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Abstract 
 

Maintaining high accuracy and efficiency is a challenging issue in time-dependent 

reliability analysis. In this work, an accurate and efficient method is proposed for limit-

state functions with the following features: The limit-state function is implicit with 

respect to time. There is only one stochastic process in the input to the limit-sate function. 

The stochastic process could be either a general strength or a general stress variable so 

that the limit-state function is monotonic to the stochastic process. The new method 

employs a sampling approach to estimate the distributions of the extreme value of the 

stochastic process. The extreme value is then used to replace the corresponding stochastic 

process. Consequently the time-dependent reliability analysis is converted into its time-

invariant counterpart. The commonly used time-invariant reliability method, the First 

Order Reliability Method, is then applied to calculate the probability of failure over a 

given period of time. The results show that the proposed method significantly improves 

the accuracy and efficiency of time-dependent reliability analysis.     

 

Keywords: Time-dependent reliability, stochastic process, extreme value, first Order 

reliability method 
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1. Introduction 

Time-dependent reliability analysis quantifies the probability that a component or 

system survives after it has worked for a certainty time t  or over the period [0, ]t  [1]. 

Time-dependent reliability in general decreases with time for two reasons. First, there 

exist time-dependent uncertainties. For example, the wave loading on offshore structures 

always changes its amplitude and direction over time [2]. For this kind of time-dependent 

uncertainty, its global extreme over time varies with the length of the time period. More 

specifically, a longer time period will more likely correspond to a larger global extreme. 

On the other hand, the strengths of a component or system generally deteriorate over 

time. The other reason is that a limit-state function, which predicts the state of safety or 

failure, may also be a function of time. For example, the motion error of a mechanism 

varies at different instants of motion input [3]. Because of time-dependent uncertainties, a 

product always exhibits time-dependent failures, and the associated reliability is almost 

always declines over time.  

Limit-state functions for the time-dependent reliability analysis can be classified into 

the following three categories: 

• Limit-state functions have time-invariant random variables X  and time t in its 

input. A function in this category is therefore in the form of ( , )G g t= X ,  where 

()g ×  is the limit-state function, and G  is a response variable. 

• Limit-state functions are in the form of ( , ( ))G g t= X Y
 

with time-invariant 

random variables X  and time-dependent stochastic processes ( )tY , but are 

implicit with respect to time t.  
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• Limit-state functions are explicit with respect to time t and are functions of X  

and ( )tY . This is the most general case where ( , ( ), )G g t t= X Y .  

In the past decades, many progresses have  been made in time-dependent reliability 

analysis methodologies. They include the Monte Carlo simulation (MCS) [4], the Gamma 

process method [5], the Markov chain method [6], the extreme value distribution method 

[7, 8], the upcrossing rate method [9, 10], and the composite limit state method [1]. 

Amongst them, the most popular method is the upcrossing method. This method is based 

on the Rice’s formula [11], whose key step is the computation of the upcrossing rate. This 

method has advantages over other methods for its efficiency. But its accuracy is poor for 

problems whose reliability is low. The accuracy issue comes from the assumption that all 

the upcrossings are independent. Many improvements on the Rice’s formula have been 

made to improve its accuracy. The recent developments include the work of Sudret [12], 

where an analytical upcrossing rate is derived. This upcrossing rate is further derived by 

Zhang and Du [13] later for kinematic reliability analysis of function generator 

mechanisms. Mejri and Cazuguel [14] also combine the upcrossing rate method with the 

finite element analysis calculations to assess the time-variant reliability of marine 

structures.  

In spite of many progresses, maintaining high accuracy and efficiency is still a 

challenge. The MCS method can evaluate the time-dependent reliability accurately, but 

the required computational cost may not be affordable. As mentioned previously, the 

widely used upcrossing rate method is relatively efficient, but its accuracy may be poor 

[15]. It assumes that all the upcrossings are statistically independent. The assumption is 

conservative and may produce large errors. Several empirical modifications have been 
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made by Vanmarcke [16] and Preumont [17] to remedy the drawbacks of the independent 

upcrossing assumption. These modifications, however, are limited to special problems.  

For special problems where there is only one loading stochastic process in the input, 

the extreme value of the stochastic process can be used to replace the process. This work 

is concerned with a sampling approach to the extreme value of a stochastic process )(Y t , 

which can be a load or a strength. The basic idea is to replace )(Y t  in the limit-sate 

function with its extreme value and then convert the time-variant problem into its time-

invariant counterpart. The samples of the extreme value of )(Y t  are obtained from Monte 

Carlo simulation. It is then used to estimate the distribution of the extreme value. 

Saddplepoint approximations are employed [18] for the distribution estimation. 

The new method is developed for special limit-state functions in category two. An 

eligible limit-state function for the new method is in the form of ( , ( ))G g Y t= X ; and the  

stochastic process )(Y t  is either a general strength variable, meaning that ()g ×  decreases 

when the process increases, or a general stress variable, meaning that ()g ×  increases when 

the process increases. This special type of limit-state functions appears in many important 

applications. For example, the limit-state functions associated with the following 

response variables fall into the special type: the stress of hydrokinetic turbine blades 

under random wave loading [19], the damage of bridge under random traffic loading [20], 

and the deflection of beam under loading with stochastic disturbance [21].  

Once the extreme value of )(Y t  over [0, ]t  is available, it is used to replace )(Y t . 

Since the extreme value is a random variable, the limit-state function becomes time 

invariant. Any time-invariant reliability methods can then be applied for the reliability 
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evaluation. In this paper, we use FORM as an example for the time-invariant reliability 

analysis since it is the most widely used reliability analysis method. For those limit-state 

functions, which are very non-linear and have multiple most probable points (MPP), other 

time-invariant reliability methods can be employed to substitute FORM.  

The major contributions of this work are multifold. (1) With the use of the extreme 

value of a general strength or general stress variable, the independent upcrossing 

assumption of the Rice’s formula is completely removed, and then the accuracy of time-

dependent reliability analysis is also improved significantly. (2) We employ the 

Saddlepoint Approximation in estimating the distribution of the extreme value of the 

general strength or general stress processes. The employment makes the sampling 

procedure not only accurate but also robust. (3) Given the good accuracy and efficiency, 

the use of the proposed method will also make time-dependent reliability-based design 

more accurate and efficient.  

In Section 2, we review time-dependent reliability analysis. We then introduce the 

new method in Section 3. In Section 4, we provide two examples followed by conclusions 

in Section 5. 

 

2. Methodology Review 
 
In this section we review the definition of time-dependent reliability. We also discuss 

the upcrossing rate method. This method is most commonly used and will be compared 

with the proposed method in the two examples.   
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2.1. Time-Dependent Reliability 

Reliability is the probability that a component or system performs its intended 

function under intended conditions over a certainty period of time. A limit-state function 

( , )( )G g t= X Y  defines the intended conditions; it also determines if the intended 

function is performed properly as follows: if () 0g × < , the intended function is performed 

properly; if () 0g × > , the intended function is not performed properly, and then a failure 

occurs. Let the time period be [0, ]
s
t . The time-dependent reliability is given by 

 { }= " Î<(0, ) Pr ( , ( , 0, ])) 0 [
s s

R t g t t tX Y  (1) 

The associated time-dependent probability of failure is 

 { }= $ Î>(0, ) Pr ( , ( 0, [0,) ]
s sf

p t g t t tX Y  ( 2) 

It should be note that (0, )
sf

p t  in Eq. (2) is defined for a given time period [0, ]
s
t . It 

will change as the time period changes.  

It is well-known in reliability engineering that the time-dependent reliability can be 

derived from the failure rate by [22] 

 { }l= - -ò0
(0, ) 1 exp ( )

st

f s
p t t dt  (3) 

where ( )tl  is the failure rate at time instant t . ( )tl  is defined by the following limit of a 

conditional probability: 

 l
D ®

= < < +D > D
0

( ) lil Pr{ ) } /
t

t t T t t T t t  ( 4) 

 
where T  is the time to failure, which is apparently a random variable. Given the limit-

state function, we also have 
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 l
D ®

= +D > < Î D
0

( (( ) lil Pr{ ) 0 ) 0,  [0, ]} /
st

t t t t t tg g t  (5) 

where the notation )(g t  is used for )( ), (g tX Y .  

The conditional probability in Eq. (4) or (5) is the probability of failure at t  given that 

no failures have occurred prior to t . 

 

2.2.Upcrossing Rate Method 

Eq. (3) indicates that (0, )
f s

p t  is obtainable by integrating the failure rate ( )tl  over 

[0, ]
s
t . The upcrossing method uses the upcrossing rate +( )v t  to approximate the failure 

rate ( )tl ; namely  

 ( ) ( )t v tl +»  (6) 

an upcrossing is defined as an event when the limit-state function crosses the limit 

state from the safe region () 0g × <  to the failure region () 0g × > .  

We now briefly review how to compute the upcrossing rate using FORM, and more 

details can be found in [13, 23].   

With FORM, the limit-state function is transformed as follows: 

 == =( , ( ( ( ),) ( ( )) )) , ( ))(
X Y X Y

G g t T Tg t thX Y U U U U  (7) 

where ×( )T  stands for the transformation.  

Then FORM searches for the Most Probable Point MPP). The limit-state function is 

then linearized at the MPP * * *( ) ( , ( ))
X Y

t t=U U U , which is the shortest distant point 

between × = 0()h  and the origin. The upcrossing rate ( )v t+  is then computed by [11]: 
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 ( ) ( )w f b f b w b w b w+ = - F-  ( ) ( ) { [ ( ) / ( )] [ ( ) / ( )] [ ( ) / ( )]}v t t t t t t t t t  (8) 

in which 

• ()f ×  and F ×()  are the probability density function (PDF) and cumulative 

distribution function (CDF) of a standard normal variable, respectively. 

• ( )tw , b( )t , and b( )t  are variables computed using *( )tU  and the correlation 

function 
1 2

( , )t tr  of )(tY  [23].  

Once ( )v t+  is obtained, we can use Eq. (3) to calculate the probability of failure 

(0, )
f s

p t . However, the equation is based on the assumption that the initial probability of 

failure at 0t =  is zero. After accounting for the initial probability of failure, )0(
f

p , we 

have the following equation [13] 

 { }+= - - -ò0
(0, ) 1 [1 0 ex( )] p ( )

st

f s f
p t p v t dt  (9) 

The upcrossing method has two drawbacks. Its accuracy may not be satisfactory 

because of the independent upcrossing assumption, which may not hold for many 

applications, especially when the time interval is long and when there are many 

upcrossings. The other drawback is the demanding computation. FORM must be 

performed at all the time instants required by the integral in Eq. (9). In the next section, 

we develop a new method to overcome the two drawbacks.  

 

3. The Sampling Methodology 

The central idea is to convert the time-dependent problem into a time-invariant 
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problem for limit-state functions with only one stochastic process. Then the time-

invariant reliability method, such as the FORM, can be used. We first give the general 

principle of the new sampling method and then provide its detailed steps. 

3.1. Overview 

To use the time-invariant reliability method, we make the following assumptions: 

• The limit-state function is implicit of time. In other words, time t  does not 

explicitly appear in ()g × . 

• The stochastic process ( )Y t  is either a general strength variable or a general stress 

variable. 

A general strength variable is a variable related to resistance to loading. For example, 

the yield strength of materials is a strength variable. When the general strength variable 

increases, ()g ×  decreases. A general stress variable is a variable related to load. For 

example, the external force or moment is a stress variable. When the general stress 

variable increases, so does ()g × .   

The above assumption is reasonable for a wide range of engineering applications. For 

example, in many dynamic systems, time t  does not appear explicitly in the dynamics 

equations, but the equations are still time-dependent because they involve time-dependent 

coefficients ( )Y t . For many engineering applications, a large number of stochastic 

processes may be rarely encountered. Obtaining the complete information about a 

stochastic process is costly and time consuming. In many cases, only the most important 

stochastic process, such as a load, is considered. Then resources are allocated for 

collecting necessary data for the selected process. With only one stochastic process, it is 

easy to identify whether it is a general strength or a general stress variable before the 
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reliability analysis is performed.  

With the assumption, a limit-state function is given by 

   ( , ( ))G g Y t= X  (10) 

The probability of failure can then be evaluated by 

 

{ }
{ }
{ }

(0, ) Pr ( ,Y( 0, [0, ]

Pr l

)

))ax ( ,Y( , [0, ]

P

0

r ( , ) 0

f s s

s

p t g t t t

g t t t

g W

= $ Î

= " Î

=

>

>

>

X

X

X

 ( 11) 

where W  is the global extreme value of )(Y t  over [0, ]
s
t , It is given by 

   lin{ ( ),  [0 ]},
s

W Y t t t= Î  (12) 

for a general strength variable, and 

   lax{ ( ),  [0 ]},
s

W Y t t t= Î  (13) 

for a general stress variable. 

We have now converted the time-variant problem into a time-invariant one as 

indicated in Eq. (11). Then a time-invariant reliability method can be applied.  

 

3.2.Procedure 

Two stages are involved in the new method. The first is to obtain the distribution of 

the extreme value of the stochastic process. The second is the time-invariant reliability 

analysis. The procedure is summarized in Fig. 1, and the details are given below. 

------------------------------- 

Place Fig. 1 here  

------------------------------- 

Stage 1: Estimate the distributions of extreme values of ( )Y t  by MCS 
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Since we do not need to call the limit-sate function in this stage, we can simply use 

MCS. Denote the CDF of W  by ( )
W

F w , which can be obtained with the following three 

steps: 

Step 1: Divide the time interval [0, ]
s
t  into discrete points 

0 1
( , , ),

sN
t t t t=  or N  

equal small intervals. )(
i

Y t  ( 0,1 ,,i N= ¼ ) is a random variable at 
i
t . Generate n  

random samples for )(
i

Y t . The samples or trajectories of ( )Y t  are denoted by 

0
( ( ), ( ) ( ))

j j jj i N
y t y t yY t=    ( 1, 2, ,j n=  ), or 

0,1, ,
( ( ))

j ij i N
yY t = ¼= , where n  is the 

number of simulations. 

Step 2: Identify the extreme values of the trajectories of ( )Y t . If ( )Y t  is a general 

strength variable, the minimum value is found by 
0,1, ,

l ( )i ( )n
j ij i Ni

w y t = ¼= . If  ( )Y t  is a 

general stress variable, the maximum value is found by 
0,1, ,

l ( )a ( )x
j ij i Ni

w y t = ¼= . 

Step 3: Estimate the CDF ( )
W

F w  from the samples 
j

w  ( 1,2 ,,j n= ¼ ).   

Once the distributions of W  are available, we replace ( )Y t  with W , and the limit-

state function becomes 

   ( , )G g W= X  (14) 

The details of this stage will be discussed in Subsections 3.3 and 3.4. 

Stage 2: Time-invariant reliability analysis 

In this work, we use FORM. Other reliability methods can also be used. The use of 

FORM will be presented in Subsection 3.5. 
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3.3. Sampling Approach to the Extreme Values of Stochastic Processes 

Our task now is to obtain samples of ( )Y t  and use them to estimate the CDF of the 

extreme value ( )
W

F w . We take a Gaussian process as an example. For this process, we 

use the Expansion Optimal Linear Estimation method (EOLE) [24] to generate samples. 

The approach approximates ( )Y t  with a finite set of random variables. Let the mean 

function and standard deviation function of ( )Y t  be ( )
Y

tm  and ( )
Y

tt , respectively, and 

assume that the autocorrelation coefficient function is 
1 2

( , )
Y

t tr . At first, the time interval 

[0, ]
s
t  is divided into s time points 

2 0 2, 11, ,
( ) ( , , , )

i i s s
tt t tt= = = ¼



. After the discretization, 

the correlation matrix of the time points 
1, 2, ,

( )
i i s
t =   

is computed by 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

Y Y Y S

Y Y Y S

Y S Y S Y S S
s s

t t t t t t

t t t t t t

t t t t t t

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ
×

 
 
 

∑ =  
 
 
 





   



 (15) 

Let 
i
i  and T

iφ  be the eigenvalues and eigenvectors of the matrix, respectively. Then 

the expansion of the stochastic process is given by [24] 

 ( ) ( )
1

( ) ( )
p

Ti
Y Y i Y

i i

UY t t t tφ ρm t
i=

= + å  (16) 

in which ( )Y tρ  is a vector of correlation coefficients with j-th element be ( ),Y jt tr , 

1, 2, ,j p s= £ ,  
i

U  ( 1, 2, ,i p s= £ ) are independent standard normal random 

variables. We can then generate random samples of 
i

U  and use them to reproduce sample 



13 
 

curves (trajectories) of ( )Y t  using Eq. (16). More details about the EOLE can be found in 

[24]. 

After n  simulations, we obtain n  trajectories of the stochastic process sample. Fig. 2 

shows such a trajectory, from which we can easily find the extreme values.   

------------------------------- 

Place Fig. 2 here  

------------------------------- 

With the obtained extreme value samples 
j

w  ( 1,2 ,,j n= ¼ ), we now discuss how to 

estimate the CDF ( )
W

F w , which is needed in FORM for the random variable 

transformation. The tail areas ( )
W

F w  are usually involved, and this requires the 

estimation of small probabilities and a large of number of simulations.  

The most straightforward way is to use the empirical CDF by sorting 
j

w  such that 

(1) (2) ( )n
ww w< <¼< . Then we can use the following equation: 

 
( )

( )
W i

F w
i
n

=  (17) 

For a variable w  not sampled, 
( 1) ( )i i

w w w- < < , we can use a linear interpolation 

given by  

 ( ) ( 1)

( 1) ( 1)
( ) ( 1)

( (
( ( ( )

) )
) ) W i W i

W W i i
i i

F w F w
wF w F w w

w w
-

- -
-

-
= + -

-
 ( 18) 

 
There are three problems with the above empirical CDF when it is used in FORM. 

During the variable transformation, a given value of W may be beyond the range of the 

samples 
j

w  ( 1,2 ,,j n= ¼ ), resulting in a breakdown in the FORM algorithm. The 
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second problem is the non-uniformity of the samples may make the tail CDF estimation 

sensitive to the sample size and also cause the convergence difficulty. The last problem is 

that the derivative of )(
W

F w  at some point may not exist, and this will also cause a 

convergence difficulty. To deal with these problems, we use the Saddlepoint 

Approximation method that follows. 

 

3.4. Saddlepoint approximation (SPA)  

The saddlepoint approximation method [25] is widely used to approximate a CDF, 

especially the tail of the CDF, with excellent accuracy [26, 27]. The basic requirement of 

using SPA is to know the cumulant generating function (CGF) of the corresponding CDF. 

Details about SPA can be found in [28].  

No closed-form CGF is available for the extreme value W , and then we generate 

samples for W  to approximate the CGF [29].  We first estimate the moments of W , 

which are then converted into the corresponding cumulants. The cumulants are used to 

approximate the CGF. Given a set of samples 
j

w  ( 1,2 ,,j n= ¼ ), the cumulants are 

computed with the following equation [30]: 

 

1
1

2
2 1

2

3 2
1 1 2 3

3

4 2 2
1 1 2 2

4

2
1 3 4

( 1)
2 3

( 1)( 2)
6 12 3 ( 1)

( 1)( 2)( 3)
4 ( 1) ( 1)

( 1)( 2)( 3)

s

n
ns s

n n
s ns s n s

n n n
s ns s n n s

n n n n
n n s s n n s

n n n n

k

k

k

k

ìïïï =ïïïï -ïï =ïï -ïïï - +ï =íï - -ïïï - + - -ïï =ï - - -ïïï - + + +ïï +ïï - - -ïî

 (19) 
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where 
r

s  (
 

1,2,3, 4r = ) are the sums of the r-th power of the samples and are given by 

 
=

= å
1

n
r

r i
i

s w  (20) 

Here we only use the first four cumulants. Based on our numerical experiments, the 

order is good enough. Then the CGF is approximated by [25] 

 
1

( )
!

ir

W i
i

K
i
x

x k
=

= å  (21) 

To obtain the CDF ( )
W

F w , we must solve for the saddlepoint 
s
x , which is the 

solution to the following equation: 

 ' ( )
W

K wx =  (22) 

where ' ( )
W

K ×  is the derivative of the CGF. 

The above equation can be rewritten as 

 
2 3

'
1 2 3 4

( )
1! 2! 3!W

K w
x x x

x k k k k= + + + =  ( 23) 

 
It is a polynomial function, and its roots can be easily found.  

The CDF ( )
W

F w  is then approximated with the following equations [31]:   

 1 1
( ) Pr{ } ( ) ( )F w W w z z

z v
f

æ ö÷ç ÷= = F + -ç ÷ç ÷çè øW
<  ( 24) 

where  

 { }
1/2

sign( ) 2 ( )
s s W s

z w Kx x xé ù= -ê úë û  ( 25) 

 
1/2

" ( )
s W s

v Kx xé ù= ê úë û  ( 26) 
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in which sign( )
s
x = +1, ̶ 1, or 0, depending on whether 

s
x  is positive, negative, or zero. 

'' ( )
W

K ×  is the second derivative of the CGF and is given by 

 
24

"
2

3

( )
( 2)!

j
s

W s j
j

K
j

x
x k k

-

=

= +
-å  ( 27) 

SPA can give an accurate CDF estimation, especially in a tail area of the CDF. 

Additionally, the CDF from SPA is continuous, and it can therefore avoid the 

abovementioned three problems when an empirical CDF is used.  

 

3.5.Time-Invariant reliability analysis 

After the CDF of the extreme value of ( )Y t  is obtained, the time-dependent limit-

state function can be converted into a time-invariant function as indicated in Eq. (11). 

Then a time-invariant reliability method may be applied because the probability of failure 

is computed by 

 { }(0, ) Pr ( , ) 0
f s

p t g W= >X  (28) 

If FORM is used, we transform X  and W  into standard normal variables 
X

U  and 

W
U , respectively. The transformation of W  is given by 

 1( ( ))
W W

W F U- F=  (29) 

where 1( )
W

F- ×  is the inverse function of the CDF of W . This involves the inverse 

saddlepoint approximation [32]. 

  Eq. (29) indicates that we need to solve for the associated saddlepoint corresponding 

to 
W

U . The saddlepoint 
u
x  is obtained by solving the following equation: 
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 1 1
( )) ( )(

uW u
u u

z z
z v

U f
æ ö÷çF = ÷çF + - ÷ç ÷÷çè ø

 ( 30) 

where 

 { }
1/2

'sign( ) 2 ( ) ( )
u u u W u W u

z K Kx x x xé ù= -ê úë û  ( 31) 

 
1/2

" ( )
u u W u

v Kx xé ù= ê úë û  ( 32) 

After obtaining the saddlepoint 
u
x , we have 

 ' ( )
W u

W K x=  ( 33) 

After the transformation, the following optimization model is solved  

 ( , )
lin )

subject to

( ,

, g( ( ) )) 0(
W W

X Wu

X W

u

TT u

ìïïïíï ³ïïî

u
u

u
 (34) 

The solution is the MPP and is denoted by *U . The reliability index b  is calculated 

by 

 *( )tb = U  (35) 

       Then the probability of failure is estimated by 

 (0, ) ( )
f s

p t b= F -  (36) 

        The proposed new method has the following characteristics: 

• There is no need to call the limit-state function in the simulation for ( )
W

F w . 

• The limit-state function ()g ×  is only called by FORM. 

• Only one MPP search is needed. 
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        Therefore, the efficiency of the proposed new method is equal or similar to that of 

FORM. If we use the number of function calls to measure the efficiency, the time-

dependent reliability analysis is as efficient as that of time-independent reliability analysis 

if FORM is employed. Previous studies have assessed the efficiency of FORM [33-35]. 

Their conclusions are applicable to the proposed method.  

  

4. Examples 

We now provide two examples to demonstrate the new time-dependent reliability 

method. 

 
4.1. A Beam under Time-Variant Random Loading 

The first example is a beam problem adapted from [10]. The beam shown in Fig. 3 is 

subjected to an external force F acting at its midpoint. 

The limit-state function is defined by 

 
2 2

0 0 0 0( )
( , ( ))

4 8 4
st u
a b L a bF t L

g Y t
r t

= + -X  (37) 

in which 
st
r  is the density of steel, L  is the length of the beam, a0 and b0 are the width 

and height of the cross section,  respectively, and 
u

t  is the ultimate stress of the material. 

F  is a Gaussian process (GP) with an autocorrelation function given by 

 
2

2 1
1 2 2

( )
( , ) exp

t t
t tr

z

æ ö- ÷ç ÷ç= - ÷ç ÷ç ÷è ø
 (38) 

where 0.5 yearz =  and is the correlation length.  

------------------------------- 

Place Fig. 3 here  
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------------------------------- 

Table 1 presents the variables in the limit-state function. In the table, Std and AC 

stand for standard deviation and autocorrelation, respectively. 

------------------------------- 

Place Table 1 here  

------------------------------- 

In this problem, the stochastic process is the load F . It is easy to classify it as a 

general stress variable. Its maximum value should therefore be considered. 

The time-dependent probabilities of failure over different time intervals up to [0, 30] 

years were computed using the following three methods: 

(1) The MCS: The purpose of using MCS is to assess the accuracy of the other 

methods. The MCS solution is regarded as the accurate solution if the number of 

simulations is large enough.  

(2) The traditional upcrossing method (UC) with FORM [13]: It is represented by 

“UC” in the tables and figures of the results. 

(3) The proposed method: The method is represented by “Proposed” in the tables and 

figures of the results.  

For the proposed method, 104 samples were generated for estimating the CDFs of the 

maximum load over the time intervals. Fig. 4 shows the estimated CDFs of the maximum 

load obtained from the proposed method. The figure indicates that the CDF curves shift to 

the right when t increases. This means that the right tail of the distribution becomes 

longer and that higher extreme load appears with a longer time interval. 

------------------------------- 

Place Fig. 4 here  
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------------------------------- 

The results are given in Table 2 and Fig. 5. The last two columns of Table 2 show the 

point solutions and their 95% confidence intervals from MCS. The solutions were 

resulted from 106 simulations. The results indicate that the traditional upcrossing method 

produced large errors, especially when the probability of failure is high. This means that 

the upcrossing method is too conservative. The proposed method generated very accurate 

results. 

------------------------------- 

Place Fig. 5 here  

------------------------------- 

------------------------------- 

Place Table 2 here  

------------------------------- 

We use the number of limit-state function calls to measure the efficiency. Table 3 

gives such numbers. The table indicates that the new method is also much more efficient 

than the traditional upcrossing method. The reason is that the former method called the 

MPP search once and the latter method called the MPP search several times. 

------------------------------- 

Place Table 3 here  

------------------------------- 

Moreover, it should be noted that even if the limit-state function of this problem in 

Eq. (37) is given in an explicit form, the proposed method is also applicable for more 

complex problems with implicit limit-state functions (black-box models).  
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4.2.Hydrokinetic Turbine Blade under Time-Variant River Flow Loading     

The stochastic process in the last example is special because its mean and standard 

deviation functions are constant. In this example, the stochastic process is the river 

velocity, which has time-variant mean, standard deviation, and autocorrelation functions. 

With the seasonal characteristics in the river velocity, the external load in this example is 

more complicated than the one in the last example. Since the river velocity governs the 

blade stresses, it is a general stress variable. 

Fig. 6 depicts the simplified cross section of the hydrokinetic turbine blade. The blade 

under river flow loading is shown in Fig. 7.  

------------------------------- 

Place Figs. 6-7 here  

------------------------------- 

With a fixed tip speed ratio, the flapwise bending moment of the turbine blade is 

calculated as [36] 

 r= 21
( )

2flap m
M v t C  (39) 

in which 
flap

M  stands for the flapwise bending moment, ( )v t  is the random river flow 

velocity, 3 31 10 kg/lr = ´  is the river flow density, and 
m

C =0.3422 is the coefficient 

of moment, which is obtained from the blade element momentum theory. 

Based on the historical river discharge data of the Missouri River from 1897 to 1988 

at the Hermann station in Missouri [23, 37]  and the relationship between river discharge 

and river velocity, we fitted the mean and standard deviations of the monthly river 

velocity as functions of t as follows: 
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( ) sin( )m m m
v i i i
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t a b t cm
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= +å  (40) 

 
4

2

1

( ) exp{ [( ) / ] }s s s
v j j j

j

t a t b ct
=

= - -å  (41) 

in which a , b , and c  are constants. 

Similar to the wave loading [20], the monthly river velocity is assumed to be a 

narrowband Gaussian process (GP) with mean ( )
v

tm , standard deviation ( )
v

tt , and auto-

correlation coefficient function 
1 2

( , )
v

t tr . The auto-correlation coefficient function 

1 2
( , )

v
t tr  is given by 

 
1 2 2 1

( , ) cos(2 ( ))
v

t t t tr p= -  (42) 

The limit-state function is defined by 

 
2

1 1
( )

2
flap m

allow allow

M t v t C t
g

EI EI

r
f f= - = -  (43) 

where 
allow
f  is the allowable strain of the material, 14 GPaE =  is the Young’s modulus, 

and I  is the moment of inertia at the root of the blade, which is computed by 

 = -3 3
1 1 2

2
( )

3
I l t t  (44) 

in which 
1
l , 

1
t  and 

2
t  are the dimension variables as shown in Fig. 6.  Table 4 presents 

the variables in this example.  

 We computed the probabilities of failure of the hydrokinetic turbine blade over 

different time intervals up to [0, 12] months using MCS, UC, and the proposed method. 

The numbers of performed simulations and generated samples are also the same as those 

in Example 1.  
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------------------------------- 

Place Table 4 here  

------------------------------- 

Fig. 8 presents the estimated CDFs of the maximal river velocity over different time 

intervals obtained from the proposed method. The river velocity is a general stress 

variable. 

------------------------------- 

Place Fig. 8 here  

------------------------------- 

Table 5 and Fig. 9 show the probabilities of failure of the turbine blade over different 

time intervals obtained from the three methods. The 95% confidence intervals of the 

MCS solutions are also given in the last column of Table 5.    

------------------------------- 

Place Table 5 here  

------------------------------- 

------------------------------- 

Place Fig. 9 here  

------------------------------- 

The results show that the proposed method is much more accurate than the traditional 

upcrossing rate method. The results also demonstrate that the proposed method is 

applicable for time-dependent reliability analysis with a non-stationary stochastic process. 

The new method is also more efficient than the traditional method as indicated by the 

number of function calls in Table 6.  
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------------------------------- 

Place Table 6 here  

------------------------------- 

 

5. Conclusions 

A new sampling method to time-dependent reliability method has been proposed for 

limit-state functions that are implicit with respect to time and are functions of a general 

strength or stress stochastic process. The method employs a sampling approach to 

estimating distributions of the extreme value of the stochastic process over the time 

interval under consideration. The distribution is estimated by Saddlepoint 

Approximations. The extreme value is then used to replace its corresponding stochastic 

process. Then the time-dependent problem becomes a time-invariant problem, and a time-

invariant reliability analysis method can be used. In this work, we used FORM.  

The new method has advantages over the traditional upcrossing method in the 

following two aspects:  

• The number of evaluations of the limit-state function is significantly reduced.  The 

method is therefore much more efficient. 

• The accuracy of reliability analysis has also been improved significantly. 

In addition to FORM, other reliability methods can also be used after the time-

dependent problem has been transformed into a time-invariant one.  
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The proposed method is limited to the limit-state functions that are implicit with 

respect to time. The input stochastic process should be either a general strength variable 

or a general stress variable.   

Our future work includes incorporating the proposed method into reliability-based 

design optimization, using the idea to more general limit-state functions, and 

investigating the possible extension of the method to problems with multiple stochastic 

processes.  
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Table 1 Variables and Parameters in Example 1 

 Mean Std Distribution AC 
a0

 0.2 m 0.01m Lognormal N/A 
b0

 0.04 m 4×10-3 m Lognormal N/A 

u
t  2.4×108 Pa 2.4×107 Pa Lognormal N/A 
( )F t  4500 N 1050 N GP Eq. (38) 
L  5 m 0 Deterministic N/A 

st
r  78.5 KN/m3 0 Deterministic N/A 
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Table 2 Time-Dependent Probabilities of Failure 

[0, ts] (years) UC (10-3) Proposed (10-3) MCS (10-3) 
[0, 4] 2.147 1.239 1.217 [1.215, 1.219] 
[0, 8] 4.079 2.004 1.989 [1.987, 1.991] 
[0, 12] 6.008 2.613 2.576 [2.574, 2.578] 
[0, 16] 7.933 3.129 3.098 [3.096, 3.100] 
[0, 20] 9.854 3.596 3.569 [3.567, 3.571] 
[0, 24] 11.771 3.980 3.956 [3.954, 3.958] 
[0, 28] 13.685 4.351 4.314 [4.312, 4.316] 
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Table 3 Number of Function Evaluations by the Three Methods 

[0, ts] (years) UC Proposed MCS 
[0, 4] 1080 50 106 
[0, 8] 1080 45 106 
[0, 12] 1080 45 106 
[0, 16] 1080 40 106 
[0, 20] 1080 40 106 
[0, 24] 1080 40 106 
[0, 28] 1080 40 106 
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Table 4 Variables and Parameters in Example 2 

Variable Mean Std Distribution  AC 

v  (m/s) ( )
v

tm  ( )
v

tt  GP In Eq. (42) 

1
l  (m) 0.22 2.2×10-3 Gaussian N/A 

 1
t (m) 0.025 2.5×10-4 Gaussian N/A 

2
t  (m) 0.019 1.9×10-4 Gaussian N/A 

allow
f  0.025 2.5×10-4 Gaussian N/A 

 



35 
 

Table 5 Time-Dependent Probabilities of Failure 

[0, ts] (months) UC (10-3) Proposed (10-3) MCS (10-3) 
[0, 4] 0.088 0.085 0.080 [0.079, 0.080] 
[0, 5] 1.664 1.128 1.115 [1.113, 1.117] 
[0, 6] 2.366 1.185 1.157 [1.155, 1.159] 
[0, 7] 4.886 2.667 2.817 [2.815, 2.819] 
[0, 8] 5.072 2.667 2.817 [2.815, 2.819] 
[0, 9] 5.118 2.667 2.817 [2.815, 2.819] 
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Table 6 Number of Function Evaluations  

[0, ts] (months) UC Proposed MCS 

[0, 4] 2522 102 106 

[0, 5] 6539 85 106 

[0, 6] 6761 121 106 

[0, 7] 11500 98 106 

[0, 8] 6678 98 106 

[0, 9] 19399 98 106 
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Fig. 1 Flowchart of the New Time-Dependent Reliability Method 
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Fig. 2. A Trajectory of a Stochastic Process 
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Fig. 3. A Beam under Random Loading 
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Fig. 4. CDFs of Maximum Load over Different Time Intervals 
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Fig. 5. Probability of Failure of the Beam over Different Time Intervals 
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Fig. 6.  Cross Section at Root of the Turbine Blade 
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Fig. 7. River Flow Loading on the Turbine Blade 
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Fig. 8 CDFs of Maximum River Velocity over Different Time Intervals 
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Fig. 9. Probability of Failure of the Hydrokinetic Turbine Blade 
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