characterized by two bounds of its probability 

distributions [15]. Thus the reliability of the system is also bounded within its maximum 

and minimum values.  

 

Fig. 1   Unified reliability analysis framework. 

Reliability analysis calls the limit-state function ( , )= X WG g  a number of times; 

so does multidisciplinary analysis (MDA), which is responsible for solving for the 

linking variables between subsystems. Different computational algorithms integrate 

reliability analysis and MDA in different ways; and their efficiency and applicability are 

also different. In Section III, we develop three computational algorithms that support the 

URA framework. 

 

C. FORM-Based URA 

Let ∆w  denote the set of intervals W and ( , ) 0g <X W  denote a failure event. The 

lower and upper bounds of the probability of failure, L
fp  and U

fp , can then be calculated 

by   

G: CDF bounds, 
pf  bounds or 
reliability bounds 

( , )= X WG g
 

X: joint PDF 

W: intervals 1w  

2w  

1
Uw  1

Lw  

2
Lw  2

Uw  
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



 ∆∈<==  |0)( max maxPr W

W
WWX,gGpL

f  (7) 

and 

 




 ∆∈<==  |0)( min minPr WW

WWX,gGpU
f  (8) 

respectively [15]. maxG  and minG are the global maximum and minimum values of G over 

∆w , respectively. 

According to Eqs. (7) and (8), the procedure to calculate L
fp  and U

fp  consists of 

two loops: one is interval analysis (IA) for searching minG and maxG , and the other is 

probability analysis (PA) for calculating probabilities { }minPr 0G < ∈∆wW  and 

{ }maxPr 0G < ∈∆wW . If the FORM is used for PA, the Most Probable Point (MPP) 

needs to be identified by solving the following model  

 
min

) 0s.t. g




=
u

u

(u, w

 

   
 (9) 

where w is treated as a constant vector. For IA, an optimization problem can be 

formulated for maxG : 

 
max ( , )g

s.t. 




∈∆
w

w

 u w

   w
                                                (10) 

where u is treated as a constant vector. For minG , Eq. (10) becomes a minimization 

problem.  

To solve for u in PA in Eq. (9), w should be given; and to solve for w in IA in Eq. 

(10), u should be given. This indicates that both PA and IA are fully coupled. To reduce 
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the computational cost, a FORM-based URA (FORM-URA) framework is proposed [15]. 

Under this framework, PA and IA are decoupled and are performed sequentially. This 

FORM-URA framework for the calculation of L
fp  is illustrated in Fig.2. PA is performed 

followed by IA. After PA, the KKT conditions of IA are checked at the solution of PA. If 

the KKT conditions are satisfied, IA will be skipped. Skipping the IA loop saves the 

computational time dramatically. 

 

Fig. 2 Flowchart of the FORM-URA method. 

Initial w , u  

k = 1 
 

Probability Analysis (PA) 
Iteration k of the MPP search  

Update u given w 

   Stop 

k = k +1 

Convergence? 

KKT satisfied? 

Interval Analysis (IA) 
Maximize G given u 

 

N. 

( ) ( 1)k k−=w w  

Y. 
N. 

Y. 

( )ku

( )kw

)0(w , )0(u  
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The efficiency and robustness of an MPP search algorithm are very important for 

the FORM-URA method. The efficient MPP search algorithm HLRF [18, 19] is therefore 

used. It is known, however, that the HLRF algorithm may not converge for a nonlinear 

function. If this happens, the improved version of HLRF algorithm [20], denoted by 

iHLRF, will take over the PA process. iHLRF is computationally efficient and guarantees 

to converge to a local MPP. On the other hand, as indicated in Eq. (10), IA is formulated 

as a bound-constrained optimization problem. Then most of nonlinear optimization 

algorithms can be used for IA. Both FORM and optimization are capable of handling 

black-box performance functions, and hence so is FORM-URA. 

 

D. Multidisciplinary Systems (MDA) Analysis with Random and Interval Variables 

To integrate URA with MDA, we need to understand the relationships among 

random variables, interval variables, and coupling variables in a multidisciplinary system. 

A three-discipline system in Fig.3 illustrates such relationships. The notations are given 

below. 

Xs : sharing random input variables, 

Xi :  local random input variables of discipline i, 

Ws : sharing interval input variables, 

Wi : local interval input variables of discipline i, and 

Zi : outputs of discipline i;  

Yij : coupling (linking) variables from discipline i to discipline j.  
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Multidisciplinary analysis (MDA) is responsible for solving for output Zi  given all 

the input variables. Since Zi  depends on coupling variables, MDA must first solve for 

coupling variables Yij .  A set of coupling variables from the i-th discipline is formulated 

as 

 ),,,,();,,2,1,( iisisiiji ijnj ••• =≠⋅⋅⋅== YWWXXYYY   (11) 

where n is the number of disciplines, and •iY  represents dependent variables on the left-

hand side and also the functional expressions of the dependent variables. i•Y  is the vector 

of coupling variables, which are the inputs to discipline i and the outputs from other 

disciplines. In Eq. (11), );,,2,1,( ijnjjii ≠⋅⋅⋅==• YY .  

 

Fig. 3 Multidisciplinary system with random and interval variables. 

The system of simultaneous equations in Eq. (11) determines the system 

consistency over the interfaces among coupled disciplines. Solving those equations is the 

Discipline 1 
, s1X X  

1, sW W  

Discipline 2 

Discipline 3 

21Y  12Y  

32Y  
23Y  

 

13Y  

31Y  

1Z  

 

2Z  

 

3Z  

3, sX X  

2 , sW W  

2 , sX X  

3, sW W  
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task of multidisciplinary analysis (MDA). Expanding Eq. (11) over all disciplines, we 

obtain  
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 (12) 

Suppose iG  is one of the outputs Zi  from discipline i and the corresponding 

function is ig ; then the function is given by 

 ),,,,( iisisii gG •= YWWXX  (13) 

 If a failure event is defined by 0iG < , then the task of reliability analysis is to find 

the probability { }Pr 0iG <  . As describe in Sec.II.C, we need to quantify the lower and 

upper bounds of the probability of failure: { }maxPr 0iG <  and { }minPr 0iG < . Solving the 

probability bounds is computationally expensive because it needs to perform coupled PA, 

IA, and MDO. Hence, efficient algorithms are desired. Next, we propose three algorithms 

based on different strategies. 

 

III. Algorithms 

This work is to extend the existent Unified Reliability Analysis (URA) framework 

[15] to multidisciplinary analysis (MDA). For this purpose, we propose three algorithms 

to integrate URA with MDA. In all the three algorithms, PA and IA are decoupled and 
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are conducted sequentially. PA is performed first while the interval variables are fixed, 

and then IA is performed while the random variables are fixed. The process of one PA 

followed by the next IA is referred to as a cycle. After the first cycle, PA and IA are 

performed again in the second cycle. This process repeats cycle by cycle till convergence.  

As summarized in Fig. 4, the three algorithms call MDA in different manners. In 

the first algorithm, which is called the Sequential Double Loops (SDL) algorithm, MDA 

is called within both the PA and IA loops. Therefore, both PA and IA involve a double-

loop procedure. The second algorithm is called the Sequential Single Loops (SSL) 

algorithm. This algorithm treats MDA as equality constraints in both PA and IA and 

therefore eliminates the MDA loop. Each of PA and IA then forms a single loop. The last 

algorithm is called the Sequential Single-Single Loops (SSSL) algorithm. This algorithm 

performs the PA loop by calling the MPP search and MDA sequentially. The PA loop 

then becomes a sequential single loop. IA is the same as in the second algorithm and still 

forms a single loop. The details of the three algorithms are given in the following 

subsections. 
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Fig. 4  Outline of proposed algorithms. 

 

A. Sequential Double Loops (SDL) Algorithm  

In this algorithm, both PA and IA involve a double-loop procedure. Within the PA 

and IA loops, MDA is called repeatedly at each iteration.  MDA is therefore an inner loop 

for maintaining the system consistency. The PA and IA double loops are performed 

sequentially. In this work, the FORM is used for PA, and optimization is used for IA. The 

PA 
(Outer loop) 

MDA 
(Inner loop) 

IA 
(Outer loop) 

MDA 
(Inner loop) 

Double Loop Double Loop 

SSL – Sequential Single Loops algorithm 

PA 
System consistency 
constraints 

Single Loop Single Loop 

IA 
System consistency 
constraints 

SSSL – Sequential Single-Single Loops algorithm 
 

PA 

Sequential 
Single Loop 

Single Loop 

IA 
System consistency 
constraints 

MPP search MDA 

SDL – Sequential Double Loops algorithm 
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flowchart of this algorithm for searching the lower bound of the probability of failure is 

given in Fig.5. 

 

Fig. 5 SDL algorithm for the lower bound of fp  

Specifically, in PA the MPP search is the outer loop, which is modeled as an 

optimization problem and takes only random variables as its design variables. The 

interval and coupling variables are treated as constant. Their values are from previous 

Initial w, u, y 
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Probability Analysis (PA) 
MPP search  

Update u given w 
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Convergence? 
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Maximize gi(u,w,y) given u 
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Y. 

Y. 
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cycle. Suppose the current cycle of the overall reliability analysis is cycle k. The 

optimization problem is then expressed by 

 










=

•

•
−

MDAby  solved is           

0),,(     .. 
min

)1(

i

i
k

igts

y

ywu
u

u

 (14) 

 In the above model, ig  is a limit-state function in the i-th subsystem. Design 

variables u consist of not only the random input variables to the i-th subsystem but also 

all the random input variables of other subsystems; namely, 1( , , , )s n= ⋅⋅ ⋅u u u u . In Eq. 

(14), all the interval variables ( )( 1) 1 1 1 1
1 2, , , ,k k k k k

s n
− − − − −=w w w w w  are fixed, and they are 

from the IA in the last cycle. The MDA inner loop is responsible for solving for coupling 

variables   i•y . Since in this work, the FORM is employed for PA, the HLRF algorithm 

in Eq. (6) is used for the MPP search. With the interval and coupling variables, we 

modify the HLRF algorithm as follows. 
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 (15) 

where j is the iteration counter of the PA loop, interval variables ( 1)k−w  are kept constant 

and are from the previous cycle of the overall reliability analysis. The coupling variables 

i•y  are obtained from the following inner MDA loop.  

 ),,,,();,,2,1;,,2,1,( )1()1()()(
q

k
q

k
s

j
q

j
sqqmq qmnmnq •

−−
•• =≠⋅⋅⋅=⋅⋅⋅== ywwuuYyy   (16) 
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After PA, IA is performed. The outer loop is an optimization problem for the 

maximum or minimum value of ig . The design variables are interval variables while the 

values of random variables have been obtained from PA. Within the optimization loop is 

the MDA inner loop, which solves for coupling variables i•y . For the lower bound of fp , 

IA is a maximization problem with the following formulation 

 










∆∈

•

•

M∆Aby  solved is             

       .. 
),,(max )(

i

i
k

i

ts
g

y

w
ywu

w

w

 (17) 

where design variables are ( )1 2, , , ,n s=w w w w w . Random variables ( )ku  are obtained 

from the MPP search and are kept constant herein. Coupling variables i•y  are solved in 

the following inner MDA loop. 

 ),,,,();,,2,1;,,2,1,( )()(
qqs

k
q

k
sqqmq qmnmnq ••• =≠⋅⋅⋅=⋅⋅⋅== ywwuuYyy   (18) 

This algorithm integrates both PA and IA with MDA in a straightforward manner. 

In other words, the algorithm involves the direct combination of PA and MDA and the 

direct combination of IA and MDA. Because of the direct combination, the algorithm is 

more robust than the other two algorithms that are presented next. However, it may 

require higher number of MDA calls than the other two algorithms. For instance, at the   

j-th iteration of the MPP search in Eq. (14), MDA is performed whenever the MPP is 

updated. After ( )ju  is obtained, MDA is called to get i•y  in order to calculate

),,( )1()1(
i

kj
ig •

−− ywu . Besides, as shown in Eq. (15), MDA is also needed when the finite 

difference method is used to calculate the partial derivatives of ig . The equation of the 
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derivatives of ig  with respect to a particular random variable qu  (the q-th element of u ) 

is given by  

 
∆
−

=
∂
∂ •

−
•

− ),,()',,'( )1()1(
i

k
ii

k
i

q

i gg
u
g ywuywu

 (19) 

where ( )'
1 2, , , , ,q nuu u u u= ⋅⋅ ⋅ + ∆ ⋅ ⋅ ⋅u , nu  is length of u , and ∆  is a step size. i•'y  is the 

new values of coupling variables associated with the random variables 'u . MDA must be 

called again to obtain i•'y .  

The SDL algorithm suits the systems where the disciplinary analyses and MDA are 

computationally cheaper. In this work, PA is performed with the FORM; however, other 

methods can also be used, for example, the Second Order Reliability Method (SORM) 

and the saddlepoint approximation method [21]. Although nonlinear optimization is used 

for IA as described above, the efficient interval arithmetic can also be used.  

 B.  Sequential Single Loops (SSL) Algorithm 

As described above, when MDA is expensive, the first algorithm (the SDL 

algorithm) may not be efficient. To alleviate the computational demand from MDA, we 

propose this second algorithm. Because this algorithm uses a single-loop strategy, it is 

called the Sequential Single Loops (SSL) algorithm. As shown in Fig.5, the algorithm 

reformulates the optimization problems of both PA and IA by including the 

interdisciplinary equilibrium (consistency) as part of constraints. These constraints are 

the simultaneous equations in MDA and given by 

 niiii ,,2,1  ,0),,(),,( ⋅⋅⋅==−= ••• ywuYYywuh  (20) 
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where y contains all the coupling variables. 

The optimization model for the PA loop in the k-th cycle of the overall reliability 

analysis is then formulated as   
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where ig  is a limit-state function of subsystem i, interval variables ( 1)k−w  are given from 

the IA loop in the last cycle, and random variables u and coupling variables y are 

regarded as design variables. Since MDA is part of the constraints, the MDA loop is no 

longer required. 

 Then IA is performed. The optimization for the minimum probability of failure in 

the IA loop (see Eq.(7)) is modeled  by 
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ts
g

 (22) 

where random variables ( )ku  is obtained from the PA loop and are constant herein. 

Interval variables w and coupling variables y are taken as design variables. Same as in 

PA, the inner MDA loop is no longer needed. 

The entire reliability analysis procedure is depicted in Fig.6. As shown in the figure, 

the two single loops of PA and IA are performed sequentially. 
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Fig. 6 SSL algorithm for the lower bound of fp . 

Different from the first algorithm, the SSL algorithm does not call MDA directly. 

The task of MDA is implicitly embedded as equality constraints in the PA and IA loops. 

Solving these equality constraints requires calling disciplinary analyses. The algorithm is 

therefore suitable for the situation where it is easy to perform disciplinary analyses 

concurrently. It is efficient for the systems that contain fewer coupling variables. 

However, when the number of coupling variables is large, this algorithm will contain a 

large number of design variables because the coupling variables are part of design 

variables. This might diminish the efficiency of the SSL algorithm. The other 

disadvantage of the algorithm is the inclusion of equality constraints for the system 

consistency. Equality constraints make optimization hard to converge [22]. Since 

additional constraints are added to the MPP search in PA, the MPP search algorithms 

such as HLRF algorithm are no longer applicable.  
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C. Sequential Single-Single Loops (SSSL) Algorithm 

In the first algorithm, the SDL algorithm, an efficient MPP search method can be 

used for PA, while in the second algorithm, the SSL algorithm, only nonlinear 

optimization can be used for PA. Nonlinear optimization is usually not as efficient as 

specialized MPP search algorithms. To take advantage of the MPP search algorithms, we 

combine both of the above two algorithms. The combination comes from the PA loop of 

the SDL algorithm and the IA loop of the SSL algorithm. An MPP search algorithm can 

then be used for PA. To save computational resources further, for PA, we change the 

double-loop procedure to a sequential single loop procedure where the MPP search and 

MDA are performed sequentially. The same double loop procedure for IA is used as in 

the SSL algorithm. The algorithm is illustrated in Fig. 7.  

 

Fig. 7  SSSL algorithm for the lower bound of fp . 
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MDA loop is executed to update the coupling variables. The MPP search and MDA are 

performed in a sequential manner till convergence is reached. In IA, the system 

consistency is part of constraints. Interval and coupling variables are solved 

simultaneously given the random variables from the PA loop. IA includes system 

consistency constraints and involves a single-loop procedure. The overall reliability 

analysis is performed sequentially with the sequential single-loop PA and the single-loop 

IA.  

Since in PA the MPP search and MDA are performed sequentially, the MPP search 

algorithm for the single loop PA in Eq. (15) cannot be used directly. We modify the MPP 

search algorithm as follows. 
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 (23) 

The above equation is for the j-th iteration of the MPP search in the q-th iteration of 

the PA loop and the k-th cycle of the overall reliability analysis. The interval variables 

( 1)k−w  are from the previous cycle (cycle k-1) of the overall reliability analysis and are 

kept constant. The coupling variables )1( −
•
q
iy  are from the last iteration (iteration q-1) of 

the PA loop and are also kept constant. The solution is the MPP ( )qu .  

After the MPP loop is completed, MDA is performed. The coupling variables q
i•y    

are obtained from the following model. 

 ),,,,()  ;,,2,1  ;,,2,1,( )1()1()()(
p

k
p

k
s

q
p

q
sppmp pmnmnp •

−−
•• =≠⋅⋅⋅=⋅⋅⋅== ywwuuYyy   (24) 
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If analytical derivatives are not available for the gradient ),,( )1()1()1( −
•

−−∇ q
i

kj
ig ywu  in 

Eq. (23), the finite difference method in Eq. (19) can be used to estimate the gradients

/i pg u∂ ∂ , where pu  is the p-th element of u. The equation is given by 
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 (25) 

where i•'y  is the new values of coupling variables associated with the new random 

variable ( )nup uuuu ,,,,, 21 ⋅⋅⋅∆+⋅⋅⋅=′u . 

It is noted that the coupling variables i•'y  are not constant. They are functions of u. 

i•'y  should therefore be re-calculated. However, i•'y  cannot be obtained from the MPP 

search because it is solved by MDA. A first order Taylor’s series expansion is used to 

estimate i•'y , and the equation is given by 

 ∆
∂
∂

+= •
••

p

i
ii u

yyy'   (26) 

where 
p

i

u∂
∂ •y

 is obtained from the MDA loop in the previous iteration (iteration j-1) of PA 

and is kept constant in the MPP search.  

This algorithm is suitable for problems where PA is relatively expensive and IA is 

relatively cheap. One may also choose this method when the number of random variables 

is large and the number of interval variables is small.  
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IV. Example 

Two examples are presented for demonstration. The first one is a mathematical 

problem with two subsystems. In this problem, the probabilistic constraints are simple 

and the number of variables is small. As a result, this problem effectively shows the 

formulations and procedures of the three algorithms. The second example is an aircraft 

wing design problem involving more complicated probabilistic constraints and more 

coupling variables and random variables. It indicates the potential use of the present 

method to real engineering applications. 

The convergence criteria for the overall reliability analysis and PA in the two 

examples are: 

1) The difference between the norms of the sharing random variables of two 

consecutive MPPs is less than 10-6. This difference is measured in the standard normal 

space.  

2) The difference between the norms of the local random variables of two 

consecutive MPPs is less than 10-6. This difference is measured in the standard normal 

space.  

3) The difference between the reliability indexes of two consecutive MPPs is less 

than 10-6. 

Sequential Quadratic Programming (SQP) is used for optimization in IA. It is also 

used in PA whenever optimization is needed. The termination tolerances on the function 

values, on design variables, and on the constraint violation are all set to 10-6. 
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A.  Example 1 – A Mathematical Problem 

In this example the system consists of two subsystems. Two local interval variables 

and one sharing interval variable are introduced to the original problem in [23] where 

only random variables are involved. The new problem is illustrated in Fig. 8 and is 

formulated as follows. 

Subsystem 1: 

         65.72)5.0( 21
111

2
1 −++++= −Y

ss eWXWWXG  

         2111
2

12 22)5.0( YXWWXY ss +−++=  

         Subsystem 2:  

3.92.0)(4.05.0 12222 −+++++= YWXXWWXG ssss  

 122
2

2221 )5.0( YXWWWXY ss ++++=  

 sW  is a sharing interval variable; 1W  and 2W  are local interval variables; sX  is a 

sharing random variable; and 1X  and 2X  are local random variables. )1 ,2.0(~ NX s , 

)1.0 ,4885.1(~1 NX , and )1.0 ,3227.3(~2 NX , where ( , )N ⋅ ⋅  stands for a normal 

distribution, and its first and second parameters are mean and standard deviation, 

respectively. ]075.2 ,065.2[∈sW , ]7814.0 ,7714.0[1 ∈W , and ]16.0 ,14.0[2 ∈W . The 

probabilities of failure are defined by { }Pr 0  ( 1,2)f ip G i= < = . 
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Fig. 8 Mathematical example. 

To demonstrate the procedure of each algorithm, we provide the equations of the 

lower bound of fp  for G1 at the k-th cycle as follows. (Recall that a cycle consists of a 

sequential process of PA and IA; in other word, it is one iteration of the overall reliability 

analysis.) 

1. SDL algorithm 

1) PA loop 

The MPP search is modeled by 
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where the design variables are ( )1 2, ,su u u=u ; and ( 1)k
sw −  and ( 1)

1
kw −  are the interval 

variables from the (k-1)-th cycle. 21y is the coupling variable from MDA and is solved by 
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where interval variable ( 1)
2

kw −  is from the (k-1)-th cycle. 
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The above MPP search and MDA are nested and form a single-loop PA. The 

solution of the PA loop is the MPP ( )*,( ) *,( ) *,( ) *,( )
1 2, ,k k k k

su u u=u . It is noted that in the above 

equations all the random variables are transformed into standard normal variables. 

2) IA loop 

The optimization model is given by 







∈∈∈

−++++++= −

=
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where the design variables are ( )1 2, ,sw w w=w , and 21y  is the coupling variable obtained 

by the following MDA.  
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The above MDA and the optimization problem are nested; and they form a single-

loop IA. The solution of the IA loop is the interval variables ( )( ) ( ) ( ) ( )
1 2, ,k k k k

sw w w=w . 

2. SSL algorithm 

1) PA loop 

The MPP search and MDA are formulated together as a single-loop procedure. The 

formulation is given below. 
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where the design variables are ),,( 21 uuus=u and ( )12 21,y y=y .  

2) IA loop 

[ ]
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where the design variables are ( )1 2, ,sw w w=w  and ( )12 21,y y=y .  

3. SSSL algorithm 

1) PA loop 

The MPP search and MDA are conducted sequentially. In the j-th iteration of PA, 

the MPP search is formulated as 
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where the design variables are ),,( 21 uuus=u .  The interval variables ( 1)k
sw −  and ( 1)

1
kw −  are 

from the (k-1)-th cycle of the overall reliability analysis. (Recall the current cycle is the k-

th cycle.) The coupling variable ( 1)
21

jy −  is obtained from the previous MDA in the   (j-1)-th 

iteration. After the MPP search, MDA is performed to solve the coupling variable ( )
21

jy  

and is formulated as 
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2) IA loop 

The IA loop is the same as in the SSL algorithm. 
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Table 1 shows the comparison of the three algorithms with the reliability analysis 

results for probabilistic constraints G1 and G2. The comparison is made with the same 

convergence criteria applied to each algorithm. Monte Carlo Simulation (MCS), as a 

sampling-based verification method, is also conducted. Latin Hypercube sampling is used 

to draw the samples of the interval variables. The result from MCS and a 95% confidence 

interval of the solution are also listed in Table 1. The computational cost of all the 

methods is measured by the number of function evaluations( Funcall in Table 1), which 

are the numbers of analyses at the subsystem level. For example, for max
fp of 1G , (1221, 

1105) are the numbers of analyses in subsystems 1 and 2, respectively.  

Table 1  Bounds of fp  

Constraints SDL SSL SSSL MCS 95% confidence interval 

G1 

max
fp  0.1823 0.1823 0.1823 0.1823 [0.1815, 0.1831] 

Funcall (1221, 1105) (2540, 2540) (506, 410) 106  
min
fp  0.1797 0.1797 0.1797 0.1806 [0.1798, 0.1814] 

Funcall (1231, 1115) (2084, 2084) (506, 410) 106  
       

G2 

max
fp  0.1124 0.1124 0.1124 0.1129 [0.1123, 0.1135] 

Funcall (13185, 14621) (380, 380) (785, 977) 106  
min
fp  0.1092 0.1092 0.1092 0.1093 [0.1087, 0.1099] 

Funcall (7810, 8650) (380, 380) (785, 977) 106  
 
 

It is noted that the results obtained from the SDL, SSL and SSSL algorithms are 

identical. The results are also very close to the MCS solutions. All the algorithms 

therefore converge to an accurate solution. For this problem, the SSSL method is most 

efficient for G1 and also efficient for G2. The SSL method is most efficient for G2 but 

least efficient for G2.    
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B.  Example 2 - Aircraft Wing Design 

A wing design problem for a light aircraft [24] involves aerodynamic design and 

structural design. Aerodynamic design is responsible for selecting the external shape of 

the wing while structural design determines the structural size. The two disciplines are 

coupled with each other. A structural model is depicted in Fig. 9 [24], and the coupled 

subsystems are illustrated in Fig.10.  The symbols in Fig. 10 are explained in Tables 2 

and 3. In this example, aerodynamic model is built based on the lifting line theory, and 

the structural model is developed with the beam theory [24].   

 

 

Fig. 9 The wing structure model. 
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Fig. 10 Coupled aerodynamic and structural subsystems 

The lifting-line model predicts the wing’s aerodynamic characteristics, including 

the lift distributions, lift coefficients, and induced drag. The reason to choose this model 

is that the flight speed of the light aircraft in this paper is in the subsonic region and that 

the wing is unswept with a large aspect ratio. The lifting line model is able to predict lift 

distributions, lift coefficients, and induced drag with satisfactory accuracy [25]. This 

model also provides a convenient way to study the impact of wing twist and the aspect 

ratio on the aerodynamic characteristics. The total drag is the sum of induced drag and 

parasite drag. The parasite drag mainly depends on the wetted area of the aircraft. Since 

the wetted area in this investigation is almost unchanged with the design variables, the 

parasite drag coefficient is assumed to be 0.015 based on historical data for simplicity. 

The beam model is used to calculate the stress and twist deformation of the wing 

structure. The beam model is an approximate method for the analysis of typical members 

of wing box structure. For unswept wings with a high aspect ratio, this model can obtain 

reasonable accurate results for wing structural analysis and has been widely used for 

preliminary design of wing structure before the finite element method comes into use. 

Although the finite element method can provide more accurate results, the beam model is 

selected in this study for alleviating the computational expense. 
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The reliability associated with each of the following constraints in Subsystem 2 is to 

be evaluated. The probabilities of failure are given by 

{ } { }
{ } }{
{ } }{
{ } }{

2 1

2 2

2 3

2 3

Pr ( ) 0 Pr 0 ( 1, 2,  ,  7)

Pr (8) 0 Pr 0

Pr (9) 0 Pr 0

Pr (10) 0 Pr 0

σ

τ

τ

τ

≤ = − ≤ =

≤ = − ≤

≤ = − ≤

≤ = − ≤

i

σkin

wf

wr

G i S i

G S

G S

G S

 

where   

( 1, 2,  ,  7)σ = i i  is  the bending stresses in the spar cap for each section, 

τ skin  is      the maximum shear stress in the skin,  

τwf  is       the shear stress in the web,  

τwr  is       the shear stress in the rear web, and 

1S , 2S  and 3S  are the bending strength of the material of the spar caps, the 

shear strength of the skin, and the shear strength of the spar 

web, respectively. 

1S , 2S  and 3S  are normally distributed, and their distribution parameters are given 

in Table 2 along with other random variables. 

Table 2  Distributions of random variables 

Variables Mean Standard deviation Distribution 
Flight altitude H 3000 m 300 m Normal 
Flight speed V 200 km/h 20 km/h Normal 
Take-off weight W0 700 kg 70 kg Normal 
Shear modulus J 2.7×1010 N/ mm2 2.7×109 N/ mm2 Normal 
Gust load factor F 4.0 0.4 Normal 
Bending strength S1 450 N/mm2 45 N/mm2 Normal 
Shear strength of the skin S2 200 N/mm2 20N/mm2 Normal 
Shear strength of the web S3 250 N/mm2 25 N/mm2 Normal 
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The aspect ratio (AR) and twist angle (θ) are interval variables. Their nominal 

values and widths are provided in Table 3. The angle of attack (α) of this wing is 5.0877 

degrees. The areas of spar caps in sections 1 through 7 are 50.0 mm2, 54.81 mm2, 122.07 

mm2, 215.23 mm2, 333.13 mm2, 472.83 mm2, 628.42 mm2, respectively. The thicknesses 

of the skin, front web, and rear web are all 1.0 mm.  

Table 3 Interval and deterministic variables 

Design variables Nominal values Width Disciplines 
Aspect ratio, AR 5.7823 0.40 Aerodynamics 
Twist angle, θ 0.8041 (deg) 0.20 (deg) Aerodynamics 

 

Table 4 shows the results from the three algorithms for limit-state functions G2(1) 

through G2(10). MCS is also conducted to confirm the accuracy of the results. The 95% 

confidence intervals of the MCS solutions are also included in Table 4. The results show 

that the three algorithms produce the same solutions, which are all close to the result from 

MCS. For this problem, the SSL algorithm requires the least number of disciplinary 

analyses. 

Table 4 Two bounds of fp  obtained by different algorithms 
Constraints SDL SSL SSSL Monte 

 
95% conf. interval 

2 (1)G
 

max
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (15759, 16221) (1966, 1966) (4838, 5963) 104  

min
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (16048, 16519) (976, 976) (4816, 5932) 104  
      

2 (2)G
 

max
fp  5.614×10-3 5.614×10-3 5.614×10-3 5.363×10-3 [5.340×10-3, 5.688×10-3] 

Funcall (12228, 12586) (1088, 1088) (3915, 4509) 104  
min
fp  1.800×10-3 1.800×10-3 1.800×10-3 1.812×10-3 [1.699×10-3, 1.864×10-3] 

Funcall (10948, 11269) (1172, 1172) (3898, 4528) 104  
       

2 (3)G max
fp  5.622×10-3 5.622×10-3 5.622×10-3 5.549×10-3 [5.402×10-3, 5.694×10-3] 
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Constraints SDL SSL SSSL Monte 
 

95% conf. interval 
 Funcall (13447, 13841) (1088, 1088) (3915, 4509) 104  

min
fp  1.802×10-3 1.802×10-3 1.802×10-3 1.808×10-3 [1.701×10-3, 1.867×10-3] 

Funcall (10957, 11278) (1172, 1172) (3898, 4528) 104  
       

2 (4)G
 

max
fp  5.635×10-3 5.635×10-3 5.635×10-3 5.646×10-3 [5.414×10-3, 5.706×10-3] 

Funcall (11373, 11706) (1088, 1088) (3915, 4518) 104  
min
fp  1.801×10-3 1.801×10-3 1.801×10-3 1.786×10-3 [1.703×10-3, 1.869×10-3] 

Funcall (12478, 12844) (1172, 1172)  (3898, 4528) 104  

       

 
 

2 (5)G
 

max
fp  5.658×10-3 5.658×10-3 5.658×10-3 5.498×10-3 [5.430×10-3, 5.722×10-3] 

Funcall (13515, 13911) (1088, 1088) (3915, 4518) 104  
min
fp  1.800×10-3 1.800×10-3 1.800×10-3 1.741×10-3 [1.705×10-3, 1.871×10-3] 

Funcall (11356, 11689) (1172, 1172) (3898, 4528) 104  
       

2 (6)G
 

max
fp  5.680×10-3 5.680×10-3 5.680×10-3 5.463×10-3 [5.452×10-3, 5.744×10-3] 

Funcall (11373, 11706) (1088, 1088) (3915, 4527) 104  
min
fp  1.797×10-3 1.797×10-3 1.797×10-3 1.742×10-3 [1.699×10-3, 1.865×10-3] 

Funcall (12478, 12844) (1172, 1172) (3898, 4537) 104  
       

2 (7)G
 

max
fp  5.451×10-3 5.451×10-3 5.451×10-3 5.703×10-3 [5.442×10-3, 5.734×10-3] 

Funcall (10761, 11076) (1074, 1074) (3915, 4536) 104  
min
fp  1.794×10-3 1.794×10-3 1.794×10-3 1.777×10-3 [1.697×10-3, 1.863×10-3] 

Funcall (12070, 12424) (1158, 1158) (3898, 4537) 104  
       

2 (8)G
 

max
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (14229, 14646) (1591, 1591) (4833, 5787) 104  
min
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (13804, 14209) (920, 920) (4816, 5734) 104  
       

2 (9)G
 

max
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (16303, 16781) (1256, 1256) (5445, 6597) 104  
min
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (14739, 15171) (1273, 1273) (4833, 5949) 104  

       

2 (10)G
 

max
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (12597, 12966) (906, 906) (4527, 5346) 104  
min
fp  ≈ 0 ≈ 0 ≈ 0 ≈ 0 [0, 0] 

Funcall (12580, 12949)  (1778, 1778) (3898, 4645) 104  
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V. Conclusion 

This paper presents a unified reliability analysis framework for multidisciplinary 

systems with both random and interval variables. Given random and interval variables as 

inputs, the output of this framework is the bounds of reliability or of the probability of 

failure. The framework consists of probabilistic analysis (PA) and interval analysis (IA), 

both of which require multidisciplinary analysis (MDA). The overall reliability analysis, 

therefore, involves PA, IA and MDA; and the computation is intensive. To maintain 

computational efficiency, the framework decouples PA and IA and performs them 

sequentially. Three algorithms are designed to support the framework. They differ from 

each other with the way of how the PA and IA loops call the MDA loop. The three 

algorithms are summarized and compared in Table 5. 

Table 5 Summary of the three algorithms 

Algorithm Features PA and IA methods When to use it 
SDL: Sequential 
Double Loops 

The MDA inner loop is 
nested with the PA and IA 
outer loops; PA and IA 
involve a double-loop 
procedure.   

PA: any reliability 
analysis methods.  
IA: nonlinear 
optimization, interval 
arithmetic, or other IA 
methods. 

MDA is not 
computational 
expensive.  

SSL: Sequential 
Single Loops 

MDA is embedded as 
equality constraints within 
the PA and IA loop; All the 
coupling variables are 
treated as additional design 
variables in the PA or IA 
single loop.  

PA: FORM with 
nonlinear optimization for 
the MPP search 
IA: nonlinear 
optimization 

The number of coupling 
variables is small; 
concurrent subsystem 
analyses can be 
performed.  

SSSL: Sequential 
Single-Single 
Loops 

PA involves a sequence of 
MPP search and MDA and 
therefore forms a sequential 
single-loops procedure. IA 
requires a single-loop 
procedure as in SSL. 

PA: any reliability 
analysis methods, 
including any MPP search 
algorithms. 
IA: nonlinear 
optimization 

PA is relatively 
expensive and IA is 
relatively cheap; 
concurrent subsystem 
analyses can be 
performed; the number 
of interval variables is 
small. 
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As shown in the two examples, the three algorithms are capable of producing 

identical solutions. But their efficiency differs from problem to problem. The efficiency 

depends on many factors, such as the number of disciplines, the number of random 

variables, the number of interval variables, the number of sharing variables, and the 

efficiency of disciplinary analyses.  

As indicated in [22], “in a constrained optimization problem, equality constraints 

make the search process slow and difficult to converge.” In the SSL and SSSL algorithms, 

equality constraints for maintaining consistency between subsystems are included. As a 

result, the two algorithms may make the optimization process harder to converge 

compared to the SDL algorithm. Therefore, it is important to select a good starting point 

to help convergence.  

A general guideline about selecting a specific algorithm is provided in Table 5. It is, 

however, only based on the limited number of testing problems and the theoretical 

derivations of the algorithm. The actual performance of the three algorithms needs a 

further investigation with more testing problems. 

Other algorithm variants can also be developed using the similar strategies of the 

proposed three algorithms. For example, the IA loop of the SSSL algorithm is a single-

loop procedure. It can be changed to a sequential single-loops procedure, where the 

search of the extreme values of the limit-state function and MDA will be conducted 

sequentially. All the algorithms discussed in this paper are only for reliability analysis. 

They can be used in reliability based multidisciplinary design optimization.  
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