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Abstract 
Quality characteristics are often treated as constants in robust design while many of them 
actually vary over time. It is desirable to define new robustness metrics for time-
dependent quality characteristics. This work shows that using the static robustness 
metrics for time-dependent quality characteristics may lead to erroneous design results. 
We then propose criteria of new robustness metrics for time-dependent quality 
characteristics. Instead of using an expected point quality loss over the time period of 
interest, we use the expectation of the maximal quality loss over the time period to 
quantify the robustness for time-dependent quality characteristics. Through a four-bar 
function generator mechanism synthesis, we demonstrate that the new robustness metrics 
can capture the full information of robustness of a time-dependent quality characteristic 
over a time interval. The new robustness metrics can then be used as objective functions 
for time-dependent robust design optimization.  
  
1. Introduction 

A quality characteristic (QC) refers to any performance, response, or behavior that 
significantly affects product quality and customer satisfaction. The value of a QC 
fluctuates due to uncertainties, and the variation may lead to a quality loss. During robust 
design, the variation in QCs is minimized. Such minimization is achieved by adjusting 
the nominal values of design variables without eliminating the sources of uncertainty. 
Robust design can therefore make QCs insensitive to raw material variation, immune to 
manufacturing imprecision and inert to the variation in the operating environment. As a 
result, robust design allows for the use of low grade materials, reduces labor and material 
cost, and improves reliability and reduces operating cost [1]. Because of its advantages, 
robust design has been applied across a wide range of industry sectors, such as 
automotive, aerospace, defense, and telecommunication industries. 

The traditional robust design is based on statistical experiments [1]. With the 
growth of computational power, robust design has been increasingly performed through 
model-based optimization [2-6]. Instead of experimentally estimating the QCs, designers 
can computationally evaluate QCs with analysis models, such as finite element 
simulation. This kind of robust design is referred to as analytical robust design 
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optimization [6]. The methodologies of analytical robust design optimization are 
reviewed in [4, 6-10] 

The objective of analytical robust optimization is to maximize the robustness of a 
product, process, or component. Various metrics that measure robustness have been 
proposed in literature. The most common robustness metric is the Taguchi’s quality loss 
function (QLF) [1]. This metric is based on the recognition that it is vital to produce QCs 
on their targets and that the variation around the mean QCs causes poor quality. The QLF 
is defined by a quadratic function of the deviation of a QC from its target. The QLF 
increases slowly when the deviation is small; it increases rapidly when the deviation is 
large. Given the variation in the QC, the expected QLF is used as the robustness metric. It 
is equal to the square of the mean deviation (the deviation of the mean QC from its target) 
plus the variance of the QC. Minimizing the expected QLF reduces both of the terms. As 
a result, we can bring the mean QC to its target and in the meantime minimize the 
variation in the QC. 

When multiple QCs are involved, the total quality loss is just the summation of 
individual QLFs. This is possible because the quality losses are expressed in a monetary 
amount and are additive. If a designer is concerned with the combined quality losses 
when more than two QCs are away from their targets, a multivariate quadratic loss 
function [11] could be used. This kind of quality loss function accounts for the joint 
losses of all pairs of QCs. With the QLF-type robustness metric, the robust design 
optimization involves a single objective function, which is the expected QLF that is to be 
minimized. 

If designers are interested in a trade-off between the standard deviation and mean 
deviation of a QC, they may formulate a multi-objective optimization problem [12-14]. 
The two objectives are the standard deviation and mean deviation of the QC. If the 
designers would like to give a higher weight to either the standard deviation or mean 
deviation of the QC, they may use the weighted sum of the two, which also results in a 
single objective function. Other robustness metrics have also been used in robust design 
optimization, such as the signal-to-noise ratio [1], percentile difference [15], and worst-
case QCs [16].  

Most of the above robustness metrics are defined for time-invariant QCs that do not 
change over time. Some of the metrics could be used for dynamics problems, but they are 
only applicable for situations where the targets of QCs changes with signals [17-18], 
instead of changing with time. The dynamic robustness metrics are not directly related to 
time-dependent QCs. 

In many engineering applications, QCs vary over time during the product service 
life. There are two reasons for the time-dependent QCs. (1) A QC is a function of time-
dependent variables, such as the wind load and road conditions. (2) The function of a QC 
itself is time dependent; in other words, the function contains a time factor. Two 
examples of time-dependent QCs are provided below. 

In a kinematic mechanism synthesis problem, the QC of a mechanism is its motion 
error, which is the difference between the actual motion and the desired motion. For 



3 
 

instance, the position of the slider of a slider-crank mechanism should follow a desired 
function of the angle of the crank (or time). The actual slider position may deviate from 
its desired function. The deviation is the motion error. We prefer the motion error to be 
zero. Because of uncertainties in mechanism dimensions, joints, loading, and installation, 
the motion error fluctuates at any given instant of time; it also varies over time. The 
motion error at time instant 1t  may be different from that at time instant 2t . In many cases, 
the motion error changes dramatically with time, and the QC is therefore strongly time 
dependent. In this example, the QC, or the motion error, is a function of time, which 
appears explicitly in the function. For mechanisms with rotational motion, the QC 
associated with their motion errors is periodic or cyclic over time because the motion 
repeats cycle by cycle. 

A wind turbine is another example where the wind speed changes over time 
significantly. Observed for a long period of time, for example, several years, the change 
in the wind speed may be periodic. The strengths of the materials of the turbine 
components also deteriorate with time. This change indicates a trend of decreasing 
strengths. The wind speed and strengths are actually stochastic processes, which vary 
over time randomly. As a result, the QCs of the wind turbine are time dependent. 
Examples of the time-dependent QCs include the safety margin, servicing life, reliability, 
and availability.  

Time-dependent QCs are commonly encountered in engineering systems such as 
vehicles, aircraft, and large constructions. It is desirable to investigate new robustness 
metrics that can truly measure the robustness of designs involving time-dependent QCs. 

In this work, we are interested in modeling the robustness of time-dependent robust 
design problems. The uniqueness of this work consists of four elements. The first is the 
establishment of the criteria for the time-dependent robustness metrics. The second 
includes the two proposed time-dependent robustness metrics that describe the true 
robustness over a time interval. The third is the examination on why the traditional 
robustness metrics may not work for time-dependent problems and why the time-
dependent metrics work. The fourth is a Monte Carlo simulation (MCS) approach for 
evaluating the time-dependent metrics. 

We review the traditional robustness modeling methods in Section 2 and then 
define time-dependent robustness metrics in Section 3. General formulations are derived 
in Section 4. Section 5 is dedicated to the development of the MCS approach for 
evaluating the time-dependent robustness metrics. In Section 6, we use a four-bar 
mechanism synthesis problem to demonstrate the utility of time-dependent robustness 
metrics. Conclusions are given in Section 7. 

 
2. Review of Existing Robustness Models 

To ensure robustness, for a particular quality loss (QC) Y , we prefer its mean Ym  to 
be optimal and its standard deviation Ys  to be minimal. This is the reason why both Ym  
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and Ys  appear in most of robustness metrics. Next we review two commonly used 
robustness metrics. 

 
2.1 Time-invariant problems 

There are three types of QCs: Nominal-the-best, smaller-the-better, and larger-the-
better. Several examples of the three types are as follows: 

Nominal-the-best: The motion error of a mechanism should be zero or close to zero; 
dimensions of mechanical parts should be at their nominal values. This type of QCs may 
be time-dependent; for example, the aforementioned motion error is time dependent.  

Smaller-the-better: The costs, stress concentration, and wear of a mechanical 
component should be small. All of these QCs are generally time dependent. 

Larger-the-better: The expected life, yield, efficiency of a product should be large. 
These QCs can also be time dependent 

The most commonly used robustness metric is the quality loss function (QLF) [1]. 
Next we examine the normal-the-best type QC. Let the QC be defined by ( )Y g= X  with 
input variables 1( , , )TnX X= ¼X . The QLF is given by 

 2( )L AY m= -  (1) 

where m is the target, and A is a constant, which is determined by a monetary loss when 
Y  is at its lower specification limit (LSL) or upper specification limit (USL). As shown in 
Fig. 1, when Y  is on its target m, the quality loss is zero, and the farther is Y  from m, the 
higher is the quality loss.  
 

 
Fig. 1 Quality loss function 

 
During robust design, the expected QLF is minimized. It is computed by [1] 

 2 2[( ) ]L Y YE A mm s= - +  (2) 

)($L

m USLLSL Y
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Minimizing LE  brings the mean QC to its target m and in the meantime minimizes the 
variation of the QC, which is measured by Ys . The expected QLF serves as a robustness 
metric in the sense of quality loss. 

The other commonly used robustness measure is the weighted sum of the mean 
deviation | |Y mm -  and the standard deviation Ys . The weighted sum robustness 
function is defined by 

 1 2| |w Y YR w m wm s= - +  (3) 

where the weights satisfy 1 2 1w w+ = . Minimizing wR  can also bring the mean QC to 
its target and minimize the standard deviation of the QC. 

Many QCs reported in literature belong to the smaller-the-better type. If we 
consider the target being zero, the weighted sum robustness metric becomes [6, 19] 

 1 2w Y YR w wm s= +  (4) 

  
2.2 Time-dependent problems 

As discussed above, many engineering problems are time dependent. The general 
function of a QC is depicted with a solid line in Fig. 2 and is represented by 

 ( ) ( ( ), )Y t g t t= X  (5) 

 

 
Fig. 2 Time-dependent QC 

 
Eq. (5) indicates that the QC is a function of stochastic processes ( )tY , which are 

random variables varying over time. The QC may also be an explicit function of time t . 
As shown in Fig. 2, the target function ( )m t , represented by the dotted curve, may also 
vary over time. 

When Y is time dependent, the QLF at an instant of time becomes 

 2( ) ( )[ ( ) ( )]L t A t Y t m t= -  (6) 

¢¢¢

( )Y t

( )m t
( )Y t

( )m t

1t 2t t
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This QLF gives the instantaneous quality loss at a specific instant of time. We call it 
the point quality loss function (P-QLF). The dependence of the P-QLF on time is shown 
in Fig. 3. The figure indicates that ( )L t  is a quadratic function at an instant of time with 
respect to Y , and the quadratic functions of ( )L t  change over t. 

 

 
Fig. 3 P-QLF in terms of Y and t   

 
To show the time dependence of ( )L t   more clearly, we can image drawing a sample 

curve (trajectory) from the stochastic process ( )Y t  and let the sample curve be ( )y t , which 
is a deterministic function of t . Then the sample curve (realization) of the point QLF 
becomes a deterministic function of time; namely, 2( ) ( )[ ( ) ( )]L t A t y t m t= -  . The 
realization is shown in Fig. 4. 

 

 
Fig. 4 P-QLF in terms of t  

 
The expected P-QLF can be obtained from Eq. (2) by adding the time factor. It is 

given by 

 { }2 2( ) ( ) [ ( ) ( )] ( )L Y YE t A t t m t tm t= - +  (7) 

The expected P-QLF ( )LE t  tells us the average quality loss at a particular time 
instant. Even though from ( )LE t  we know how the instantaneous expected quality losses 

( )L t

t

L

1t
2t

3t

t

1( )L t

2( )L t

3( )L t

( )m t

Y



7 
 

vary over time, we cannot have a complete picture about the expected quality loss over 
the time interval 0[ , ]ft t . Specifically, P-QLFs at 1t , 2t , 3t  … are dependent because they 
share the same input random variables or stochastic processes. As calculating the 
expected P-QLF ( )LE t  does not requiring knowing the dependency, having only the 
expected P-QLFs, we do not know the dependency. In other words, ( )LE t  tells us only 
the expected quality loss at t  regardless if there were strong or weak correlations to the 
quality losses prior to t . As will be seen next, such correlations are an important factor 
governing the quality loss over the time interval. As a result, it is not desirable to simply 
extend the P-QLF to time-dependent problems. 

There have been few studies on the time-dependent robust design; among those, the 
robustness is modeled by the sum of the expected P-QLFs or the weighted sum 
robustness function at discretized points over the time interval 0[ , ]ft t  [20-21]. For 
example, the sum of expected P-QLFs is in the form of  

 { }2 2
0 1 2

1 1

( ) ( ) [ ( ) ( )] ( ) ,
p p

L i i Y i i Y i f
i i

E t A t t m t t t t t tm t
= =

= - , = < < ¼<å å  (8) 

Minimizing 
1

( )
p

L ii
E t

=å  is numerically equivalent to minimizing the average 
expected P-QLFs 0( , )L fE t t  if sufficient discretization points are taken. The average 
expected P-QLFs 0( , )L fE t t  is given by 

 { }
0

2 2
0( , ) ( ) [( ( ) ( )] ( )

ft

L f Y Y
t

E t t A m dt m t t t t t= - ,ò  (9) 

over 0[ , ]ft t . 

Because 0( , )L fE t t  cannot account for the auto-dependency of the quality loss over 
time, it shares the same drawbacks as the expected P-QLF. We therefore need new 
robustness metrics for time-dependent robust design problems.  

 
3. New Robustness Metrics for Time-Dependent Problems 

To truly capture the robustness over the time period 0[ , ]ft t  where the product is 
supposed to function, we need to define new robustness metrics. As there are multiple 
static robustness metrics, there may be multiple time-dependent robustness metrics. To 
provide a guideline to defining new robustness metrics for time-dependent QCs, we 
propose the following criteria: 

(1) A metric must represent the maximal quality loss over 0[ , ]ft t  if the robustness is 
defined in term of a quality loss. This feature comes from the fact that the 
quality loss is irreversible – once a quality loss occurred; there is no way to go 
back. For example, if the quality loss 2( )L t  at the current instant 2t  is greater than 
the quality loss 1( )L t  at the previous instant 1t  ( 1 2t t< ), then over time interval 
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0 2[ , ]t t , which covers 1t , we should consider the quality loss being 2( )L t . It is 
therefore natural to use the maximal quality loss over a time interval.   

(2) The metric should capture the auto-dependency of quality losses over 0[ , ]ft t . 
This feature is important because two QCs with the same point quality loss at 
each instant of time may have totally different quality losses over the entire time 
interval. The reason is that a general QC is a stochastic process. To fully 
describe the stochastic process, we should know not only its distributions at all 
instances of time but also its autocovariances at any pairs of instances of time. 

(3) The robustness metric, if expressed in the form of a quality loss, should be a 
non-decreasing function with respect to time. The reason is that the longer is the 
product put into service, the worse might be its robustness. The other reason has 
been mentioned in (1), which is that the quality loss is irreversible. 

(4) Minimizing (or maximizing) a robustness metric will lead to optimizing the 
mean QCs and minimizing the variations of the QCs over 0[ , ]ft t . This comes 
from the purpose of robust optimization. 

Based on the above criteria, we propose to use the extreme value or the worst-case 
value of the point quality loss over 0[ , ]ft t  to form robustness metrics for time-dependent 
QCs. We call the worst-case quality loss an interval quality loss because it is defined over 
a time interval. Then the interval quality loss function (I-QLF) over 0[ , ]ft t  is given by 

 { }2
0 0( , ) max ( )[ ( ) ( )] ,f fL t t A Y m t t

t
t t t t= - £ £  (10) 

It is the maximum quality loss with respect to time over 0[ , ]ft t . Fig. 5 shows the 
realizations (sample curves) of both the proposed I-QLF and the traditional P-QLF. If we 
look at a specific instant 1t  and interval 0 1[ , ]t t , the P-QLF is L1 while the I-QLF over 

0 1[ , ]t t  is 2L . It is obvious that 2 1L L>  because 2L  is the maximum quality loss over 0 1[ , ]t t . 
 

 
Fig. 5 P-QLF and I-QLF 

 

( )L t

0( , )L t t
0Interval QLF ( , )L t t

Point QLF ( )L t

2L

1L

tft1t0t
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The time-dependent robustness metric is then the expectation of the I-QLF 
0, )( fZ L tt= , given by  

 0
0

( , ) ( )L f ZE t t zf z dz
¥

= ò  (11) 

where ( )Zf z  is the probability density function (PDF) of Z . The expectation should be 
minimized during robust design. 

For the weighted sum robustness function in Eq. (3), we can also similarly define its 
interval counterpart as  

 0 1 2( , )w f G GR t t w wm t= ,  (12) 

where 
 0max | ( ) ( ) |,  fG Y m t t

t
t t t= - £ £  (13) 

which is the maximal absolute deviation of the QC from its target over 0[ , ]ft t . 

We now use the I-QLF as an example to explain why the interval robustness 
metrics work and why the point robustness metrics do not, with the following reasons: 

(1) The I-QLF 0( , )fL t t  is the largest quality loss over the time interval 0[ , ]ft t ; it is the 
true quality loss over the time interval. 

(2) The expectation, 0( , )L fE t t , of the I-QLF, can accommodate the auto-dependency 
of the quality loss over the time interval. This is illustrated in Fig. 6, where two 
QCs have the same expected point quality losses (marked as P-QLF) at any 
instant of time over 0[ , ]ft t . But their expected interval quality losses (marked as I-
QLF) are quite different because they have different coefficients of 
autocorrelation 1 1 2( , )t tr  and 2 1 2( , )t tr , where 0 1 2 ft tt t<£ £ . 

(3) The expected I-QLF is non-decreasing over time, but the expected P-QLF is not, 
as indicated in Fig. 6. 

(4) Because the expected I-QLF truly represents the robustness over 0[ , ]ft t , 
minimizing this expectation will result in a true robust design over 0[ , ]ft t .  

Fig. 6 is only for a demonstration purpose, for which the two QCs are assumed to 
be two Gaussian stochastic processes with the same mean function 

( ) 0.99sin(1.5 0.1) sint t tµ = − −  and the same standard deviation function ( ) 0.1 ( )t tσ µ= . 
Because both QCs have the same mean and standard deviation functions at each instance 
of time, they have the same distribution (a normal distribution). Their expected P-QLFs 
are therefore also the same. Their functions of coefficient of autocorrelation are different. 

2 2
1 1 2 2 1 1( , ) exp[ ( ) / ]t t t tr l= - -  1( 1/3000)l =  and  

2 2
2 1 2 2 1 2( , ) exp[ ( ) / ]t t t tr l= - -  

2( 1/2)l = . The different autocorrelation structures result in different expected interval 
quality losses.  
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Fig.6 Two QCs with same ( )LE t  but different 0( , )LE t t  

 
4. Expectation of I-QLF 

Because we will minimize the expected I-QLF during the robust optimization, it is 
necessary to evaluate the expected I-QLF. This is the task of time-dependent robustness 
analysis. Define 

 ( ) ( ) ( ) ( )H t A t Y t m té ù= -ë û (14) 

Also define 0( , )fZ t t  to be the maximal P-QLF over 0[ , ]ft t . We then have 

 
2

0

2
0

( , ) max{ ( )[ ( ( ), ) ( )] }

max ( )( )

f

f

Z t t A Y m

H t t
t

t

t t t t

t t

= -

= £ £

X
 (15) 

The expectation of the I-QLF can be calculated by Eq. (11).  To calculate the 
expectation, we need to know the PDF or cumulative distribution function (CDF) of Z . 
This is a challenging task because the extreme value of the nonlinear function 

2 2( ) ( )[ ( ( ), ) ( )]H A Y mt t t t t= -X  is involved. Next we develop a way to obtain the 
expectation from only )(H t

 
instead of 2( )H t . 

The CDF of Z  is given by 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
 

 

E
L

I-QLF with ρ
2

I-QLF with ρ
1

P-QLF



11 
 

 { }2
0( ) Pr max ( ) , Z fF z H z t t

t
t t= < £ £  (16) 

where Pr{}×  denotes a probability. 
The CDF can be derived as 

 0( ) Pr{max ( ( ), ) ,  }Z fF z H z t t
t

t t t= < £ £X  (17) 

Let max ( ( ), )W H
t

t t= X  and its PDF be ( )Wf w . Then from Eq. (17) we have 

 ( ) ( ) ( )Z W WF z F z F w= =  (18) 

where w z= . 
If the CDF ( )WF w  is available, the PDF of W  is given by 

 ( )
( ) W

W
dF w

f w
dw

=  (19) 

And then the expectation of Z  is computed by 

 2
0

0 0
( , ) ( ) ( )z f z WE t t zf z dz w f w dw

¥ ¥
= =ò ò  (20) 

The key is then the evaluation of the CDF ( )WF w . Because max ( ( ), )W H
t

t t= X , 

we can obtain ( )WF w  from the CDF of the function ( )H × .  
 ( ) Pr{ } Pr{ max ( ( ), ) }WF w W w w H w

t
t t= < = - < <X  (21) 

or 

 { }( ) 1 Pr max ( ( ), ) max ( ( ), )WF w H w H w
t t

t t t té ù é ù= - > Ç < -ê ú ê úë û ë û
X X  (22) 

For a general nonlinear function ( )H ×  with general stochastic processes ( )tX , one 
available numerical method for computing the above probability is the Poisson 
upcrossing method [22-23]. The method has been widely used for time-dependent 
structural reliability analysis, but its accuracy may be poor. New numerical methods for 
evaluating Eq. (22) need to be developed. Our primary purpose herein is the robustness 
modeling for time-dependent design problems, and developing new algorithms is beyond 
the scope of this work. Nevertheless, the above derivations will serve as a guideline for 
developing such new numerical methods. To easily validate the proposed time-dependent 
robustness metrics, we employ the Monte Carlo simulation (MCS). Next we develop a 
MCS procedure for the time-dependent robustness analysis and then use it for the 
methodology validation. 
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5. Monte Carlo Simulation for Time-Dependent Robustness Metrics 
The primary reason we use MCS is to easily evaluate the new robustness metrics. 

Other reasons are as follows:  
(1) Once new approximation methods for time-dependent robustness analysis are 

developed, MCS results can serve as a benchmark for their accuracy evaluation.  
(2) Unlike time-dependent reliability analysis associated with rare events, the 

robustness analysis here requires significantly less number of samples because we 
are interested in only the expectation estimation.  

(3) Using MCS is feasible in some applications if the evaluation of QCs is quick.  
(4) For many applications with general non-stationary stochastic processes, MCS is 

the only approach we may use.  
Fig. 7 shows the MCS procedure where the key is to efficiently draw samples for 

stochastic processes ( )tX . This task is much more complicated than generating random 
variables. For example, sampling on a Gaussian process may involve solving a large-
scale eigenvalue problem because a large number of discretization time points are needed 
to ensure the stochastic process being accurately represented [24-25]. How to efficiently 
draw samples from a general stochastic process needs further research. In this work, we 
consider only Gaussian processes. 

 

 
Fig. 7 MCS approach 

 
At first, we discretize the time interval 0[ , ]ft t  into equal sub-intervals 

0 1 2 1p p ft t t t t t-= < ¼< < =< . Then we follow the three steps described below. 

(1) Obtain samples of X . The vector X  may include both random variables and 
stochastic processes. Let ( ( ), )S Rt=X X X  where ( )S tX  are stochastic processes 
and RX  are time-invariant random variables. The methodologies in [24-25] can be 
used to generate N  samples for ( )S tX  over 0[ , ]ft t . Suppose the generated samples 
are 1 2( ), ( ), , ( )Si Si Si ft t t¼X X X  ( 1,2, ,i N= ¼ ). We also generate samples for RX .  
The samples are denoted by X Ri  ( 1,2, ,i N= ¼ ).  

Evaluating  QC 
( ) )( ,t tY g= X  

Time-dependent 
robustness metric 

Sampling on ( )tX  
over 0[ , ]ft t  

Evaluating time-
dependent quality loss 
I-QLF 

1 2( ), ( ),Y t Y t 

1 2( ), ( ),t t X X
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(2) Evaluate the QC at 0 1 2 1p p ft t t t t f-= < ¼< < =< . The samples of the QC 
are 1 1( ) ( ( ), )i Si RiY t Y t= X X , 2 2( ) ( ( ), )i Si RiY t Y t= X X , …, 

( ) ( ( ), )i p Si p RiY t Y t= X X  ( 1,2, ,i N= ¼ ). Then calculate the I-QLFs with the 
following equation: 

 { }2
0

0
( , ) max ( )[ ( ) ( )]

p

i f j j j
j

L t t A t Y t m t
=

= -  (23) 

 where 1,2, ,i N= ¼ . 
(3) Evaluate the time-dependent robustness metric or the expected I-QLF using the 

following equation. 

 0 0
1

1
( , ) ( , )

N

L f i f
i

E t t L t t
N =

» å  (24) 

 
6. Numerical Example 

We now validate the proposed robustness metrics through the robust design of a 
four-bar linkage. The linkage serves as a function generator. As shown in Fig. 8. the 
crank AB is the input member with the input angle 0q q+ , where 0θ  is the initial input 
angle, and the rocker CD is the output member with the output angle 0y y+ , where  0y  
is the initial output angle. 1R , 2R , 3R , and 4R  are the random lengths of the mechanism. 
The random vector is therefore 1 2 3 4( , , , )TR R R R=X . The distributions of the dimension 
variables are given in Table 1. 

 
Fig. 8  Four-bar function generator mechanism 
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Table 1 Random dimensions for the sine function generator 

Variable Mean (mm) Standard deviation (mm) Distribution 
1R  1 100µ =  1 0.2σ =  Normal 
2R  2µ  2 0.2σ =  Normal 
3R  3µ  3 0.2σ =  Normal 
4R  4µ  4 0.2σ =  Normal 

 
The function generator mechanism is supposed to realize a function defined by 
siny x=  with 0[ , ] [0, 90 ]fx x x °Î = . The range of the input angle q is 

0 0 0[ , ] [ , ]120fq q q q °,= , and the range of the output angle 0y y+ is 

0 0 0[ , ] [ , ]50fy y y y °,= . According to [26], the required functional relationship between 

the output dy  and input q  is 3
0 04

( ) 50 sin ( )dy q y q q° é ù= + -ê úë û
 for function siny x= . 

The design variables of the mechanism synthesis are 1µ , 2µ , 3µ , 0θ , and 0y . 

The motion output Ã varies over the interval of the motion input µ 2 [0±; 120±], over 
which the mechanism is supposed to perform its intended function. In this problem, the 
time factor is t = µ. The quality characteristic (QC) Y  is the motion error of the 
mechanism. The motion error is measured by the deviation of the actual motion output Ã 
from its desired motion output. Because of the randomness in the lengths of the links,  Y  
varies with respect to θ . Y  is therefore a stochastic process.  

To perform robust synthesis, we are interested in knowing the robustness of the 
mechanism during the time interval [0 ,120 ]° °

 over which the desired function is defined. 
We first derive the QC and then define its quality loss function. 

The loop-closure equations of the four-bar mechanism are given by 

 2 0 3 1 4 0

2 0 3 4 0

cos( ) cos cos( )
sin( ) sin sin( )

R R R R
R R R

q q g y y
q q g y y

é ù+ + - - +ê ú =+ + - +ê úë û
0 (25) 

Solving the above equations yields the actual motion output below. 

 
2 2 2

0( , ) 2 arctan
E E D F

F D
y r y

æ ö- ± , - ÷ç ÷ç, = ÷ç ÷ç - ÷çè ø
X  (26) 

where 4 1 2 02 cos( )D R R R q qé ù= - +ë û, 2 4 02 sin( )E R R q q= - +  and 
2 2 2 2
1 2 4 3 1 2 02 cos( )F R R R R R R q q= + + - - + . 

The QC Y  is then given by  
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0

2 2 2
3

04

( , ) ( , ) ( )

2 arctan 50 sin ( )

dY

E E D F
F D

r y r y y r

rr °

= , -
æ ö- ± , - ÷ç é ù÷ç= - -÷ ê úç ÷ ë ûç - ÷çè ø

X X

 (27) 

A close-to-zero motion error is desired, and the target of the QC is then ( ) 0m q = . 
Therefore, the deviation of the QC from its target is 

 2 2 2
3

04

( , ) ( , ) ( )

2 arctan 50 sin ( )

g Y m

E E D F
F D

rrr 

rr °

= -
æ ö- ± , - ÷ç é ù÷ç= - -÷ ê úç ÷ ë ûç - ÷çè ø

X X

 (28) 

The P-QLF is given by 

 2( ) [ ( , )] , 0 120 L A gq q q° °= £ £X  (29) 

and the I-QLF is given by 

 2(0,120 ) max[ ( , )] , 0 120L A g
q

q q° ° °= £ £X  (30) 

where A is assumed to be $1000/degree2. 
The I-QLF based robust design is modeled as 

 

{ }

{ }
{ }

1 2 3 0 0

2

, , ,

2 1 3 4

2 3 1 4

2 4 1 3

1 2 2 2
1 2 3 43 4

1 2 2 2
1 2 3

( , )

43 4

2

(0,120 ) max[ ( , )] , 0 120

30 cos ( ) / 2

cos ( ) / 2 170

450 mm

min   

subject to

0

+ 0

+ 0

0

0

20 mm ,

L E A g
nnn   q y q

q q

nnnn  
nnnn  
nnnn  

nnnnnn    

nnnnnn    
n

° ° °

° -

- °

= £ £

- -
- -
- -

é ù- , - -ê úë û
é ù, - -ê úë û
£

, £
£
£

£

, £
£

X

3 4

0 0

45020 mm ,  

0 0

mm,

, 36

nn

q y° °

ìïïïïïïïïïïïïïïïïíïïïïïïïïïïïï
£ £

£ £ïïïïî

 (31) 

The I-QLF is in the objective function and is to be minimized. The constraints are 
for the existence of a crank and the requirement of the transmission angle, whose nominal 
value should be greater than or equal to 30°. 

To compare the new approach with the traditional one, we will give the P-QLF 
based robust design model below. 
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 (32) 

The time interval [0 ,120 ]° °  is discretized into 181k =  equal small intervals. The 
average P-QLF is to be minimized. 

For this mechanism synthesis problem, the computational cost is not high. The 
MCS-based robustness analysis is performed with a sample size of 300. Because we 
evaluate only expectations, this sample size is good enough.  

The starting point used for both P-QLF and I-QLF based robust design was 
2 3 4 0 0( 10 mm, 100 mm, 160 mm, 0 ,, , , , ( 0) )m m m q y ° °= .  The optimal results are given 

in Table 2. 
Table 2 Optimal results 

Method P-QLF I-QLF 
2Rµ (mm) 48.14 43.08 

3Rµ (mm) 100.48    103.57 

4Rµ  (mm) 74.13       66.51 
0q  (deg)  100.46    97.15 
0y  (deg) 99.01 93.89 

Average expected P-QLF ( )EL q  ($) 21.60 24.76 
Maximal expected P-QLF max ( )EL q  ($) 70.0    28.33 
Expected I-QLF ,120 )0(EL ° °  ($) 84.21 43.87 

 
From the traditional approach (P-QLF in the table), the average expected quality 

loss is $21.60 while its counterpart from the new approach (I-QLF in the table) is $24.76. 
The new approach has a (24.76-21.60)/ 21.60 =14.63% increase in the average expected 
quality loss. However, the expected interval quality loss from the new approach is $43.87, 
which is much smaller than that from the traditional approach. The latter approach 
produced $84.21 of the expected interval quality loss. The reduction of the new approach 
is (84.21-43.87)/43.87=92.0%. The new approach also produces a maximal expected 
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point quality loss of $28.33, which is also much smaller than that ($70.0) from the 
traditional approach.  

The expected P-QLF ( )LE q  and expected I-QLF (0, )LE q  are depicted in Figs. 9 and 
10. The expected P-QLF fluctuates over time while the expected I-QLF increases with 
time. The latter is always greater than the former except at the initial time when both of 
them are equal.  

The motion of the mechanism is periodic, and hence the motion error or the QC is 
cyclic. The above analysis is only for 0[ , ] [0 ,120 ]fq q q ° °Î =  in the first motion cycle. 
We can easily extend the results to later cycles. From the second cycle when 

[ ,120 ]360 360i iq ° ° °,Î  ( 1,2,3, )i =  , the expected point quality loss function (P-QLF 
in Fig. 9) will repeat itself as over [0 ,120 ]q ° °Î . On the other hand, the expected interval 
quality loss function (I-QLF in Fig. 9) will maintain constant or will be $43.87. Therefore, 
we can conclude that over the entire time period [ ,120 ]360 360i iq ° ° °,Î  ( 1,2,3, )i =  , 
the expected quality loss over the service time is $42.86. 

 
 

Fig. 9 Expected QLFs from I-QLF based robust design 
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Fig. 10 Expected QLFs from P-QLF based robust design 

 
For an easy comparison of the two approaches, we plot the quality losses from the 

two approaches in Fig. 11, where the results from the new approach are represented by 
bold curves. Both the expected I-QLFs are in solid curves while both the expected P-
QLFs are in dashed curves.  

As mentioned previously, the QC is a stochastic process with auto dependency. To 
show this, in Fig. 12, we pick a specific time instance, the initial time 0 0q °= , and we 
plot the coefficients of autocorrelation of the quality loss at this instance with other 
instances of time over 0[ , ] [0 ,120 ]fq q q ° °Î = . The figure shows that the autocorrelations 
of both the designs are positive and that the two designs have different autocorrelation 
structures in their quality losses. 

  The I-QLF based robust design also helps to reduce the average motion error over 
0[ , ] [0 ,120 ]fq q q ° °Î =  . Fig. 13 shows the average motion errors from both approaches. 

The average motion error from the new approach is smaller than that from the traditional 
approach in most of the time over 0[ , ] [0 ,120 ]fq q q ° °Î = . 
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Fig. 11 Expected quality losses from both approaches 
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Fig. 12 Coefficients of autocorrelation of QLF 

 

 
Fig. 13 Average motion errors 
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7. Conclusions  
When quality characteristics vary within the product service time, the traditional 

instantaneous (point) robustness metrics may not work. The major reason is that they 
cannot fully reflect the quality loss over the service time interval. The quality losses 
expressed by the point robustness metrics may not increase with time. The point 
robustness metrics cannot reflect the auto-dependence properties of the time-dependency 
quality characteristics.  

New robustness metrics for time-dependent quality characteristics are defined in 
this work to overcome the drawbacks of the point robustness metrics. The new robustness 
metrics in this work are only two possible metrics. Other metrics could also be developed. 
To provide a general guidance, we have proposed criteria for the new metrics. A metric 
must represent the maximal expected quality loss over the time interval of interest. The 
metric should capture the auto-dependency properties of quality losses over the time 
interval. The metric expressed in the form of a quality loss should be a non-decreasing 
function with respect to time.  

The expected interval quality loss is the major robustness metric proposed in this 
work. It is the expected maximal point quality loss over product service time interval. It 
can better describe the quality loss over the time interval. It can also capture the auto 
correlation between the quality losses over the time interval. During robust design 
optimization, the expected interval quality loss will be minimized. 

The two new robustness metrics require demanding computations because they 
involve the extreme values of the quality characteristics over the time interval. There are 
two possible ways to approach this challenge. The first way is to develop new robustness 
analysis algorithms that can efficiently estimate the new robustness metrics. The other 
way is to define other new but similar time-dependent robustness metrics that are much 
more efficient to be evaluated. 
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