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Abstract 

Inverse simulation is an inverse process of a direct simulation. During the process, 

unknown simulation input variables are identified for a given set of known simulation 

output variables. Uncertainties such as random parameters may exist in engineering 

applications of inverse simulation. An optimization  method is developed in this work to 

estimate the probability distributions of unknown input variables. The First Order 

Reliability Method is employed and modified so that the inverse simulation is embedded 

within the reliability analysis. This treatment avoids the separate executions of reliability 

analysis and inverse simulation and consequently maintains high efficiency. In addition, 

the means and standard deviations of the unknown input variables can also be obtained. A 

particle impact problem is presented to demonstrate the proposed method for inverse 

simulation under uncertainty.    
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1. Introduction 

 Simulations are widely used in engineering analysis and design. They can evaluate 

potential design alternatives and predict design performances efficiently and 

inexpensively. The conventional simulation is a forward process where the behavior 

(simulation output) of a system under design is found from a given model structure and a 

set of model input variables.  

The direct or forward simulation is not the only simulation approach to complex 

engineering analysis and design. The development of inversing the process began in the 

1960s and 1970s with a class of methods termed dynamic inversion or feedback 

linearization for multivariable nonlinear minimum-phase systems [1]. The methodologies 

of inverse simulation were then expanded in areas of aircraft flight control and aircraft 

handling quality investigations [2], where inverse simulation is defined as “a form of 

inverse modelling in which computer simulation methods are used to find the time 

histories of input variables that, for a given model, match a set of required output 

responses” [2]. The applications of inverse simulation include the following examples: 

flight dynamics [3],  the optimization of a helicopter slalom maneuver [4], the flight 

simulation for a fatigue life management system [5], the helicopter simulation with an 

enhanced rotor model [6], and the analysis of the orbit plane change of a spacecraft [7].    

Another important area of inverse simulation is inverse dynamics, whose purpose is 

to determine forces or toques needed to produce desired motions [8-9]. For example, in 

biomechanics, certain human movements are desired, and the inverse dynamics is used to 

determine the joint torques and powers that a human body must generate to perform the 

movements. The other related technique is inverse kinematics. This technique uses 
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kinematics equations of a robot to determine the joint parameters that provide a desired 

position of the end-effector [10]. Here the end effector is a device at the end of a robotic 

arm, designed to interact with the environment.  

The inverse simulation techniques can be potentially used in almost all areas where 

the direct simulation technique is applicable. We can then define inverse simulation as a 

process where computer simulation methods are used to find a set of model input 

variables that realize a set of required model output responses. In this sense, in addition to 

the aforementioned inverse simulations, many other applications fall into the scope of 

inverse simulation. 

For example, traffic accident reconstruction [11-14] involves inverse simulation 

techniques. Its purpose is to investigate, analyze, and draw conclusions about the causes 

and events of a vehicle collision. Specifically, a collision analysis is performed to identify 

the contributing factors to the collision, including the role of the drivers, vehicles, road 

conditions, and environment. The modeling and analysis are complicated because they 

usually require the use of momentum, work and energy principles, and kinematics. As a 

result, the use of a numerical simulation is necessary. Traffic accident reconstruction is an 

inverse process of simulation because it reconstructs the pre-accident events given the 

accident consequences. 

As many uncertainties present in the direct process of simulations [15-22], we also 

face uncertainties in inverse simulations. The uncertainties may come from simulation 

parameters due to the random physical nature, manufacturing imprecision, random 

operating conditions, and measurement errors; they can also come from model structure 

uncertainties due to simplifications, assumptions, ignorance, and lack of information. For 
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example, there are many sources of uncertainty in traffic accident reconstruction as 

reported in [23-24].  

With the uncertainties mentioned above, the estimated simulation input variables 

from the inverse simulation will also be uncertain. Obtaining the uncertainty 

characteristics, such as the distributions, means, and standard deviations, of the input 

variables, are highly desired.  

For instance, a basic expectation of the inverse vehicle accident simulation is to find 

the velocities of the vehicles prior to collision and then assess the drivers’ behavior. The 

simulation results may be used as part of evidence for the court to make its decision on 

the responsibility of the involving drivers. The consideration of uncertain helps build 

confidence in the results of the traffic accident reconstruction.  

Instead of point estimations, the distributions of the unknown input variables are 

available from the inverse simulation under uncertainty. With the more information and 

higher confidence from the uncertainty consideration, the model user or a decision maker 

will have a better position to make more reliable decisions.    

The other advantage of inverse simulation under uncertainty is that the simulation 

results can be directly used for risk-related analysis, such as the analyses regarding safety, 

reliability, and robustness. These analyses normally require probability distributions. The 

results are also useful for risk-based design, reliability-based design, robust design, 

design for Six Sigma, and alike.  

Unlike direct simulation under uncertainty, for which many methodologies are 

available, methodologies for inverse simulation under uncertainty are limited. Although 

preliminary studies in vehicle inverse simulation have been reported [23-24], more 
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investigations are needed. In this work, we build a new probabilistic model for the 

inverse simulation under uncertainty and then develop a reliability approach to solve the 

inverse simulation model. The approach integrates the First Order Reliability Method 

(FORM) and the general inverse simulation process in such a manner so that the inverse 

simulation under uncertainty can be efficiently performed. This is achieved by 

embedding the inverse simulation process within the FORM algorithm.  Given a set of 

output variables, along with the distributions of a set of uncertain input variables, the 

distributions of the unknown input variables are obtained. An example of particle impact 

is presented as a demonstration for the proposed model. 

 

2. Problem Formulation 

Fig. 1 shows a general simulation model with its input x  (a vector) and output y  (a 

vector as well). The simulation model ( )g x  maps x  into y  and is usually a black box to 

the model user. For a direct simulation, the output y  is found through ( )g x  with the input 

x . For the inverse simulation, the output y  is known, and the task is to search for the 

input x . 

 

 

Figure 1. A simulation model 

 

The general simulation model is given by 

 ( )=y g x  (1) 

( )g x  
x y
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where 1,( ), my y=y   with a size of m , and 1( ) ( ( ), ( ))mg g× = × ×g  . 

Inverse simulation problems fall into the following three categories [5]: 

• problems in which the size of x  is equal to that of y , 

• problems in which the size of x  exceeds that of y , and 

• problems in which the size of x  is smaller than that of y . 

The number of unknowns is equal to the number of equations for a problem in the 

first category. A unique (single) solution or multiple solutions may exist. The number of 

unknowns is greater than the number of equations for a problem in the second category. 

There may be multiple solutions to the problem. Since the number of unknowns is less 

than the number of equations, no solutions may be found for a problem in the last 

category. In this work, we focus on the problems in the first category where a unique 

solution exists for an inverse simulation problem.  

For inverse simulation, the output y  is known for several reasons. For instance, we 

may want to achieve specific target values of y . An example follows. The motion output 

of a robot is the position of its finger. We expect the finger to reach specified positions. 

So we can set up the specified position coordinates for y . Another example follows. If an 

inverse simulation intends to reconstruct a vehicle accident, y  can be the variables 

associated with the accident consequences and may be measured at the accident scene. In 
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this work, we assume that we know the output y  beforehand. We also further assume that 

the values of y  are deterministic. 

The task of inverse simulation is then to find input variables x  to match y . Since not 

all the input variables are unknown, we classify them into two types: known input 

variables and unknown input variables.  

Some of the known input variables may be precisely known. For example, the 

weights of the two vehicles involved in an accident can be measured and then are 

precisely known if their measurement errors are negligible. For those variables, we use  

knx . We also assume that they are deterministic.   

Other known input variables, however, may not be precisely known, or may be 

uncertain. For example, for the vehicle accident simulation, the coefficient of friction 

may be a random variable. It depends on many random factors, such as the wear of tires, 

road conditions, and weather. We denote these uncertain variables by uncx . In this work, 

we assume that distributions uncx  are known. For a specific inverse simulation problem, 

the deterministic realizations of uncx  are actually involved. But it may be difficult to 

determine those realizations.  In this case, uncx  are still treated uncertain. It is the case 

that is concerned by this work.   

We use unknx  to represent those input variables that are to be determined from the 

inverse simulation. For example, in the inverse simulation for traffic accident 

reconstruction, the initial velocities of two vehicles that were involved in an accident 

could be part of unknx .  

Then the input variables x  are 
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 unkn kn unc,( , )=x x x x  (3) 

where 

1unkn unkn,1 unkn,( , , )nx x=x   with a size of 1n , 

2kn kn,1 kn,( , , )nx x=x   with a size of 2n , and  

3unc unc,1 unc,( , , )nx x=x   with a size of 3n .  

Then the simulation model is 

 unkn kn unc, ),(=y g x x x  (4) 

The task of inverse simulation is to find unknown input variables unknx  given the 

output variables y  and known input variable kn unc,( )x x . Since unknx  depends on 

random input variables uncx , unknx  may be random. It is desirable to obtain the 

distributions of unknx . As a result, our proposed model for inverse simulation under 

uncertainty is established as follows: 

Given:   CDF of unc,ix  ( 31, ,i n=  ) unc, ( )iF x , 

2kn kn,1 kn,( , , )nx x=x  , 

1,( ), my y=y  , and 

1( ) ( ( ), ( ))mg g× = × ×g   

Find:   CDF of unkn,jx  ( 11, ,j n=  ) 

unkn, ( )jF x  

 

where the CDF stands for the cumulative distribution function.   
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The uncertainty analysis, which is responsible for solving the above model, needs a 

number of inverse simulations. In general, an inverse simulation also requires a number 

of direct simulations. Mathematically, an inverse simulation is equivalent to the process 

of solving the following system of simultaneous equations: 
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 (5) 

For the problems in the first category, 1n m= , a general iterative procedure of 

inverse simulation is shown in Fig. 2. 

   

Figure. 2 Flowchart of inverse simulation 

 

3. Reliability Approach to Inverse Simulation 

As discussed above, the computation of the inverse simulation under uncertain may 

be intensive because many direct simulations are needed. The Monte Carlo simulation 

(MCS) is not a good choice for such a task if the direct simulation is expensive. Our 

unkn 0=x x  

0x y

Direct simulation unkn( )g x  
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Generate a new 
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interest is to develop an efficient approach so that the inverse simulation under 

uncertainty is affordable. Our strategy is to use a reliability analysis method for such a 

task. This is possible because the evaluation of the CDF of an unknown input variable is 

the same task as the reliability analysis. 

Let a general component in unknx  be unknx . Its CDF is defined by 

 unkn unkn( ) Pr )(F x xx = <  (6) 

The CDF can be obtained from reliability analysis, during which the inverse 

simulation is called repeatedly. Many reliability analysis methods require an iterative or 

optimization process, such as the First Order Reliability Method (FORM) [25-27], the 

Second Order Reliability Method (SORM) [28], the First Order Saddlepoint 

Approximation (FSA) method [29-31], and the First Order Second Moment Method 

(FOSM) [32]. All of those methods need to call the inverse simulation several times to 

obtain the derivatives of unknx  with respect to the random input variables uncx . To ensure 

acceptable accuracy, sampling-based methods such as MCS must also call the inverse 

simulation with sufficient number of times, and usually the number of inverse 

simulations is much higher than the aforementioned methods. Therefore, the 

computational cost is a major concern. Since FORM has good balance between accuracy 

and efficiency, we use FORM in this work. 

 

3.1 Integrate FORM and inverse simulation 

FORM transforms uncx  into independent random variables 
31( , , )nu u=u  , where 

iu  ( 31, ,i n=  ) follows a standard normal distribution. Then the simulation model 

becomes 
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 unkn kn unc unkn kn( ), , , (( )),Ty g g= =x x x x x u  (7) 

where y  and ( )g ×  are a general component of y  and ( )×g , respectively. T( )×  denotes the 

transformation. Combining FORM with the inverse simulation, we can then obtain the 

CDF of unknx  with the following equations: 

If unknx x£  when (0, , 0)=u   

 unkn unkn( ) P ( (r ) )F x x x b< = F=  (8) 

where ( )F ×  is the CDF of a standard normal variable, and 

  
3
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in which ×  stands for a L-2 norm of a vector, and 
3

* * *
1( , , )nu u=u   is the Most 

Probable Point [27] obtained from the following optimization: 
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1( )g- ×  is the function of unknx  and is numerically attainable from the inverse 

simulation. 

If unknx x>  when (0, , 0)=u   

 unkn unkn ) 1) Pr( )((F x xx b< = -F=  (11) 

where b  is computed with Eq. (9), and *u  is obtained from the following optimization 

 
1

unkn unkn kn

min  

subject to

( , ,T( ))x g x

b

-

ì =

=

ïïïïíïïï >ïî

u
u

x x u

 (12) 



12 
Xiaoping Du, JCISE-12-1071 

During the MPP search optimization process, the inverse simulation needs to be 

called in order to obtain 1( )g- ×  at each intermediate point and the initial point of u . This 

means that the inverse simulation process in Eq. (5) is an inner loop that is embedded in 

the reliability outer loop in Eq. (10) or (12). This direct integration of FORM and inverse 

simulation is therefore a double-loop process and may be computationally expensive. The 

double-loop procedure is illustrated in Fig. 3.  

 

Figure. 3 Double-loop procedure for inverse simulation under uncertainty 

 

Next we develop an efficient computational model that eases the computational 

burden. 

 

3.2 Efficient integration of FORM and inverse simulation 

To eliminate the embedded double-loop procedure mentioned above, we move the 

system of equations of the inverse simulation in Eq. (5) into the reliability analysis 

optimization model. We treat these equations as equality constraints. To ensure a true 
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solution to both the reliability analysis and inverse simulation, we also include the 

unknown variables unknx  as additional design variables in the reliability analysis model. 

As a result, the design variables are now unkn,( )u x . With this treatment, the overall 

inverse simulation under uncertainty becomes a single-loop procedure. The new models 

of the inverse simulation under uncertainty are then developed as follows: 

If unknx x£  when (0, , 0)=u  ,  the new model is 

 

unkn( ,

unkn

unkn kn

)
min  

subject to

, , ( )( )

x
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x

bì =ïïïïïïíï £ïïï =ïïî

u x
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where 
31( ) ( ( ) , ), ( )ng g× = × ×g  . 

If unknx x>  when (0, , 0)=u  , the new model is 

 

unkn( ,

unkn

unkn kn

)
min  

subject to
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x

T

x

bì =ïïïïïïíï >ïïï =ïïî

u x
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The above models indicate three modifications of FORM: (1) The design space is 

expanded from u  to unkn,( )u x ; (2) new constraint functions unkn kn, , )( )(T=y g x ux  are 

added; and (3) the inverse simulation for 1( )g- ×  is eliminated.  

With the new models, the MPP search and the system of inverse simulation equations 

are totally combined. There is no need to perform a complete inverse simulation at each 

updated point during the MPP search. Only direct simulations are conducted. The new 

models then involve only a single-loop procedure, and the computational efficiency is 
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therefore much higher than that of the double-loop procedure. The single-loop procedure 

is illustrated in Fig. 4.  

 

 

Figure. 4 Single-loop procedure for inverse simulation under uncertainty 

 

The solutions from the new model can be proved to be also the solutions to the 

double-loop model and therefore to be the true solutions to the inverse simulation under 

uncertainty. The proof is given in the next subsection. 

The procedure of the propose method is summarized below. 

(1) Let 1i = , where i  is the index for the unknown input variables unknx . 

(2) Let unkn unkn,ix x= , where unkn,ix  is the i-th component of unknx . 

(3) Perform the inverse simulation under uncertainty by the MPP search in Eq. (13) 

or (14). 
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a. Call direct simulation unkn kn, , )( )(T=y g x ux  and evaluate b = u  at 

unkn, )(u x . 

b. Update unkn, )(u x . 

c. Check convergence. If convergence is reached, exit step (3); otherwise, repeat 

this step. 

(4) Calculate the CDF of unknx  by Eq. (8) or (11). 

(5) Repeat steps (1) through (4) until 3i n= . 

 

3.3 Moment estimation 

After the CDF unkn( )F x  is obtained, we can also estimate the moments of unknx . For 

example, the mean of unknx  is given by 

 1
unkn unkn1

( ) ( )xf x dx xdF xn ¥

-¥ -
= =ò ò  (15) 

where unkn( )f x  is the probability density function (PDF) of x . 

Let unkn( )w F x= , n  becomes 

 1

1 wx dwn
-

= ò  (16) 

where wx  is the percentile value of  unknx  and is given by 

 unkn( )wF x w=  (17) 

or  

 1
unkn( )wx F w-=  (18) 

Then 
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 1

1 wx dwn
-

= ò  (19) 

Similarly, the variance of unknx  can be estimated by 

 12 2 2 2 2
unkn 1

( ) wx f x dx x dws n n¥

-¥ -
= - = -ò ò  (20) 

To obtain the two moments, we need to obtain the percentile value 1( )wx F w-= . 

wx  can be easily evaluated by modifying the models in Eqs. (13) and (14) [17]. 

If 0.5w < , 1( )wb -= -F , then wx  is the solution to the following model: 
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If 0.5w > , 1( )wb -= F , then wx  is the solution to the following model: 
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The procedure of the evaluation of  wx  is similar to that of the CDF of unknx . The 

steps are therefore omitted. 

n  and 2s  can be evaluated by a numerical integration method. The evaluation needs 

to call the above two models a number of times. 

 

3.4 Proof 

It can be proved that the proposed models in Eqs. (13) and (14) generate solutions 

that satisfy both the original reliability models in Eqs. (10) and (12), and the inverse 
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simulation model in Eq. (5). The proof is based on the Karush–Kuhn–Tucker (KKT) 

conditions. The KKT conditions are necessary conditions, which state that if a solution 

(point) is optimal, then it satisfies the KKT conditions. The true optimal point is among 

all the points that satisfy the KKT conditions. We show that the proposed single-loop 

procedure results in the same points that satisfy the KKT conditions.  The other reason 

we use the KKT conditions is that they are commonly employed in the popular MPP 

search algorithms and many optimization algorithms.  

Assume that the unknown variable unknx  is a general component of unknx . Define the 

Lagrangian function for the MPP search in Eq. (10) as 

 unknL exb= +  (23) 

where e  is a constant. Using LÑ = 0  (Ñ  denotes a gradient), we have the following 

KKT conditions:  
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The KKT conditions can then be rewritten as 
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In the above equation, we use the following notation for a vector: 

1 1)( , a ( )nn i ia a == =a  . 
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We consider that the inverse simulation in Eq. (5) is also an optimization problem. 

This optimization problem has a constant objective c , and the Lagrangian function is 

then given by 

 
1

1
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i i
i

gL c l
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= + å  (26) 

where il  ( 11,i n=  ) are constant. 

The KKT conditions are 
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If we can approve that the KKT conditions of the proposed model in Eq. (13) or (14) 

produces the KKT conditions of the reliability analysis in Eq. (10) or (12) and those of 

the inverse simulation in Eq. (5), then the proposed models do produce solutions to both 

the reliability analysis and inverse simulation. The Lagrangian function of the proposed 

model in Eq. (13) is 
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The second line and last line give the KKT conditions of the inverse simulation as 

shown in Eq. (28). This indicates that the proposed model in Eq. (13) satisfies the 

conditions imposed to the inverse simulation. 

Using the inverse simulation equations in Eq. (5) 

1unkn,1 unkn, kn( , , ), ,T( ( ))k k ny g x x= x u  ( 11, ,k n=  ), we obtain 

 unkn

unkn
0k k

i i

g x g
x u u
¶ ¶ ¶

+ =
¶ ¶ ¶

 (30) 

with 31,i n=  . Then 
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Plugging the above equation into the first line in Eq. (29) yields 
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Since 
1
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0
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¶å  from Eq. (27), the above equation becomes 
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which is the same equation as the first line of the KKT conditions of the reliability 

analysis in Eq. (25). The first line and the fourth line of the KKT conditions of the 

proposed model in Eq. (13) produce the same KKT conditions of the reliability analysis. 

This completes the proof. 

The process of proofing the other proposed model in Eq. (14) is similar, and the proof 

is omitted. 
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4. EXAMPLE 

We now present an example to show the application of the proposed method. It is an 

impact problem involving two rigid bodies as shown in Fig. 5. The ball A with an initial 

velocity 0Av  strikes the block B as it travels down the inclined plane at a velocity 0Bv  as 

shown. After collision, block B slides up the inclined plane for a distance Bd  where it 

momentarily stops as shown by the dotted block. The ball bounces back along the dotted 

path and hits floor with a horizontal distance Ad .  

 

 

Figure. 5 Impact of two rigid bodies 

 

The impact problem can be simulated with dynamics simulation software, such as 

ADAMS, which is the widely used multi-body dynamics and motion analysis software. 

The input variables include the initial velocities of the two bodies, 0Av  and 0Bv , and the 

simulation output variables are the distances Ad  and Bd .  

If the collision is considered as an accident, we are then interested in reconstructing 

the accident. The results of the accident, such as the distances Ad  and Bd , can be easily 

Bd

h

BA
0Bv

0Av

Ad
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measured at the accident scene. The basic question then could be: What are the velocities 

of the two bodies just before collision? This requires an inverse simulation where we 

know the simulation output Ad  and Bd , and we would like to find simulation input 0Av  

and 0Bv . 

Since our purpose is an easy methodology demonstration, we simplify the simulation 

model by treating the two bodies as two particles. With this assumption, equations for the 

simulation can be derived from particle dynamics. The equations are given in the 

Appendix. To mimic the real application of the inverse process of a direct simulation, 

however, we assume that the equations are invisible to a model user; in other words, the 

simulation model is a black box. As a result, to obtain the simulation input by the inverse 

simulation, we need to perform a number of direct simulations as indicated in Eq. (5) and 

Fig. 1. 

The settings of the inverse simulations are as follows: 

(1) Simulation input variables unkn kn unc,( , )=x x x x  

The unknown input variables are the initial velocities of the two bodies 0Av  and 0Bv , 

i.e.,  unkn 0 0, )( A Bv v=x . 

The known input variables include the masses of the two bodies 2Am =  kg, 

6Bm =  kg, the height 2h =  m, and the angle 20 =  . Therefore, 

kn , ,( ),A Bm m h =x . 

The uncertain input variables are the coefficient of restitution e  and coefficient of 

friction between the block and the inclined plane kn . The two coefficients are determined 

by many random factors such as the material properties, the surface roughness, and the 
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weather conditions. They can be estimated with probability distributions. We assume that 

the two variables are independently and normally distributed. Their means are 0.6 and 

0.4, respectively, and their standard deviations are 0.06 and 0.04, respective. Then 

unc ( , )ke n=x . For a specific impact problem, the two variables are uniquely 

determined. In other words, they are a realization of unc ( , )ke n=x  and therefore 

deterministic. However, it is hard to measure the values of the two variables. Hence we 

still treat them as uncertain variables and use their distributions. Due to the uncertainties 

in the two variables, the unknown simulation input variables will be also uncertain even 

though their actual values are deterministic.  

(2)  Simulation output variables y  

The output variables include the distances Ad  and Bd , or , )( A Bd d=y . We assume 

that the two variables are obtained from measurement and that 0.582Ad =  m and 

0.708Bd =  m. 

(3) Simulation model unkn kn unc, ),(=y g x x x  

1 unkn kn unc 2 unkn kn unc, )( ( ( ),, , , ,( ))A Bd gd g==y x x x x x x  . 1( )g ×  and 2( )g ×  are given 

in the Appendix and are assumed to be black boxes to a model user. It is noted that the 

two models are nonlinear functions with respect to unknx  and uncx . 

The accuracy of the new method is verified by Monte Carlo simulation (MCS). The 

procedure of the MCS for a general input variable unknx  is summarized below. 

(1) Let 1i = . 

(2) Obtain samples of random variables unc,ix , the i-th sample of uncx , from the 

distributions of uncx . Then form the input variables unkn, kn unc,, ,( )i i i=x x x x  
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(3) Solve for the unknown input variables unknx   and obtain the sample unkn,ix  with 

the equations of the inverse simulation unkn, kn unc,( ( ),) ,i i ig= =y g x x x x .  

(4) Repeat steps (2) and (3) until i N= , where N  is the number of simulations. 

(5) Perform statistics analysis to obtain the CDF, mean, and standard deviation of the 

unknown input variable unknx .  

In step (5), the CDF is estimated by 

 unkn unkn,i
1

1
)( ()

N

i

I xF x
N =

= å  (34) 

where the indicator function ( )I ×  is defined by 

 unkn,i
unkn,i

1 if 
( ) 0 otherwise    

x
I

x
x

<ìïï= íïïî
 (35) 

At each of the MCS simulations, we used a numerical solver to solve the system of 

equations for the inverse simulation in step (3).  

Tables 1 and 2 show the CDFs, unkn,1( )F x  and unkn,2( )F x , of 0Av  and 0Bv , 

respectively, obtained from the proposed method. The MCS solutions are also shown in 

the tables. 

 

Table 1. CDF of the initial velocity of body A unkn,1( )F x  

 x  (m/s) New method MCS 
1 7.50 0.0007 0.0007 
2 7.95 0.0072 0.0073 
3 8.40 0.0372 0.0372 
4 8.85 0.1146 0.1148 
5 9.30 0.2459 0.2467 
6 9.75 0.4090 0.4098 
7 10.20 0.5709 0.5717 
8 10.65 0.7073 0.7081 
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9 11.10 0.8095 0.8100 
10 11.55 0.8802 0.8807 
11 12.0 0.9263 0.9266 
12 12.45 0.9552 0.9552 
13 12.90 0.9729 0.9728 
14 13.35 0.9836 0.9838 
15 13.80 0.9900 0.9901 
16 14.25 0.9939 0.9939 
17 14.70 0.9962 0.9962 
18 15.15 0.9976 0.9976 
19 15.60 0.9985 0.9985 
20 16.05 0.9990 0.9991 
21 16.50 0.9994 0.9994 
 

 

Table 2. CDF of the initial velocity of body B unkn,2( )F x  

 x  (m/s) New method MCS 
1 0.090 0.0009 0.0010 
2 0.2555 0.0090 0.0089 
3 0.4210 0.0433 0.0431 
4 0.5865 0.1261 0.1262 
5 0.7520 0.2596 0.2601 
6 0.9175 0.4201 0.4203 
7 1.0830 0.5766 0.5770 
8 1.2485 0.7079 0.7087 
9 1.4140 0.8069 0.8076 
10 1.5795 0.8762 0.8766 
11 1.7450 0.9221 0.9225 
12 1.9105 0.9516 0.9516 
13 2.0760 0.9700 0.9700 
14 2.2415 0.9814 0.9815 
15 2.4070 0.9885 0.9886 
16 2.5725 0.9928 0.9928 
17 2.7380 0.9954 0.9954 
18 2.9035 0.9971 0.9971 
19 3.0690 0.9981 0.9981 
20 3.2345 0.9988 0.9988 
21 3.40 0.9992 0.9992 
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The means, 1n  and 2n , and standard deviations, 1s  and 2s , of  0Av  and 0Bv , are 

also provided in Table 3. The solutions of the proposed method are close to those from 

MCS. 

 

Table 3. Means and standard deviations 

 Proposed method MCS 
1n  (m/s) 10.1594 10.1555 

2n  (m/s) 1.0631 1.0626 

1s  (m/s) 1.2211 1.2074 

2s  (m/s) 0.4615 0.4586 
       

 

Table 4 gives the numbers of direct simulations by the proposed method for the CDF 

estimation at all the points shown in Tables 1 and 2. The numbers are between 25 and 40 

for the CDF evaluations. The corresponding numbers are much higher by MCS. Since the 

number of MCS is 19.3463×107 and the number of simulations is 107, the average 

number of direct simulations by each MCS simulation is 19.3463×107 /107 =19.3. The 

first column in the table gives the indexes of the discrete points in the horizontal axes of 

Fig. 6 and 7. 
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Table 4. Number of direction simulations 

     
Proposed method for 

0Av  
Proposed method for 

0Bv  MCS 

1 30 30 19.3463×107 
2 30 30 19.3463×107 
3 30 30 19.3463×107 
4 35 25 19.3463×107 
5 36 31 19.3463×107 
6 34 34 19.3463×107 
7 43 42 19.3463×107 
8 36 36 19.3463×107 
9 35 31 19.3463×107 
10 30 30 19.3463×107 
11 30 35 19.3463×107 
12 30 30 19.3463×107 
13 30 30 19.3463×107 
14 30 35 19.3463×107 
15 35 35 19.3463×107 
16 35 30 19.3463×107 
17 35 35 19.3463×107 
18 35 35 19.3463×107 
19 40 25 19.3463×107 
20 40 35 19.3463×107 
21 40 40 19.3463×107 
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Figure. 6 CDF of the velocity of body A before impact 
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Figure. 7 CDF of the velocity of body B before impact 

 

 

In this example, the unknown input variables are obtained in the form of probability 

distributions even though their specific values exist. The reason is that the specific values 

or the realizations of the random known input variables are not available. The 

uncertainties in the random known input variables result in the uncertainties in inverse 

simulation results. 

 

5. DISCUSSIONS AND CONCLUSIONS 

Inverse simulation has been widely used in industry, and its applications are 

inevitably surrounded by many uncertainties. To make inverse simulation be more 
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confidently used, we need to assess the effects of uncertainty on the inverse simulation 

results. For this purpose, this work integrates the First Order Reliability Method (FORM), 

which is one of the most important uncertainty analysis methodologies, with inverse 

simulation. The integration is computationally efficient because the inverse simulation 

iteration is completely combined with the reliability analysis iteration. The overall 

inverse simulation under uncertainty is performed by a single-loop procedure.  

The example involves only independently and normally distributed random variables; 

the present methodology, however, can also deal with dependent and non-normal 

distributions. 

In this work, we considered the inverse simulation problems where the realizations of 

the random input variables are not available. In reality, the realizations may exist. If the 

realizations are available, the random input known variables will be deterministic for a 

given set of output variables. In this case, the proposed methodology should be modified. 

We also assume, in this work, that uncertainties only exist in some of the model input 

variables. In reality, however, uncertainties may also be associated with the known model 

output variables. For example, measurement uncertainties are encountered if model 

output variables are obtained from measurement. As a result, some of the output variables 

also need to be treated as random variables. The present methodology can be extended to 

situations where both input and output variables are random. The methodology can even 

be further extended to applications where the model structure uncertainty must be 

included.  

The FORM-based methodology in this work shares the same advantages and 

drawbacks as original FORM. It is efficient but may not be accurate for highly nonlinear 
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simulation models. If higher accuracy is desired, the Second Order Reliability Method 

(SORM) can be used. For the CDF estimation, FORM can be easily replaced by SORM. 

We can first apply the proposed method to obtain an MPP without any modifications. 

Then we perform an addition analysis, which is the evaluation of the second derivatives 

of the unknown variables at the MPP. Using the second derivatives will improve the 

accuracy of the CDF estimation. The evaluation of the mean and standard deviation by 

SORM, however, needs a further investigation because the extension of the FORM-based 

method is not straightforward. 
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Appendix: Simulation Model of the Impact Problem 

The x- and y-components of the velocity of body A after impact immediately are  

 0 0( ) cos (1 )A B A B B
Ax

A B

m v e
m

em m
m

v
v

 +- -
+

=  (36) 

 0 sinAy Av v =  (37) 

Then the magnitude of the velocity is 

 2 2
Ax AyAv v v= +  (38) 

The velocity of body B after impact immediately is  

 0 0( cos )B Ax A Bv e vv v += +  (39) 

The distance Bd  is given by 
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21

2 sin cos
B

Bd
v

g  n +
=  (40) 

where g  is the gravitational acceleration. 

The distance Ad  is given by 

 cosA Ad v ta=  (41) 

where 

 arcta / )n( Ay Axv va = +  (42) 

and t  is the root of the following equation 

 ( )2 sin
1

0
2

Agt v t ha+ - =  (43) 
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Table 1. CDF of the initial velocity of body A unkn,1( )F x  

 x  (m/s) New method MCS 
1 7.50 0.0007 0.0007 
2 7.95 0.0072 0.0073 
3 8.40 0.0372 0.0372 
4 8.85 0.1146 0.1148 
5 9.30 0.2459 0.2467 
6 9.75 0.4090 0.4098 
7 10.20 0.5709 0.5717 
8 10.65 0.7073 0.7081 
9 11.10 0.8095 0.8100 
10 11.55 0.8802 0.8807 
11 12.0 0.9263 0.9266 
12 12.45 0.9552 0.9552 
13 12.90 0.9729 0.9728 
14 13.35 0.9836 0.9838 
15 13.80 0.9900 0.9901 
16 14.25 0.9939 0.9939 
17 14.70 0.9962 0.9962 
18 15.15 0.9976 0.9976 
19 15.60 0.9985 0.9985 
20 16.05 0.9990 0.9991 
21 16.50 0.9994 0.9994 
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Table 2. CDF of the initial velocity of body B unkn,2( )F x  

 x  (m/s) New method MCS 
1 0.090 0.0009 0.0010 
2 0.2555 0.0090 0.0089 
3 0.4210 0.0433 0.0431 
4 0.5865 0.1261 0.1262 
5 0.7520 0.2596 0.2601 
6 0.9175 0.4201 0.4203 
7 1.0830 0.5766 0.5770 
8 1.2485 0.7079 0.7087 
9 1.4140 0.8069 0.8076 
10 1.5795 0.8762 0.8766 
11 1.7450 0.9221 0.9225 
12 1.9105 0.9516 0.9516 
13 2.0760 0.9700 0.9700 
14 2.2415 0.9814 0.9815 
15 2.4070 0.9885 0.9886 
16 2.5725 0.9928 0.9928 
17 2.7380 0.9954 0.9954 
18 2.9035 0.9971 0.9971 
19 3.0690 0.9981 0.9981 
20 3.2345 0.9988 0.9988 
21 3.40 0.9992 0.9992 
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Table 3. Means and standard deviations 

 Proposed method MCS 
1n  (m/s) 10.1594 10.1555 

2n  (m/s) 1.0631 1.0626 

1s  (m/s) 1.2211 1.2074 

2s  (m/s) 0.4615 0.4586 
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Table 4. Number of direction simulations 

     
Proposed method for 

0Av  
Proposed method for 

0Bv  MCS 

1 30 30 19.3463×107 
2 30 30 19.3463×107 
3 30 30 19.3463×107 
4 35 25 19.3463×107 
5 36 31 19.3463×107 
6 34 34 19.3463×107 
7 43 42 19.3463×107 
8 36 36 19.3463×107 
9 35 31 19.3463×107 
10 30 30 19.3463×107 
11 30 35 19.3463×107 
12 30 30 19.3463×107 
13 30 30 19.3463×107 
14 30 35 19.3463×107 
15 35 35 19.3463×107 
16 35 30 19.3463×107 
17 35 35 19.3463×107 
18 35 35 19.3463×107 
19 40 25 19.3463×107 
20 40 35 19.3463×107 
21 40 40 19.3463×107 
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Figure 1. A simulation model 
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Figure. 2 Flowchart of inverse simulation 
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Figure. 3 Double-loop procedure for inverse simulation under uncertainty 
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Figure. 4 Single-loop procedure for inverse simulation under uncertainty 
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Figure. 5 Impact of two rigid bodies 
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Figure. 6 CDF of the velocity of body A before impact 
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Figure. 7 CDF of the velocity of body B before impact 
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