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Abstract 
In robust design optimization, if Taguchi quality loss function is employed, its 
expectation is minimized. When multiple quality characteristics exist, their covariances 
appear in the expectation and usually require numerical integrations. In this work, we 
propose an analytical robust design approach without numerical integrations to problems 
with bivariate quality characteristics. The quality characteristics are assumed to be 
functions of independent normal random variables with small uncertainties. Because the 
uncertainties are small, the functions are linearized with good accuracy. Analytical 
equations are then derived for the expected quality loss. The approach is efficient because 
no numerical integrations are needed. It is applied to the robust synthesis of a four-bar 
linkage. 
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1. Introduction 
Robust design (Phadke 1995) ensures that a product functions properly in the presence of 
uncertainties. As a result, the performances of the product are not sensitive to noises. The 
key product performances are referred to as quality characteristics, which are those 
response parameters that significantly affect product quality and customer satisfaction. 
The actual values of quality characteristics fluctuate around their designed nominal 
values, as well as around their targeted values, due to noises such as random dimensions 
of parts, stochastic loading, and varying usage conditions. Such fluctuations or variations 
lead to quality losses. During robust design, the variations in quality characteristics are 
minimized. The deviation from the actual quality characteristics to their targets is also 
minimized. The minimization is achieved through optimization by adjusting the nominal 
values of design variables without eliminating the sources of variation.  
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Robust design can be performed through either statistical experiments (Phadke 
1995) or model-based optimization (Gu et al. 2000; Chen et al. 1996; Allen et al. 2006; 
Chen et al. 1997; Hernandez et al. 2001; McAllister and Simpson 2003; Mourelatos and 
Liang 2006; Youn and Xi 2009; Giassi et al. 2004; Han and Kwak 2004; Lee et al. 2009). 
Instead of experimentally estimating the quality characteristics, the latter method 
computationally evaluates quality characteristics with computational models. For 
example, the quality loss function associated with quality characteristics can be 
computationally calculated by the performance moment integration (PMI) method (Youn 
et al. 2005). This kind of robust design is called analytical robust design optimization. 
The methodologies of analytical robust design optimization are reviewed in (Beyer and 
Sendhoff 2007; Zang et al. 2005; Murphy et al. 2005; Park et al. 2006; Du and Chen 2000; 
Huang and Du 2007). This work focuses on analytical robust design optimization. 

Quality characteristics usually appear in the objective function of a robust design 
model. The objective is to maximize the robustness associated with the quality 
characteristics of a product, process, or component. Various robustness metrics have been 
used in robust design literature. The most common metric is the Taguchi quality loss 
function (Phadke 1995). This metric reflects quality losses when the mean quality 
characteristics are off their targets and when the actual quality characteristics vary around 
their means. The Taguchi quality loss function is defined by a quadratic function. The 
quality loss function increases slowly when the quality characteristics deviate from its 
target in the vicinity of the target; it increases dramatically when the deviation is large. 
Because the quality loss is random, its expectation is used to measure robustness and is 
minimized. The expectation consists of two terms. The first is the square of the mean 
deviation (the deviation of the mean quality characteristic from its target) while the 
second is the variance of the quality characteristic. By minimizing the expected quality 
loss function, we can simultaneously bring the mean quality characteristics to its target 
and minimize the variation in the quality characteristic.  

Most of the robust design methodologies handle only a single quality characteristic. 
With a single quality characteristic and its quality loss function, the optimization model 
involves only a single objective. If designers are interested in a trade-off between the 
standard deviation and the mean deviation of a quality characteristic, they may formulate 
the problem with a multi-objective optimization model (Li et al. 2006; McAllister et al. 
2004; Messac and Ismail-Yahaya 2002; Hu et al. 2011; Li and Azarm 2008). The two 
objectives are the standard deviation and mean deviation of the quality characteristic. The 
common way of converting the two objectives into a single objective function is the 
weighted-sum method. The advantage of this method is that designers could give a higher 
weight to either the standard deviation or mean deviation of the quality characteristics.   

When multiple quality characteristics are involved, the weighted-sum method can 
still be used. There are, however, two drawbacks. It is hard to assign weights to the 
means and standard deviations of multiple quality characteristics. The dependency 
between quality characteristics is lost due to the simple weighted sum. The quality 
characteristics are generally dependent, and ignoring such dependency may lead to 
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erroneous or non-optimal solutions. If quality loss functions are used, the typical method 
is to sum up the individual expected quality loss functions. The advantage of doing so is 
that only a single objective function is involved. However, the dependency between the 
quality characteristics is also lost in the simple summation.  

To account for the dependency, we must use the expectation of the total quality loss 
function, which is the sum of individual quality loss functions. This treatment leads to 
multivariate quality loss functions (Mao and Danzart 2008; Pignatiello 1993; Govindaluri 
and Cho 2007; Kovach et al. 2009; Wu and Chyu 2004a; Jeang et al. 2008). One type of 
multivariate quality loss function is a quadratic quality loss function (Wu and Chyu 
2004b). The current method (Wu and Chyu 2004b) can account for the joint losses of all 
pairs of quality characteristics. In other words, the multivariate quality loss function 
considers joint losses up to the second order. As a result, if a multivariate quality loss 
function is applied to a design problem with bivariate quality characteristics, it can 
accurately reflect the true quality loss for the bivariate quality characteristics. However, 
the equation for the expected quality loss function (Wu and Chyu 2004b) is just an 
approximation. The purpose of this work is to develop an accurate and efficient model for 
the expectation of a bivariate quality loss function. We focus on small uncertainties in 
random input variables so that analytical equations can be derived.    

In the next section, we discuss the bivariate robust optimization model. We then in 
Section 3 develop a bivariate robustness analysis model based on the First Order Second 
Moment method. A four-bar linkage synthesis problem is used as an example in Section 
4. Conclusions are made in Section 5. 

 

2. Model of Bivariate Robust Design Optimization 
There are three components in a general optimization model, including design variables, 
objectives, and constraints. We first discuss the three components of a bivariate robust 
design problem and then give the optimization model with the three components. 

2.1 Design variables and parameter 

We discuss the most general robust design model where there are three types of 
variables and parameters. They include deterministic design variables 1 2( , , , )ndd d d=d  , 
random design variables 1 2( , , , )nxX X X=X  , and  input parameters 1 2( , , , )npP P P=P  . 
Design variables are those variables whose distribution parameters can be controlled and 
changed during the optimization process, for examples, the part dimensions. Design 
variables can be deterministic, such as the number of teeth of a gear; or random, such as 
the diameter of the gear. We assume that the means 

1 2
, , )( ,

nxX X Xµ µ µ=Xμ   of X  are 
changeable during optimization. Therefore, the actual variables to be determined are d 
and Xμ . Input parameters P  are known parameters and are kept constant during 
optimization. Examples of input parameters include the environmental temperature, wind 
speed, and material properties.  
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In general, input parameters may also be random. Therefore we have random 
variables ( , )=Z X P . Because Z is the input vector for the quality characteristics, we call 
Z  random input variables. We assume that all the input random variables are 
independently and normally distributed. 

2.2 Objective function 

In this work, we are interested in problems involving two quality characteristics, 1Q  
and 2Q . They are functions of design variables and input parameters and are given by 

 ( , , ) ( 1,2)i iQ f i= =d X P  (1) 

Because 1Q  and 2Q  share the same input variables and are therefore statistically dependent. 

There are three types of quality characteristics: the nominal-the-best, the smaller-
the-better, and the larger-the-better. For a quality characteristic of the first type, there is a 
defined target value to be achieved. For a quality characteristic of the second type, the 
ideal target value is zero. For a quality characteristic of the third type, it is preferred to 
maximize the quality characteristics. In this work, we focus on the nominal-the-best type.  

In this section, we review the modeling methodology for multiple quality 
characteristics (Wu and Chyu 2004b). For nominal-the-best quality characteristics  iQ  
( 1,2i = ), the Taguchi quality loss function can be approximated with a second order 
Taylor series expansion at the targets 1 2( , )m m=m , where the derivatives 

'

1 2

( ) ,L LL
Q Q

 ∂ ∂
= = ∂ ∂  m

m 0.  Then the quality loss function is given by 

 
2 22

2
1 1 2 22

1 1 2

1 ( ) ( )( )
2 i i

i i

L LL Q m Q m Q m
Q Q Q=

∂ ∂
≈ − + − −

∂ ∂ ∂∑
mm

 (2) 

or 

 
2

2
12 1 1 2 2

1

( ) ( )( )i i i
i

L q Q m q Q m Q m
=

≈ − + − −∑  (3) 

where iq  and ijq  are constants and are determined by the quality losses at the lower 
specification limits i im −− ∆  and upper specification limits i im ++ ∆ .  

Suppose the quality loss is iA+ when i i iQ m= + ∆  ( 1,2i = ) and jQ  ( j i≠ ) is on its 
target jm . From Eq. (3),  
 2( )i i iA q+ + += ∆   

Therefore  



5 
 

 2)(
i

i
i

Aq
+

+
+∆

=   

If the quality loss is iA− when i i iQ m −= − ∆  (. 1,2i = .) and jQ  ( j i≠ ) is on its target jm . 
From Eq. (3),  
 2( )i i iA q−− −= ∆    

Then 

 2)(
i

i
i

Aq
−

−
−∆

=   

        Assume that the joint quality loss is 12A++  when both 1Q  and 2Q  are at their upper 
specification limits, and then    
 12 1 2 12 1 2A qA A++ + + ++ + ++ += ∆ ∆   

 1 2 12
12

1 2

A A Aq
+ + ++

++
+ +∆
−

∆
+

=   

When 1Q  is at its upper specification limit and 2Q  is at its lower specification limit, 
the quality loss is 12A+−.   
 12 1 2 12 1 2( )qA A A+− + − +− + −= ∆ ∆+ + −   

  
Then 

 1 2 12
12

1 2

A A Aq
+ − +−

+−
+ −∆
−

=
∆

+
−   

        Similarly, we have  

 1 2 12
12

1 2

q A A A− + −+
−+

− +∆
−

=
∆

+
−   

and  

 1 2 12
12

1 2

A A Aq
− − −−

−−
− −∆
−

∆
+

=   

where 12A−+ is the joint quality loss when 1Q  is at its lower specification limit and 2Q  is at its 
upper specification limit, and 12A−− is the joint quality loss when 1Y  and 2Y  are at their lower 
specification limits.  

The coefficients in Eq. (3) are therefore given by 
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The expected quality loss function is thus given by 

 
2

2
12 1 1 2 2

1

[ ( )] [ ( )( )]L i i i
i

m m mE E q Q E q Q Q
=

= +− − −∑  (4) 

2.3 Constraints 

Suppose that a constraint function is )( , ,g d X P  and that , , )( 0g ≤d X P  is required. 
Because the constraint is random, we may not satisfy the requirement in an absolute 
sense. Instead, we can meet the requirement up to a desired level of probability or 
reliability eR . Then the constraint is formulated as 

 , ,Pr{ ) 0}( eRg ≤ ≥d X P  (5) 

The above treatment is referred to as design feasibility robustness (Du and Chen 
2000; Parkinson et al. 1993). With the constraint, we can obtain a feasible design with the 
probability of eR . 

2.4 Optimization model 

Given the above three optimization components, the optimization model with 
bivariate quality characteristics is formulated as 

 

2
2

12 1 1 2 2( , ) 1

min  , , ) [ ( )] [ ( )( )](

      Pr{
subject to

, , ) 0}  ( 1,2, ,( )

L i i i
i

ej gj

E E q Q E q Q Q

j

m

g R n

m m
=


+



 ≤ ≥ = …


= − −



−



∑
Xd μ

d X P

d X P
 (6) 

To perform the optimization, we need to calculate the objective function LE . In this 
work, we develop an accurate model for LE . Details are given in the following section. 
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3. Robustness Analysis for Bivariate Quality Characteristics 
We now develop a model for the expected bivariate quality loss function. We are 

interested in small uncertainties in the input random variables ( , )=Z X P , which are 
independently and normally distributed. This situation is commonly encountered in 
mechanism analysis and synthesis. The primary source of uncertainty comes from 
mechanism dimension tolerances. Because the tolerances are relatively small compared 
to the nominal dimensions, the standard deviations of the input random variables are also 
small. For this situation, a quality characteristic can be approximated with the first order 
Taylor expansion series with respect to Z  with good accuracy. The approximation is 
given by 

 
1

0( , , ) ( , )  ( 1,2)i

nz

i i
j

ii jjQ f f a Z ia
=

= += ≈ =∑d X P d Z  (7) 

where 
1

0 ( ,μ )
j

nz
i

ii Z
j i

a f f
Z

µ
=

−
∂

=
∂∑

Z

Z
μ

d  and i
ij

i

a f
Z
∂
∂

=
Zμ

. Zμ  is the vector of the means of Z, 

and nz nx np= + . We now calculate the expected quality loss function of 1Q  and 2Q  based 
on the above approximation. 

It should be noted that the first order approximation in Eq. (7) may not be accurate 
for some extreme situations where the second derivatives of ( )if ⋅  at Zμ  are large. 

3.1 Expected Quality Loss Function 
To make the derivation easy, we define new variables  ( 1,2)iY i =  by 

  ( 1,2)i i iY Q im == −  (8) 

With Eq. (7), the mean and standard deviation of iY  are  

 0
1

i j

n

iY Z i
j

ij

z

a mamm
=

= + −∑  (9) 

and 

 2 2

1
i j

nz

ijY Z
j

aσ σ
=

= ∑  (10) 

 According to Eq. (4), the expected quality loss function is 
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where 
1

)·(Yf  and 
2

)·(Yf  are probability density functions (PDF) of 1Y  and 2Y , respectively, 
and 

1 2 1 2
( , ) ( ) ( )Y Y Y Yf f f⋅ ⋅ = ⋅ ⋅  is the joint PDF of 1Y  and 2Y . The expectations on the right-hand 

side of Eq. (11) are as follows: 

 ( )2

0
, 1, 2

ii i YE q y f y dy i
∞+ += =∫  (12) 
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0 2 , 1, 2
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−∞
= =∫  (13) 
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∞ ∞++ ++= ∫ ∫  (14) 

 
1 2

0 0

12 12 1 2 1 2 1 2( , )Y YE q f dy dyy y y y−− −−

−∞ −∞
= ∫ ∫  (15) 

 
1 2

0 
12 12 1 2 1 2 1 20
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1 2

0

12 12 1 2 1 2 1 20
( )Y Yy y y y yE q f d dy
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Next, we discuss how to obtain these expectations analytically.  

3.2 iE + and iE − ( 1,2i = ) 
The derivation of expectations involves truncated normal distributions. Suppose a 

normally distributed variable is ( )~ ,W WW N µ σ  and is truncated with l uw W w≤ ≤ . Let W  
denote such a truncated variable. According to (Patel and Read 1996), the mean of W  is 

 ( ) ( )
( ) ( )

u
W WW

u

l

lv
v v
v

φ φ
µ µ σ

−
= +

Φ −Φ

 (18) 

where 

 W
l

W

lwv µ
σ
−

=  (19) 

 W
u

W

uwv µ
σ
−

=  (20) 

and ( )φ ⋅  and ( )Φ ⋅  are the PDF and cumulative distribution function (CDF) of a standard 
normal distribution. 

The variance of W  is 



9 
 

 ( ) ( )
( ) ( ) ( )22 2

 1 l l u u
W WW W

u l

v v v v
v v

φ φ
σ σ µ µ
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With the above equations, we now evaluate iE +and iE −. 

0iY ≥  can be considered as a left-truncated variable of iY  with the truncation point at 
0. We denote the truncated variable by iY +

 .  

 ( ) ( )2 2

0

2

0
( )i

i

Y
i i Y i i i i i

i

f y
E q y f y dy q y dyH Hq E Y

H
∞ ∞+ + + + + + +

+ = = =  ∫ ∫   (22) 

where 

 Pr{ } 10 i

i

Y
i i

Y

H Y
µ
σ

+
 

Φ − 


= = −


≥  (23) 

Then 

 ( )2 2

i i
i i i Y Y

HE q µ σ+ +
+ + += +

 

 (24) 

To use Eqs. (18) and (21), we set iW Y=  , 0lw = ,  i

i

Y
l

Y

v
µ
σ

= − , uw = ∞ , and uv = ∞ . 

Using ( ) 0φ ∞ =  and ( ) 1Φ ∞ = , we obtain 

 ( )
( ) i ii

l
Y YY

lv
vφ

µ µ σ+ = +
Φ −

 (25) 

and 
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2 21
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Y YY Y

l

v
v

v φ
σ σ µ µ+ +

 
= + − − Φ − 

 

 (26) 

Then 

 ( ) ( )
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2 2
 2

i i i i i

l
i i i Y Y Y Y l Y

l

H
v

E q v
v

φ
µ σ σ µ σ+ + +  

= + + + Φ −
 (27) 

For iE −, 0Y <  is a right-truncated variable and is denoted by iY −
 . 

 ( ) ( )0 02 2 2( )i

i

Y
i i Y i i i i i
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E q y f y dy q y dy q YH H E
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− ∞

−
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= =  =  ∫ ∫   (28) 

where 
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We set iW Y=  , 0uw = ,  i

i

Y
u

Y

v
µ
σ

= − , lw = −∞  , and lv = −∞ . Using ( ) 0φ −∞ = , 

( ) 0Φ −∞ = , and Eqs. (18) and (21), we obtain 
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Y YY
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 (30) 

and 

 ( )
( ) ( )2

2 21
ii i

l u
Y YY Y

u

v
v

v φ
σ σ µ µ− −

 
= − − − Φ 

 

 (31) 

Then 
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3.3 E ++
  
As indicated in Eq. (14),  E ++ is for 1 0Y ≥  and 2 0Y ≥ . We denote these truncated 

random variables by ( ) ( )1 2 , ,, ~ 0, ,0,Y Y N ++ ++
++ + + ∞= ∞∑Y Y

Y μ




   , where the mean vector is 

( )
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,
Y Y

µ µ++ + +=
Y

μ
  

 and the covariance matrix is 1 1 2

1 2 2

2

2  Y Y Y

Y Y Y

σ σ
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 
 =
 
 

∑Y

  



  

. 

Ref. (Rosenbaum 1961) has derived the first two moments for a right-truncated 
bivariate distribution from a standard bivariate normal distribution. To use its results, we 
further transform 1Y  and 2Y  into standard normal variables 1U  and 2U . Then the 
corresponding truncated variables are  

   ( 1,2)i

i

i Y
i

Y

Y
U i

µ
σ

+
+ −
= =


  (33) 

or 

  i ii Y Y iY Uµ σ+ += +   (34) 

 The truncation points are 
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H

q H E Y Y

q H Y Y

q

y

U U

y
y

H

y

µ µ

σ σ µ σ µ µ σ µ

+ +

+ +

∞ ∞++ ++

∞ ∞++ ++
++

++ ++ + +

++ ++ + +

++ ++ + +

=

=

 = + 
= + + +

=



∫ ∫

∫ ∫

 

 

 

 

  


 (37) 

where 

 ( )12 1 2

2

Pr 0, 0
( ) ( ) ( , , ) 1

H Y Y
h k h k r

++ = > >

= Φ +Φ −Φ −
 (38) 

( )2 , ,h k ρΦ  is the standard bivariate normal CDF with the coefficient of correlation 
ρ .  

The covariance ( )1 2,COV U U+ +
    and means 

iU
µ +


 ( 1,2i = ) are to be determined. Using 
the results in (Rosenbaum 1961), we have 
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1
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   (41) 

where 
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−− − − −∞ −∞= ∑Y Y
Y μ





   , where ( )
1 2

,
Y Y

µ µ−− − −=
Y

μ
  

 and 

1 1 2

1 2 2

2

2  Y Y Y

Y Y Y

σ σ

σ σ

− − −

−−

− − −

 
 =
 
 

∑Y

  



  

. We also transform 1Y −
  and 2Y −

  into 1U −
  and 2U −

 . Using the same 

principles of (Rosenbaum 1961) , we can derive an equation for  E −− . The detailed 
derivations are omitted, and the results are given below. 

 ( ) ( )( )1 2 1 1 2 21 2
12 12 1 212  COV ,Y Y Y Y Y YU U

E q U UH σ σ µ σ µ µ σ µ− −
−− −− −− − −= + + +  

   (43) 

where 

 ( )12 1 2 2Pr 0 ( , )0, ,Y YH h k r−− = < < = Φ  (44) 

 ( ) ( )
1 2 2

12

1
1 1U

k h h kh k
H

ρρ µ φ ρφ
ρρ

− −−

    − −
= − Φ − Φ       − −     



 (45) 

 ( )
2 2 2

12

1 ( )
1 1U

k h h kh k
H

ρρ µ ρφ φ
ρρ

− −−

    − −
=  Φ − − Φ       − −     



 (46) 

 ( )
( ) ( )

( )

12 2 2

1 2
12 2

2

1 11COV

1
1

,

k h h hh h k k

U U
k hh

H

H

ρρ ρρ  φ ρ φ
ρρ

ρρ φ
ρ

−−

− −
−−

    − −
 Φ − Φ       − −    =  

  −
+ − Φ   −   

−

   (47) 

3.5 12E +− 
Eq. (16) indicates that 12E +− involves 1 0Y ≥  and 2 0Y < , which are truncated variables 
( ) ( )1 2, ~ , ,0, , ,0Y Y N +− +−

+− + −= ∞ −∞∑Y Y
Y μ





   , where 
1 2

( ),
Y Y

µ µ+− + −=
Y

μ
  

 and 

1 1 2

1 2 2

2

2  Y Y Y

Y Y Y

σ σ

σ σ

+ + −

−−

+ − −

 
 =
 
 

∑Y

  



  

. We also transform 1Y +
  and 2Y −

 into 1U +
  and 2U −

 . Following the 

principle of (Rosenbaum 1961), we have 

 
1 2 1 1 2 21 2

12 12 12 1 2, )COV( ( ) )(Y Y Y Y Y YU U
E UHq Uσ σ µ σ µ µ σ µ+ −

+− +− +− + − = + + +
 

   (48) 

where 
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 12 2 21Pr( 0, 0 ( ) ( , ,) )Y Y kH h k r+− = ≥ < = Φ −Φ  (49) 

 ( ) ( )
1 2 2

12

1
1 1U

k h kh k
H

hρρ µ φ ρφ
ρρ

+ +−

    − −
=  Φ − Φ −       − −     



 (50) 

 ( ) ( )
2 2 2

12

1
1 1U

h k h
H

h kkρρ µ ρφ φ
ρρ

− +−

    − −
=  Φ − Φ −       − −     



 (51) 

 ( )
( ) ( )

( )

 2 2

1 2
12 2

2

1 11COV

1
1

,

k h h hL h h k k

U U
k hH

h

ρρ ρρ  φ ρ φ
ρρ

ρρ φ
ρ

+−

+ −
+−

    − −
 Φ − Φ −       − −    =  

  −
− − Φ   −  

+



   (52) 

3.6  12E −+ 
Eq. (17) shows that 12E −+

 is for truncated variables 1 0Y <  and 2 0 Y ≥ , donated by 

1 2( ) ,, ~ ( , ,0,0, )Y Y N −+ −+
−+ − += −∞ ∞∑Y Y

Y μ




   , where ( )
1 2

,
Y Y

µ µ− +−+ =Y
μ

 

 and 

1 1 2

1 2 2

2

2  Y Y Y

Y Y Y

σ σ

σ σ

+− −

−−

− + +

 
 =
 
 

∑Y

  

  



. We also transform 1Y −
  and 2Y +

 into 1U −
  and 2U +

 . Following the 

principle of (Rosenbaum 1961), we have 

 ( ) ( )( )1 2 1 1 2 21 2
12 12 12 1 2,COVY Y Y Y Y YU U

E q U UH σ σ µ σ µ µ σ µ− +
−+ −+ −+ − + + = + +  

   (53) 

where 

 ( ) ( )12 1 2 2Pr( 0 0, ) , ,Y h hH Y k r−+ = < ≥ = Φ −Φ  (54) 

 ( ) ( )
1 2 2

12

1
1 1U

k h h kh
H

kρρ µ φ ρφ
ρρ

− −+

    − −
= − Φ − + Φ       − −     



 (55) 

 ( )
2 2 2

12

1 ( )
1 1U

k h h kh k
H

ρρ µ ρφ φ
ρρ

+ −+

    − −
= − Φ − + Φ       − −     



 (56) 

 ( )
( ) ( )

( )

12 2 2

1 2
12 2

2

1 11COV

1
1

,

k h h hh h k k

U U
k hh

H

H

ρρ ρρ  φ ρ φ
ρρ

ρρ φ
ρ

−+

+ −
−+

    − −
 Φ − + Φ       − −    =  

  −
− − Φ   −  

−



   (57) 
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3.7  Robust design optimization 

As discussed above, with the First Order Second Moment Method (FOSM), the 
expected quality loss function can be analytically evaluated without any numerical 
iterative processes or integrations. We can also use FOSM to treat the constraints. As 
reported in robust design literature, a constraint , ) 0}  ( 1,2,( ,Pr{ )eii gg R i n≤ ≥ = …d Z  can 
be approximated as 

 ( 1,2, ,0 )
i ig i g gi nµ β σ = …+ ≤  (58) 

where 
igµ  is the mean of ( )ig ⋅  and is given by  

 ( , )
ig igµ ≈ Zd μ  (59) 

and 
igσ  is the standard deviation of ( )ig ⋅  and is given by 

 

2

2

1 ( , )
i j

nz

g
j

i
Z

j

g
Z

σ σ
=

 ∂ 
∂ 

 
= ∑

Zd μ

 (60) 

The reliability index iβ  is determined by the required reliability eiR  and is given by 

 1( )i eiRβ −= Φ  (61) 

The robust design optimization can then be performed by solving the following 
model: 

 

1 1 2 2 12 12 12 12( ,μ )
min  

subject to
      0 )( 1,2, ,

i i

L

g i g g

E E E E E E E E E

i nmbs 

+ − + − ++ −− +− −+ + + + + + + +


 = …


=

+ ≤


Xd

 (62) 

Once the quality characteristics 1Q  and 2Q  are approximated with the first order 
Taylor expansion, the expected quality loss function in the objective function can be 
evaluated analytically with the equations in Sections 3.2 through 3.6. The reliability 
constraints can also be evaluated analytically with Eqs. (58) and (61). This treatment 
allows for quick solutions to robust design optimization. 

 
 

4 Example - Robust Design Optimization for Four-Bar 
Linkage Synthesis 

We now apply the proposed method to the robust design of a four-bar linkage 
(Zhang and Du 2011; Du et al. 2009) as shown in Fig. 1.  
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Figure 1 Four-bar linkage 

 

4.1 Design requirements 

The crank-rocker mechanism intends to fulfill the following motion requirements:  
(1) When the crank angle is 30θ = , the rocker output angle is 90ψ = . 
(2) When the crank angle is 150θ = , the rocker output angle is 110ψ = . 
(3) Link AB is a crank, and link CD is a rocker.  
(4) The minimal transmission angle is 40λ = . 
(5) The constraints for the crank existence and transmission angles should be 

satisfied at the probability level of 4β = . This probability level means that the 
probability of failure is 53.17 10−×  or that the reliability is 51 3.17 10R −= − ×  
according to Eq. (61). 

(6) The lower and upper limit specifications of the output motion are 
0.8[ , ]0.5i i im mψ +∈ −   , where 1 90m =  and 2 110m = . 

(7) The quality characteristics are the motion output angles ψ , which are defined by 

 ( , , ) , , );(i ifQ ψ θ= =d X P d X P   

where 1,2i = ; and 30θ °=  for 1i = , and 150θ °=  for 2i = . 

(8) The quality losses are specified as follows: 1 2 $1000A A+ += = , 1 2 $2200A A− −= = , 
12 $2200A++ = , 12 $2800A−− = , 12 $2500A+− = , and 12 $2500A−+ = . We assume that 

negative motion errors will result in higher quality losses than positive motion 
errors. Therefore, iA− is larger than iA+ and that iA−− is larger than iA++( 1,2i = ). 

The design variables are the initial crank angle 0θ , initial output angle 0ψ , and link 
lengths 2R , 3R , and 4R . The first two variables are deterministic, and therefore the 
deterministic design variables are 0 0( , )θ ψ=d , and the rest are random design variables, 
or 2 3 4( , , )R R R=X . The distance between revolute joints A and D is 1R , whose distribution 
is known. The input parameter vector is therefore 1)(R=P . The vector of all the random 

B δ

3R

C

4R

0ψ

ψ

1R

DA

2R

 θ
0θ
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variables is 2 3 4 1( , ) ( , , ),R R R R= =Z X P . Details of all the variables are summarized in 
Table 1. 

Table 1 Design variables and parameters 

Variable Distribution Mean 
(mm) 

Standard deviation 
(mm) 

Random input variable 1R   Normal 1000.0  1.0  
Random design variable 2R  Normal 

2Rµ  1/3  
Random design variable 3R  Normal 

3Rµ  1/3  
Random design variable 4R  Normal 

4Rµ  1/3  
Deterministic design variable 0θ  − − 
Deterministic design variable 0ψ  − − 

 
The standard deviations of 2R , 3R  and 4R  are determined by the tolerances of the 

dimensions with the 3-sigma rule. The tolerances of the lengths are ±1.0 mm; then the 
standard deviations are one third of the tolerances, resulting in 

2 3 4
1 / 3R R Rσ σ σ= ==  mm. 

1Rσ  is higher because the uncertainty in 1R  comes not only from manufacturing 
imprecision but also from installation imprecision.  

4.2 Mechanism analysis equations 

We now derive equations for the quality characteristics and constraint functions. 
The loop-closure equations of the four-bar mechanism are given by 

 2 0 3 1 4 0

2 0 3 4 0

cos( cos cos(
sin( sin sin

) )
)()

R R R R
R R R

θ θ δ ψ ψ
θ θ δ ψ ψ
+ + − − + 

= + + − + 
0  

There are two unknowns, ψ  and δ , in the above equations. Solving the equations 
yields following equations 

 0arctan arccosE A
D B

ψ ψ   = + −   
   

  

where 1 2 0cos( )D R R θ θ= − + , 2 0sin( )E R θ θ= − + , 2 2 2 2
4 3A D E R R+ + −= , and 

4
2 22 DB ER= +− . 

 4 0

4 0

)sin(
cos(

arctan
)

E R
D R

θ θδ
θ θ

 + +
=  + + 

  

The quality characteristics Y  are then given by  

 1 30
Q

θ
ψ °=

=   

and 
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 2 150
Q

θ
ψ °=

=   

The derivatives of the quality characteristics are given by 

 0

1 2 4 0

co )
)

s(
sin(

i iQ Q
Z R R

θ θ δ
δ ψ ψ

∂ ∂ + −
−

=
∂ −

=
∂

  

 
2 3 4 0

1
s )in(

i iQ Q
Z R R δ ψ ψ
∂ ∂

=
∂ −−∂

=   

 
3

0

4 4 0

cos(
sin

)
)(

i iQ Q
Z R R

δ ψ ψ
δ ψ ψ

∂ ∂ −
= −

−
−

∂ −
=

∂
  

 
4 1 4 0

cos
sin( )

i iQ Q
Z R R

δ
δ ψ ψ

=
−

∂ ∂
= −

∂ ∂ −
  

Using the above equations and the proposed methodology, the expected quality loss 
function can be calculated analytically without any numerical integrations or iterative 
processes. 

We now discuss the constraint functions. Because link AB should be a crank, the 
following three constraint functions (Grashof’s theorem) should be satisfied: 

 1 2 3 1 4( ) 0g R RR R+ − + ≤=   

 2 2 4 1 3( ) 0g R RR R+ − + ≤=   

 3 2 1 3 4( ) 0g R RR R+ − + ≤=   

We can also derive constraint functions for the transmission requirement. The two 
constraint functions are given by 

 2 2 2
4 3 4 1 2 3 4 c) 2 0o( sg R R RR R R λ−− −+ ≤=   

 2 2 2
5 3 4 1 2 3 4[ ] co( s) 2 0g R R RR R R λ= − + − − ≤+   

It is easy to derive the derivatives of the five constraint functions with respect to the 
random variables 1 2 3 1( , ) ( , , ),R R R R= =Z X P . Then the means and standard deviations of 
the constraint functions are analytically available. Thus the reliability constraints in the 
robust design optimization model can be easily calculated. 

4.3 Optimization models 

To show the advantages of the proposed method, we compare its results with those 
from deterministic optimal synthesis and robust optimal synthesis without considering the 
dependency between the two quality characteristics.  

The deterministic optimization model is given by 
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2 2
1 1 2 2( , )

min  ) )

subjec

( (

      g 0 
t to

( 1,2, ,5)j

f

j

m mψ ψ


 = …


= − + −

≤


d X

  

where no uncertainties are considered, and the mean values are used. 

The robust design model without dependency consideration is formulated as 

 

1 1 2 2( ,μ )
min  

subject to
(      0 1,2, ,5)

j j

L

g j g

E E E E E

jmbs 

+ − + − + + +


 = …

=

≤


+


Xd

  

In the above model, no joint quality losses are included.  

 The proposed method considers the joint quality losses, and the optimization 
model is built as 

 

1 1 2 2 12 12 12 12( ,μ )
min  

subject to
     ( 1,2, , 50 )

j j

L

g j g

E E E E E E E E E

jmbs 

+ − + − ++ −− +− −+ + + + + + + +


 =


=

≤ …+


Xd

  

 4.4 Results and discussions 

Sequential Quadratic Programming was used to solve the three optimization models. 
The starting point of the three problems was , )(0 0° °=d  and (500,1200,600)=Xμ  mm. 
The lower and upper bounds of d are (0 ,0 )° °  and (360 ,360 )° ° , respectively. The lower and 
upper bounds of Xμ  are (200,400,400) mm and (1000,1500,1500) mm, respectively. The 
optimal points from the three methods are given in Table 2.  

 
Table 2 Optimal design points 

Design 
variables 

Deterministic 
optimization 

Robust design without 
dependency consideration    

Robust design with 
dependency  consideration  

2Rµ  229.77 mm   349.38 mm 220.60 mm    
3Rµ  915.78 mm   751.36 mm 631.70 mm 
4Rµ  770.51 mm 1005.04 mm 1144.03 mm 

0θ  350.11° 0.0° 82.52° 
0ψ  0.21° 0.48° 0.82° 
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As shown in Table 3, the three methods produced the desired average motion as the 
means of the output angles are almost on their targets. The deterministic optimization has 
the largest expected quality loss, $34.17, because of the largest standard deviations of the 
motion output. The robust design without dependency consideration produced an 
expected quality loss of $14, which is a huge improvement with respect to the 
deterministic optimization. But it is not the best. With the incorporation of the 
dependency between the two output angles, the proposed bivariate robust design 
optimization further improved the robustness. It produced the lowest expected quality 
loss $4.99. The two robust design methodologies generated very similar standard 
deviations of the two output angles, but their coefficients of correlation are quite different 
– one is 0.6564, and the other is 0.3920. The different coefficients of correlation are also 
a contributing factor for different quality losses. The coefficient of correlation was 
computed with the following equations 

 
1 2 1 2

2
1 2

11 2( , ) j

nz

j j Z
j

Y Y Y Y

a a
COV Y Y

σ
ρ

σ σ σ σ
== =
∑

 (63) 

where ( 1, 2; 1, 2, , )ija i j nz= =   are given in Eq. (7), and ( 1, 2)
iY iσ =  are given in Eq. 

(10).  

Table 3 Optimal points 
Design 
variables 

Deterministic 
optimization 

Robust design without 
dependency consideration    

Robust design with 
dependency  consideration 

1ψ
µ  89.9999°    89.9974°    89.9946°    

2ψµ  109.9999°   109.9970°   109.9938°   
1ψ

σ  0.0757°     0.0452° 0.0308° 
2ψσ  0.0672°     0.0471° 0.0244° 

ρ  0.8620 0.6564 0.3920 
LE  $34.17 $14.0 $4.99 
LE  (MCS) $34.08 $13.97 $4.99 

 
The expected quality losses LE  in Table 3 were calculated by the proposed 

methodology. They were confirmed by Monte Carlo simulation (MCS) with a sample 
size of 106 as shown in the last row of Table 3. The MCS solutions indicate that the 
proposed bivariate robust analysis is accurate. 

The contours of the joint PDF of the two output angles are plotted in Fig. 2. The 
contours are at a probability level of 0.5. The figure clearly shows that the proposed 
method is much more robust because its PDF contour is much smaller than those of the 
other two methods. 
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Figure 2 PDF contours 
 

5 Conclusions  
Quality characteristics are generally dependent because they may share common 

random input variables. Considering their dependency may produce better design results 
with lower quality losses. This can be achieved by using an expected total quality loss 
function, where the dependency between quality characteristics is automatically 
accounted for with the expectation operation. 

If the input random variables are normally distributed with small standard 
deviations, for bivariate quality characteristics, their expected quality loss function can be 
derived as shown in this work. The analytical derivations are based on the First Order 
Second Moment method. It requires the function value of the quality characteristics and 
its derivatives at the means of random input variables. No iterative processes or 
numerical integrations are needed. In this work, only the nominal-the-best type of quality 
characteristics is addressed. The results can be easily extended to the-smaller-the-better 
type of quality characteristics. We can simply set the target of a quality characteristic to 

89.9 89.92 89.94 89.96 89.98 90 90.02 90.04 90.06 90.08 90.1

109.92
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109.98

110

110.02
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°

ψ2
°

Target

Deterministic optimization
Robust design without
dependency consideration
Robust design with
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zero for this type. The extension to the-large-the-better type is possible, but it needs a 
further investigation. 

The proposed bivariate robust design method can be directly applied to the existing 
multivariate quality loss function (Wu and Chyu 2004b) with more than two quality 
characteristics. The reason is that a joint quality loss considered is only up to the second 
order. For example, if there are three quality characteristics 1Q , 2Q , and 3Q , the joint 
quality losses are between 1Q  and 2Q ; 1Q  and 3Q ; and 2Q  and 3Q . If all the random variables 
are normally distributed with small standard deviations, the proposed method will also be 
accurate for the expected multivariate quality loss function.  

When uncertainties are large, the function of a quality characteristic will no longer 
be close to linear in the vicinity of the means of random input variables. Then analytical 
algorithms will not be available, and the proposed method will produce large errors. For 
this situation, efficient numerical integrations should be employed to evaluate the 
expectation of bivariate or multivariate quality loss functions. The most popular methods 
include the point estimation methods or the dimension reduction methods (Huang and Du 
2005; Lee et al. 2008; Li and Chen 2006; Liping et al. 2007; Rahman 2008; Rahman 
2009; Rahman and Xu 2004; Wang et al. 2008).  
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