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Abstract 

    The reliability of blades is vital to the system reliability of a hydrokinetic turbine. A time-
dependent reliability analysis methodology is developed for river-based composite hydrokinetic 
turbine blades. Coupled with the blade element momentum theory, finite element analysis is used 
to establish the responses (limit-state functions) for the failure indicator of the Tsai-Hill failure 
criterion and blade deflections. The stochastic polynomial chaos expansion method is adopted to 
approximate the limit-state functions. The uncertainties considered include those in river flow 
velocity and composite material properties. The probabilities of failure for the two failure modes 
are calculated by means of time-dependent reliability analysis with joint upcrossing rates. A 
design example for the Missouri river is studied, and the probabilities of failure are obtained for 
a given period of operation time.  
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1. Introduction 

River-based hydrokinetic turbines extract kinetic energy from flowing water of a stream, river, 
or current [1, 2]. They have similar working principles as wind turbines. The main difference 
between hydrokinetic turbines and wind turbines is their working environment. The density of 
water, in which hydrokinetic turbines are put into operation, is about 800 times higher than that 
of air.  Hydrokinetic turbines are advantageous over conventional hydro-power and wind power 
in the following aspects [3]: A hydrokinetic turbine does not alter natural pathways of rivers; its 
energy extraction is much higher than the other renewable power technologies; it requires less 
civil engineering work and introduces less hazards to the environment; the application of 
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hydrokinetic turbines is more flexible. Due to the significant advantages of hydrokinetic turbines, 
this technology has attracted increasing attention of researchers in recent years [4, 5]. 

As the most important part of the hydrokinetic turbine system, the turbine blade has a high 
requirement for its performance and strength [6]. Composite materials offer several advantages, 
such as high ratio of strength to weight, resistance to corrosion, excellent fatigue resistance, and 
design flexibility. These make composite materials an attractive choice for the construction of 
turbine blades. Besides, applications of composite materials in the marine and ocean engineering 
demonstrated that the load-induced deformations of composite elliptic hydrofoils can delay 
cavitation inception while maintaining the overall lift and drag [7].  

Due to the complex manufacturing process, the material properties of composites tend to be 
more random than metallic materials [8]. For instance, the overall performance of composite 
turbine blades can be affected by fiber misalignments, voids, laminate properties, boundary 
conditions and so on [9-11]. There are also many uncertain factors existing in the working 
environment of turbines and composite structures. In recent years, efforts have been made to 
reduce the effects of uncertainties on the performance of composite structures and turbine blades. 
For example, Toft and Sørensen [12] established a probabilistic framework for design of wind 
turbine blades by adopting a reliability-based design approach. Val and Chernin [13] assessed the 
reliability of tidal turbine blades with respect to the failure in bending. Motley [14] presented a 
reliability-based global optimization technique for the design of a marine rotor made of advanced 
composite. Similarly, Young et al. [8] used a reliability-based design and optimization 
methodology for adaptive marine structures. They mitigated the influence of composite material 
uncertainty on the performance of self-adaptive marine rotors. Christopher and Masoud [15] 
applied the probabilistic design modeling and reliability-based design optimization methodology 
to the optimization of a composite submarine structure. More developments about the 
probabilistic design method in the design and optimization of composite structures can be found 
in [16]. 

The most commonly used methods for the probabilistic design of composite structures and 
turbine blades can be classified into two categories: reliability-based design optimization (RBDO) 
and the inverse reliability design (IRD). RBDO is a methodology that ensures the reliability is 
satisfied at a desired level by introducing the reliability constraints into the design optimization 
framework [17]. IRD identifies the design loading using the inverse reliability analysis method 
[18]. Even though the existing RBDO and IRD methods can be employed for the design of 
regular composite structures and wind turbine blades, it is hard to use them to guarantee the 
reliability of composite hydrokinetic blades over the service life. The reason is that most existing 
RBDO and IRD methods employed for the design of composite structures and turbine blades are 
based on time-invariant reliability analysis, while the uncertainties in hydrokinetic turbine blades 
always change with time. For instance, the river flow climate, which governs the loading of 
turbine blades, is a stochastic process with strong auto-correlations [19, 20]. This means that the 
monthly river flow velocity has much longer memory than the wind climate and that the 
reliability of hydrokinetic turbine blades is time dependent. The Monte Carlo simulation (MCS) 
can be used for time-dependent reliability analysis, but it is computationally expensive. Efficient 
time-dependent reliability analysis methods, therefore, need to be employed for the probabilistic 
design of composite hydrokinetic turbine blades.  

In the past decades, many methods have been proposed for the time-dependent reliability 
analysis, such as the Gamma distribution method, Markov method [21], and the upcrossing rate 
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method [22]. Amongst the above methods, the upcrossing rate method is the most widely used 
one [23, 24], which has been applied to the time-dependent reliability analysis for function 
generator mechanism [25], steel beam under stochastic loading [26], and hydrokinetic turbine 
blades [27]. As the method in [25-27] is based on the simple Poisson assumption, it cannot well 
take into account the correlation of river velocities at different time instants. A more accurate 
method called the first order reliability method with joint upcrossing rate (JUR/FORM) has been 
recently developed [28]. This method combines the joint upcrossing rates (JUR) with First Order 
Reliability Method (FORM). It is suitable for the time-dependent reliability analysis of 
composite hydrokinetic turbine blades in this work.   

The objective of this work is to develop a reliability analysis model for composite 
hydrokinetic turbine blades by quantifying the effects of uncertainties in river flow velocity and 
composite material properties on the performance of hydrokinetic turbine blades over the design 
life. It is an improved work of the reliability analysis method of hydrokinetic turbine blades 
presented in [27]. The finite element method (FEM) is employed to analyze the performances of 
the hydrokinetic turbine blade. The JUR/FORM reliability analysis method is adopted for 
reliability analysis. A three-blade horizontal-axis hydrokinetic turbine system developed for the 
Missouri river is studied. The probabilities of failure of turbine blades according to the Tsai-Hill 
failure criterion and excessive deflections are analyzed.  

The remainder of the paper is organized as follows: In Section 2, we provide the state of the 
art of the time-dependent reliability analysis methods. Following that, in Section 3, we analyze 
uncertainties that affect the performance of composite hydrokinetic turbine blades and study the 
potential failure modes of turbine blades. In Section 4, we discuss the way of modeling the 
loading of turbine blades and the methods employed to establish the limit-state functions. A 
design example is given in Section 5 and conclusions are made in Section 6. 

 

2. The State of the Art of Time-Dependent Reliability Analysis Methods  
 
Reliability analysis problems can be divided into the following two categories:  
⋅ Time-invariant reliability problems with random variables   
⋅ Time-dependent reliability problems with stochastic processes  
In the past decades, many methods have been developed for time-invariant reliability 

problems. These methods include FORM, Second Order Reliability Analysis Method (SORM), 
and Importance Sampling Method (ISM).  

For the time-dependent reliability analysis problems, such as the reliability analysis of 
composite hydrokinetic turbine blades under stochastic river flow loading, are much more 
complicated. To show the complexities, in the following subsections, we first discuss the 
differences between the two reliability problems and then review several methodologies for time-
dependent reliability analysis.  

 
2.1 Time-dependent reliability and time-invariant reliability  

Time-invariant reliability does not change over time while the time-dependent reliability 
does. Let a general limit-state function be 

 ), )( , (G tg t= X Y  (1) 
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in which 1 2[ , , , ]nX X X=X   is a vector of random variables, and 1 2) [ ( ), ( ), ( )]( mY t Yt t Y t=Y   is 
a vector of stochastic processes.  

(a) Time-dependent reliability  
For the general limit-state function in Eq. (1), the response variable G  is a random variable 

at any instant of time. Let the threshold of a failure be e . If a failure occurs when 
( , ( ), )G g t t e>= X Y , the time-dependent probability of failure over a time interval 0[ , ]st t  is 

given by 

 { }0 0( , ) Pr ( , ( , [ , ]))f s sP t t g t e t t t= ∃> ∈X Y  (2) 

where {}Pr ⋅  stands for the probability. 
The corresponding time-dependent reliability is given by 

 { }0 0( , ) Pr ( , ( ) , [ , ])s sR t t g t e t t t= ∀< ∈X Y  (3) 

The time-dependent reliability tells us the likelihood that no failure will occur over a time 
period. 

(b)  Time-invariant reliability 
At a specified time instant it , the reliability is given by 

 { }( ) Pr ( , )( )i iR t g t e= <X Y  (4) 

This reliability is called instantaneous reliability or time-invariant reliability. It is the 
probability that the response variable is not greater than the threshold at it , thereby not in the 
failure region, regardless whether a failure has occurred or not prior to it . It is meaningful for 
only time-invariant limit-state functions ( )g X , which does not depend on time, resulting a 
constant reliability. For a time-dependent problem over 0[ , ]st t , the instantaneous reliability is 
only used for the initial reliability at 0t t= . 

The methods for the time-invariant reliability, however, may not be directly used to calculate 
the time-dependent reliability. The major reason is that the time-dependent reliability is defined 
over a time period, which consists of infinite numbers of time instants where the response 
variables are dependent.  
 
 
2.2 Methodologies for time-dependent reliability analysis  

2.2.1. MCS for time-dependent reliability analysis  
The implementation of MCS for time-dependent reliability analysis is quite different from 

that for time-invariant one. The differences lie on the ways of counting failure events and 
generating random samples.  

If stochastic processes are involved, we need at first to generate their trajectories (sample 
traces). Since a trajectory is a continuous function of time, we need to use many discretization 
points (time instants) to accurately represent the function. At each of the time instants, a 
stochastic process is a random variable and the random variables at all the time instants are 
usually dependent. As a result, the random samples are stored in a two-dimensional array – one 
is indexed by time instants, and the other is indexed by random trajectories. For a time-invariant 
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problem, the samples are represented by just a one-dimensional array because no time is 
involved. The size of the samples of a time-dependent problem is therefore much higher than that 
of a time-invariant one. 

After the samples are generated, a limit-state function will be evaluated at all the sample 
points. Compared to a time-invariant problem, the number of function calls for a time-dependent 
problem will be much higher because of the above reason. By comparing the value of a limit-
state function against the failure threshold, we will know if a failure occurs. If the limit-state 
function value is greater than the threshold at any discretized time instant, we consider the event 
as a failure. The details of MCS for time-dependent reliability analysis are provided in Appendix 
A.  

Due to its high computational cost, MCS is not practically used for time-dependent reliability 
analysis, but may be used as a benchmark for the accuracy assessment for other reliability 
analysis methods.  

2.2.2. Poisson assumption based upcrossing rate method  
 Given its high efficiency, the Poisson assumption based upcrossing rate method has been 

widely used [25-27]. With this method, the time-dependent probability of failure over time 
interval 0[ , ]st t  is computed by 

 { }
0

0 0( )]( , ) 1 [1 exp ( )st

ff s t
p t t p t v t dt+= − − −∫  (5) 

in which ( )v t+  is the upcrossing rate at time t, and 0( )fp t  stands for the instantaneous 
probability of failure at the initial time.  

It is difficult to obtain the upcrossing rate ( )v t+ .  One effective way is using FORM. FORM 
transforms random variables { ), ( }tX Y  into the standard normal variables ( ) [ , ( )]t t= X YU U U . 
Then the limit state function becomes ( ( ), )G g t t= U  [25]. After the linearization of the limit-
state function at the Most Probable Point (MPP) *( )tu , the upcrossing rate ( )v t+  is computed 
using the Rice’s formula [29, 30] as follows: 

 ( )( ) ( ) ( ) { ( ( ) / ( )) [ ( ) / ( )] ( ( ) / ( ))}v t t t t t t t t tω φ β φ β ω β ω β ω+ = − Φ −    (6) 

where ( )φ ⋅ and ( )Φ ⋅  represent the probability density function (PDF) and cumulative distribution 
function (CDF) of a standard normal random variable, respectively, 
and 

 *( ) ( )t tβ = u  (7) 

in which ⋅
 
stands for the magnitude of a vector.  

( )tω  is given by  

 2
12( ) ( ) ( ) ( ) ( , ) ( )T Tt t t t t t tω = +α α α C α

   (8) 
where 

 * *( ) ( ( ), ) / ( ( ), )t t t t t= ∇ ∇α g u g u  (9) 

and  
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in which ( , )iY t tρ  is the autocorrelation coefficient function of stochastic process iY .  

  ( )tα  and ( )tβ  are the derivatives of ( )tα  and ( )tβ , respectively.  
Even if the Poisson assumption based upcrossing rate method has been widely used, large 

errors have been reported for this method by Madsen etc. [31][32][33][34]. One of the main error 
sources is the Poisson assumption, which assumes that the events that the response upcrosses the 
failure threshold are completely independent from each other. This assumption does not hold for 
many cases because there are always some correlations between the failure events and failures 
may occur in clusters. To overcome this drawback, Madsen [31] proposed a method to consider 
the correlation between two time instants of a Gaussian process. His method focuses on only 
Gaussian processes. Vanmarcke [32] has made some empirical modifications to the Poisson 
assumption based method. His modifications, however, are limited to stationary Gaussion 
process. Most recently, Singh [34] has established a “composite” limit-state function method, 
which can accurately estimate the time-dependent reliability problems with limit-state functions 
in a form of ( ),G tg= X , where there are no input stochastic processes. The JUR/FORM [28] 
method has recently been developed by extending Madsen’s method [31] for more general 
problems with both random variables and non-stationary stochastic processes. We next review 
the main idea of the JUR/FORM.  

2.2.3. JUR/FORM 
JUR/FORM aims to release the Poisson assumption by considering the correlations between 

the limit-state function at two time instants. It can be applied to general problems with both 
random variables and stochastic processes. Since it is based on FORM, it is much more efficient 
than MCS while the accuracy is higher than the traditional upcrossing method. With this method, 
the time-dependent probability of failure 0( , )f sp t t  is computed by 

 { } { } ( )
1

0
0 0 0 0 0( ) Pr ( , ( Pr ( , (, ), ) ), ) st

f s Tt
p t t g t t e g t t e f t dt= > + < ∫X Y X Y  (11) 

where 
1
( )Tf t  is the PDF of the first-time to failure. { }0 0Pr ( , ,( ) )g t t e>X Y  is the probability of 

failure at the initial time, and { } ( )
1

0
0 0), )Pr ( , ( st

Tt
g t t e f t dt< ∫X Y

 
is the probability of failure over 

0[ ], st t   given that no failure occurs at the initial time. 

( )
1Tf t  can be obtained by solving the following integral equation [31]: 

 
1 1

0

( ) ( ) ( , ) ( ) / ( )
t

T Tt
v t f t v t f v dt t t t+ ++ += + ∫  (12) 
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in which ( )v τ+  is given in Eq. (6), and ( , )v t t++  stands for the joint probability that there are 
upcrossings at both t and τ .  The equations for  ( , )v t t++

 
are given in Appendix B.  

Given its advantages, we use JUR/FORM for the reliability analysis of the composite 
hydrokinetic turbine blades. We also use MCS to verify the accuracy of JUR/FORM.  

Fig. 1 shows the three steps of JUR/FORM [28]. In the first step, we divide the time-interval 
into discretized time instants. We then use FORM to search for MPPs at every time instant and 
calculate α β α βi i i i(t ), (t ), (t ), (t ) and i j(t , t )C . The PDF 

1
( )Tf t  can then be obtained using Eqs. 

(6) and (12), and the formulas in Appendix B. Finally, the time-dependent probability of failure 
is calculated by Eq. (11).   
 

 

 
 

 
Fig. 1. Numerical procedure of JUR/FORM  

 

In the following section, we discuss how to apply the time-dependent reliability analysis 
method to evaluate the reliability of composite hydrokinetic turbine blades over the design life.  

Step 1: Initialize parameters 

Reliability analysis at it and it t+ ∆  

 

Step 2: Perform the MPP search 

Solve for 
upcrossing 

rate ( )iv t+  

 
Solve for joint upcrossing 

rate ( , )i jv t t++  

Solve for PDF 
1
( )T if t  

Step4: Integration of 
1
( )T if t  

Step 3: Compute PDF 
1
( )T if t  

α β α βi i i i(t ), (t ), (t ), (t )  

Calculate 0( , )f sp t t  

Initial reliability 

0( )R t  
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3. Uncertainty and Failure Modes Analysis for Composite Hydrokinetic Turbine Blades 

 
3.1 Uncertainty analysis 
3.1.1 River flow velocity 

Due to the natural variability, the river flow velocity is the major uncertainty inherent in the 
working environment of hydrokinetic turbine blades. It is directly related to the safety of the 
turbine blade. Analyzing the uncertainty of the river flow velocity is critical to the reliability 
analysis of hydrokinetic turbine blades. The river flow velocity, however, is difficult to be 
modeled exactly since it varies both in space and time. To present the variation of river flow 
velocity over space and time, we need many historical river flow velocity data at different 
locations of the river cross section. This kind of data is not available at most of the time. In order 
to overcome this limitation, Hu and Du [27] proposed to present the river flow velocity in the 
form of river discharge, of which the data have been recorded for many rivers. With the river 
discharge and the assumption that the shape of a river bed is a rectangle, the cross section 
average river flow velocity is calculated by the Manning-Strickler formula as follows [35-37]:  

 1 2/3 1/2( ) ( )rv t n Q t S−=  (13) 

in which ( )v t  is the river water flow velocity (m/s) , rn  is the river bed roughness, S  is the river 
slope (m/m), and ( )Q t  is given by [27, 37]  

 
0.898

0.341 0.557

0.946( )
0.698 2.71

m

m m

dQ t
d d

=
+

 (14) 

where md  is the monthly discharge of the river 3(m /s) . 

   The distribution of md  is lognormal [38, 39], and its CDF is given by 

 
ln( ) ( )

( )
( )

m

m

m

m D
D m

D

d t
F d

t
m

σ

 −
= F  

 
 (15) 

in which ( )
mD tm

 
and ( )

mD tσ are the mean and standard deviation of ( )ln md , respectively. These 

two parameters are time-dependent because the river discharge varies seasonally. 
    The autocorrelation coefficient of the normalized and standardized monthly river discharge is 
approximated by [20, 40] 

 
2

2 1
1 2( , ) exp

mD
t tt tρ
ζ

  −
= −     

 (16) 
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where ζ  is the correlation length. Therefore, after normalization and standardization, the 
monthly river discharge can be presented by its underlying Gaussian process with autocorrelation 
coefficient function given in Eq. (16). 
 

3.1.2 Uncertainties in composite materials 
The hydrokinetic turbine blade is made of fiberglass/epoxy laminates with [0/90/0/90/0]s 

symmetric configurations. Due to the natural variability in laminate properties, fiber 
misalignment, and the fabrication process of composite materials, uncertainties exist in the 
stiffness of composite materials. Herein, four variables are represented by probability 
distributions. These random variables are E11 and E22 (E33) (elastic modulus along direction 1, 2 
and 3), G12 (G13), and G23 (shear modulus). All the random variables are normally distributed. As 
suggested in [8], a 2% coefficient of variation was assigned to the material parameters of the 
composite material as shown in Table 1. The coefficient of variation is the ratio of the standard 
deviation to the mean of a random variable.   

Table 1. Distributions of random variables of the composite material 

Variable Value Distribution type Mean Coefficient of variation 

Young’s modulus E11=45.6 GPa 0.02 Gaussian 
E22=E33=16.2 GPa 0.02 Gaussian 

Shear Modulus G12= G13=5.83 GPa 0.02 Gaussian 
G23=5.786 GPa 0.02 Gaussian 

 
After identifying the uncertainties in the composite hydrokinetic turbine blade, we analyze the 

potential failure modes that may occur during the operation of turbine blades. 
 

3.2 Failure modes of composite hydrokinetic turbine blades 
The failure modes of wind turbine blades have been reported in literature. They can be used 

as a reference for analyzing hydrokinetic turbine blades because both wind and hydrokinetic 
turbine blades share similar working principles. For wind turbine blades, the commonly studied 
failure modes include failures due to fatigue [41, 42], extreme stresses [43, 44], excessive 
deflections [45], corrosion [46, 47], and so on. Based on the studied failure modes, in this work, 
we mainly focus on the failure modes with respect to the Tsai-Hill failure criterion and excessive 
deflection. The major reason of doing this is that the extreme stress and deflection can be 
obtained from static analysis and that the two failure modes can be analyzed using the same kind 
of reliability analysis method. 

The fatigue of turbine blades is also critical to the reliability of a turbine system. The fatigue 
reliability analysis requires a stress cycle distribution of blades obtained from a large number of 

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
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simulations or experiments. It also needs stochastic S-N curve to account for uncertainties in 
material fatigue tests. It is a much more challenging task and will be one of our future works.  

3.2.1 The Tsai-Hill failure criterion for composite turbine blades  
For plane stresses, the failure indicator of the Tsai-Hill criterion is  

 
2 2 2
1 1 2 2 12
2 2 2 2ind
L L T LT

f
s s s s
ssssτ   

= − + +  (17) 

where 1σ , 2σ  and 12τ  are local stresses in a lamina with reference to the material axes. Ls , Ts  
and LTs  are the failure strengthes in the principal material directions. Ls  stands for the 
longitudinal strength in fiber direction (direction 1), Ts  denotes transverse strength in matrix 
direction (direction 2), and LTs  indicates the in-plane shear strength (in plane 1-2).  

If 1 0σ > , use longitudinal tensile strength for Ls ; if 2 0σ > , use transverse tensile strength for 

Ts ; otherwise, use the compressive strength for Ls  and Ts . To determine whether the composite 
blade laminate will fail due to applied loading, the method first calculates stresses across the 
different plies, followed by applying the Tsai-Hill interactive failure criterion based on these 
stress levels. The composite blade laminate is considered to fail when a first ply fails. This point 
of failure is the first ply failure (FPF) [48, 49], beyond which the laminate may still carry the 
load. For a safe design, the composite laminates should not experience stress high enough to 
cause FPF. Fig. 2 shows a failure evaluation of hydrokinetic turbine blade using the Tsai-Hill 
criterion in ABAQUS.  

 

 
 

Fig. 2. Blade failure evaluation under hydrokinetic loadings (based on the Tsai-Hill criterion) 

The limit-state function with respect to the Tsai-Hill failure criterion is defined by 

 ( )1 0, ( ), ( , ( ,) [) , ]b b ind b b allow sg t t f t t f t t t= − ∈X Y X Y  (18) 

where ( , ( ) ),ind b bf t tX Y  is the failure indicator of the composite blade based on the Tsai-Hill 

criterion, allowf  is the allowable value, 11 22 12 23[ , , , ]b E E G G=X  is the vector of random variables, 

and ( ) [ ( )]b t v t=Y  is the vector of stochastic process. When ( ), ( ), 0b bg t t >X Y , a failure occurs 

based on the Tsai-Hill criterion.  
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3.2.2 Excessive deflection of turbine blades 
 Fig. 3 shows the deflection of the hydrokinetic turbine blade due to the river flow loading. 

The deflection of the blade is inevitable during the operation. It is correlated with various turbine 
performances, such as the power production, cavitation characteristics, possible failure modes of 
composite materials, and so on [7, 8]. It is one of the critical parameters that need to be 
investigated during the turbine blade design phase. 

Since the river climate varies over time, it results in the variation of the tip deflection of the 
turbine blade during operation. The actual deflection of the turbine blade should not exceed the 
allowable one. We then define the following limit-state function:  

 ( )2 0, ( ), ( , ( , , [ ]) ,)b b actual b b allow sg t t t t t t tε ε= − ∈X Y X Y  (19) 

where )( , )( ,actual b b t tε X Y  and allowε  are the actual and allowable deflections of the turbine blade 
at time t , respectively.  

 
 

Fig. 3. Deformed and un-deformed geometry of the hydrokinetic turbine blade 

Based on the failure modes and limit-state functions we defined, we then discuss the 
reliability analysis of the composite turbine blade.  

 

4. Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic 
Turbine Blades 
 
To perform the time-dependent reliability analysis for the composite hydrokinetic turbine 

blades, we need to address two more challenges. The first one is how to analyze the performance 
responses of turbine blades under the stochastic river flow loading. The other one is how to build 
the limit-state functions in terms of the blade response for reliability analyses. In this paper, we 
propose to use the BEM-FEM coupled method to compute the responses of composite turbine 
blades. By applying the simulation results from BEM-FEM, we build surrogate models for the 
responses through the stochastic polynomial chaos expansion (SPCE) method. Finally, the time-
dependent reliability analyses are performed on these surrogate models.  

Un-deformed 

Deformed 
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4.1 Construction of surrogate models 

4.1.1  BEM-FEM coupled method 
The blade element momentum theory (BEM), proposed by Glauert in 1935, has been widely 

used to calculate the load of turbine blades. It is applicable to estimate the steady loads, the thrust 
and power for different settings of speed, rotational speed and pitch angle of turbines [50]. Since 
it is based on the momentum theory and the local events taking place at the blade elements, it 
may not be as accurate as that from the 3-dimentional computational fluid dynamics (CFD) 
simulations. However, the BEM calculation is much faster than the CFD simulation. Given its 
high efficiency and many corrections to the original model, BEM provides engineers with an 
effective way of approximating the aerodynamic/hydrodynamic loadings on turbine blades. 

In the present work, we employ BEM to compute the loadings on the composite hydrokinetic 
turbine blades in reliability analysis. The load produced by BEM serves as the input of FEM, 
which generates the stress distribution of the turbine blade. We refer this procedure as the BEM-
FEM coupled method.  

Fig. 4 shows the flowchart of the BEM-FEM coupled method. For BEM, we assume that there 
is no-radial-dependency among blade elements. However, we incorporate the Prandtil’s tip loss, 
Glauert correction, and hub loss into the model to ensure reliable results. The hydrodynamic 
loadings obtained from BEM codes have been validated with Blade Tidal, which is a design tool 
for tidal current turbines [51].  

 

 

Fig. 4. Flowchart of the BEM-FEM  
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Fig. 5 presents the finite element mesh of the blade, which is divided into eight stations, and 
each station is applied with concentrated hydrodynamic forces on the blade surface using 
multipoint constraints (MPC) technique.  

 
Fig. 5. Finite element mesh of the blade 

If BEM-FEM is directly employed for the time-dependent reliability analysis, the efficiency 
will be very low, as the number of FEM runs is much higher than that of the time-invariant 
reliability analysis. Since the time-dependent reliability analysis will be later integrated into an 
optimization framework, the direct use of BEM-FEM may not be affordable in terms of 
computational efforts. Therefore, we construct surrogate models based on limited and selected 
BEM-FEM analyses. In the next section, we will introduce a method to construct the surrogate 
models based on the FEM simulations.  

4.1.2 SPCE method 
Since the uncertainties are all modeled by random variables, we use the SPCE method to get 

the surrogate models for the two limit-state functions. As an efficient tool for multi-disciplinary 
design optimization (MDO) in various engineering applications, SPCE has drawn much attention 
in the past decades. With SPCE, the chaos expansion for a response Z  is given by [52, 53] 

 
0

( )
P

i i
i

Z χ
=

= Γ∑ ξ  (20) 

where iχ  are deterministic coefficients, ( )iΓ ξ  are the i-th order random basis functions, 

1 2[ , , ]nξ ξ ξ=ξ   is a vector of independent standard random variables, and P is the number of 
terms. The total number of terms for a complete polynomial chaos expansion of order p and n 
random variables is given by 

 ( )!1
! !

n pP
n p
+

+ =  (21) 

    The use of independent standard random variables in Eq. (20) is critical because it allows 
decoupling of the multidimensional integrals in a mixed basis expansion [54]. ( )iΓ ξ  are 
multivariable polynomials, which involve products of one-dimensional polynomials. For the 
expansion of a response with different kinds of random variables, mixed bases will be used. 
There are different kinds of basis functions for different uncertainty distributions [52]. For a 
normal (Gaussian) uncertain variable, the ideal basis function is the Hermit polynomial. For a 
uniform or exponential distribution, the ideal basis function is Legendre or Laguerre polynomial.  
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In this work, the point collocation method is applied to get the deterministic coefficients iχ  in 
Eq. (20). For the point collocation method, sampling of input random variables is the key to 
ensure the efficiency and accuracy of the approximation. The most commonly used sampling 
methods include the Random Sampling (RS), Latin Hypercube Sampling (LHS), and 
Hammersley Sampling (HS) [55]. We use HS to generate samples for input random variables 
because it is capable of providing better uniformity properties over multi-dimensional space than 
LHS and RS.  

For the time-dependent reliability analysis of composite hydrokinetic turbine blades, the 
uncertainties in the material are modeled as Gaussian random variables, which can be expanded 
using the Hermit polynomial basis. The flow velocity is a stochastic process that varies randomly 
over time. As a result, at different time instants, the velocity distributions will be different. There 
is no single distribution we could use for the expansion. Therefore, we regard the flow velocity 
as a variable with unknown distribution and then treat it with a uniform distribution bounded by 
the cut-out and cut-in velocity as shown in Fig. 6. This treatment is similar to expand a general 
variable. As shown in the example in this paper, this treatment works well for the reliability 
analysis of turbine blades. For stochastic polynomial chaos expansion, we therefore use the 
Hermit polynomials for E11, E22 (E33), G12 (G13), and G23; and Legendre polynomials for the river 
velocity. For multivariate basis functions, the mixed bases are used for expansion.  

 
Fig. 6. Distribution of river flow velocity 

With the expansion order of two, the polynomial chaos expansion model for the studied 
problem in this work is given by 
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 , 1, , 4j

j

j X
j

X

x
j

µ

σ

−
= =ξ   (23) 

and  

 5
2 ( )( ) L U

U L

v t v vt
v v
− −

=
−

ξ  (24) 

in which 
 , 1, , 4j j =ξ  , are the standard normal random variables corresponding to material 
strengths 
 5 ( )tξ  is a  normalized uniform random variable bounded in [-1, 1], which is associated 
with the stochastic process of river velocity ( )v t  at time t 
 1 2 3 4[ , , , ]x x x x=x  is a vector of specific values for random variables 11 22 12 23[ , , , ]E E G G  
 

jXµ  and 
jXσ  are the mean and standard deviation of random variable jX , respectively 

 Lv  is the lower bound of tip river velocity expansion interval 
 Uv  is the upper bound of river velocity expansion interval 
 ( ), 1, 2iH i⋅ = , is the ith order Hermit polynomial basis 
 ( ), 1, 2iL i⋅ = , is the ith order Legendre polynomial basis 
   , 1, 2sZ s = , represents the limit-state functions, s=1 for limit-state function 1 in Eq. (18), 
and s=2 for limit-state function 2 in Eq. (19) 
 , 1, 2 and 0,1, 2, , 20s

i s iχ = =  , stand for the deterministic coefficients of the surrogate 
models. s=1 for surrogate model associated with limit-state function 1 and s=2 for surrogate 
model associated with limit-state function 2 

Assume that pN  simulations are performed for the turbine blades at the sample points 

generated from HS, the deterministic coefficients , 1, 2 and 0,1, 2, , 20s
i s iχ = =  , are then 

solved by the point collocation method as follows: 
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 (25) 

where 1 2 3 4 5[ , , , , ( )], 1, ,i i i i i i
pt i N= =ξ ξ ξ ξ ξ ξ   is the ith group of sample points generated from HS, 

and ( )s iZ ξ  is the blade response of sZ  with the ith group of sample points obtained from the 
simulation.  
 

4.2 Reliability analysis of composite hydrokinetic turbine blades 
 

We assume that the seasonal effects of river flow velocity repeat in the same time periods of 
any year. This assumption is reasonable given the fact that the Earth circulates around the Sun 
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annually with the same seasonal effects. Based on this assumption, the probability of failures 
during T-years operation can be calculated by 

 ( ) 1 [1 ( )]i i T
f f ep T p Y= − −  (26) 

where ( )i
fp T  is the probability of failure during T years; ( )i

f ep Y  is the annual probability of 
failure. i stands for the two failure modes as follows: 

⋅ 1i =  for the failure with respect to the Tsai-Hill failure criterion 
⋅ 2i =  for the failure of excessive deflection 

In Eq. (26) the annual probability of failure ( )i
f ep Y  is defined over a time interval [0, ]t , 

where t is equal to one year. The anuual probability of failure ( )i
f ep Y

 
can be solved by applying 

JUR/FORM given in Section 2 and using the surrogate models in Section 4.1.  
 

 
4.3 Numerical procedure 

In this section, we summarize the numerical implementation of the reliability analysis method 
discussed above. Fig. 7 depicts the procedure of the implementation. 

 

 
Fig. 7. Flowchart of simulation-based time-dependent reliability analysis  

 Step 1: Sample generation: generate the samples of random variables using the 
Hammersley Sampling method based on their distribution.  

 Step 2: BEM-FEM coupled analysis: with the input samples from step 1, analyze the 
failure indicator with respect to the Tsai-Hill failure criterion and deflection of the 
hydrokinetic turbine blade using BEM-FEM. 
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 Step 3: Design of experiments: construct surrogate models using the outputs from 
simulations and approximate the responses with the stochastic polynomial chaos 
expansion method.  

 Step 4: Reliability analysis: Perform time-dependent reliability analysis by applying the 
JUR/FORM method.  

 

5. Case study  

We studied a one-meter long composite hydrokinetic turbine blade with varying chord 
lengths, cross sections and an eight-degree twist angle. This blade is for a hydrokinetic turbine 
system that is intended to put into operation in the Missouri River. During the design process, we 
evaluated the reliability of the hydrokinetic turbine over a 20-year design period.  
 
5.1 Data  

5.1.1  River discharge of the Missouri River          
    Based on the historical river discharge data of Missouri river from 1897 to 1988 at Hermann 
station, the mean and standard deviation of the monthly river discharge were fitted as functions 
of t as follows [27]  

 
5

0
1

( ) [ cos( ) sin( )]
m

mean mean mean
D i mean i mean

i
t a a i t b i tm ω ω

=

= + +∑  (27) 

 
5

0
1

( ) [ cos( ) sin( )]
m

std std std
D j std j std

j
t a a j t b j ts ω ω

=

= + +∑  (28) 

where 

 0 1 2 3 4 5

1 2 3 4 5

2335, 1076, 241.3, 61.69, 30.92, 32.38,

57.49, 174.9, 296.2, 213.6, 133.6, 0.5583

mean mean mean mean mean mean

mean mean mean mean mean
mean

a a a a a a
b b b b b ω

= = − = = = − =

= = − = − = = − =
 (29) 

 0 1 2 3 4 5

1 2 3 4 5

1280, 497.2, 145.8, 225.4, 203.1, 99.47,

82.58, 19.06, 178.7, 36.15, 52.47, 0.5887

std std std std std std

std std std std std
std

a a a a a a
b b b b b ω

= = − = = = − =

= − = − = − = = − =
 (30) 

    The auto-correlation coefficient function of the normalized and standardized monthly 
discharge was assumed to be 

 2
1 2 2 1( , ) exp{ [20( ) / 3] }

mD t t t tρ = − −  (31) 

5.1.2 Deterministic parameters for time-dependent reliability analysis            

Table 2 presents the deterministic parameters for the reliability analysis, which include the 
limit states and time step size.  
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Table 2. Deterministic parameters used for reliability analysis 

Parameter allowf  allowε  t∆  

Value 1 3.5×10-2 (m) 5×10-3 (month) 

 

5.2 Sampling of random variables 
According to the distributions of random variables and their bases for expansion, samples 

were generated. Since there are five variables to be expanded using the SPCE method and the 
expansion order is two, the minimal number of samplings required is 21 according to Eq. (21). 
To achieve a good accuracy of approximation, we generated more samples (32 samples). The 
samples are depicted in Fig. 8.   
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Fig. 8. Samples of random variables 

 

5.3 Responses from FEM simulation 
      BEM-FEM coupled simulations were performed at the sample points generated in Section 
5.2. Based on the simulation results, surrogate models were constructed. Fig. 9 presents the 
failure indicators of the Tsai-Hill failure criterion from simulations versus the predicted ones 
from the surrogate model. Fig. 10 shows the deflections obtained from simulations versus the 
predicted ones from the surrogate model.  
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Fig. 9. Values of failure indicators from simulation and predicted values 
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Fig. 10. Deflections from simulation versus predicted deflections 

 

      The figures indicate that the SPCE method well approximates the responses because the two 
curves are almost linear. Thus the approximated models could be confidently used for assessing 
the reliability of the turbine blade. Figs. 11 and 12 illustrate the response of failure indicator of 
the Tsai-Hill failure criterion and that of the deflection versus the river velocity and composite 
material property, respectively.  
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Fig.11. Failure indicator for Tsai-Hill failure criterion  
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Fig.12. Deflection of turbine blades 
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5.4 Reliability analysis and results 
 

We first calculated the probability of failure of the hydrokinetic turbine blade over a one-year 
time period 0[ , ] [0,1]st t = yr. We then computed the probability of failure over the life time 

0[ , ] [0, 20]st t =
 
yr using Eq. (26).  

 
5.4.1 Time-dependent probabilities of failure 

Figs. 13 and 14 give the time-dependent probabilities of failure of composite hydrokinetic 
turbine blades over a one-year time period with respect to the failure modes of the Tsai-Hill 
failure criterion and excessive deflection, respectively. To verify the accuracy of the reliability 
analysis, we also performed MCS with a sample size of  2× 610 .  
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Fig. 13 Time-dependent probabilities of failure with respect to Tsai-Hill failure criterion 
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Fig. 14 Time-dependent probabilities of failure with respect to excessive deflection 

       
The results indicate that the accuracy of the reliability analysis from JUR/FORM is good. 

The probability of failure for the Tsai-Hill failure criterion is 5.6312×10-4 over a one-year period. 
The probability of failure due to excessive deflection is 11.0843×10-4 over a one-year time 
period. The failure mode of the Tsai-Hill failure criterion is less likely to happen than that of 
excessive deflection for this design. The probabilities of failure for the Tsai-Hill failure criterion 
and excessive deflection over a 20-year life period are 1.12×10-2 and 2.19×10-2, respectively.  

Tables 3 and 4 present the actual computational costs and numbers of function calls required 
by JUR/FORM and MCS for the two failure modes, respectively. The analyses were run on a 
Dell personal computer with Intel (R) Core (TM) i5-2400 CPU and 8GB system memory. The 
results indicate that JUR/FORM is much more efficient than MCS. This means that the 
computational effort will decrease significantly when JUR/FORM is employed to substitute 
MCS for the time-dependent reliability analysis. This is especially beneficial when the time-
dependent reliability analysis is embedded in the hydrokinetic turbine blade optimization 
framework where the reliability analysis is called repeatedly.  
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Table 3 Number of function calls and actual computational cost for Tsai-Hill failure criterion 

[t0, ts] 
months 

JUR/FORM MCS 

Time 
(s) 

Function 
Calls Time (s) Function 

Calls 

[0, 4] 27.83 11403 1.47×103 2×108 

[0, 6] 30.55 11167 2.03×103 3×108 
[0, 8] 30.20 11427 3.26×103 4×108 
[0, 10] 26.45 11870 4.91×103 5×108 
[0, 12] 28.69 11821 6.89×103 6×108 

 
 
 

Table 4 Number of function calls and actual computational cost for excessive deflection 

[t0, ts] 
months 

JUR/FORM MCS 

Time 
(s) 

Function 
Calls Time (s) Function 

Calls 

[0, 4] 23.97 9449 1.28×103 2×108 

[0, 6] 23.64 9692 2.86×103 3×108 
[0, 8] 25.95 9625 3.87×103 4×108 
[0, 10] 23.04 9933 5.67×103 5×108 
[0, 12] 23.72 9827 7.78×103 6×108 

 
 
 
 
 

5.4.2 Sensitivity analysis of random variables 
Sensitivity factors [56] are used to quantify the importance of random variables to the 

probability of failure. Given the transformed limit-state function ( ( ), )t tg U  and MPP *( )tU , the 
sensitivity factor of random variable ( )iU t  at time instant t is given by [56] 

 * * 2 0.5

1
( ) ( ) / [ ( ( )) ]

n m

i i j
j

s t U t U t
+

=

= − ∑  (32) 

Based on this, we obtained the sensitivities factors of random variables at every time instant.  
Figs. 15 and 16 show sensitivity factors of the five random variables for the Tsai-Hill failure 

criterion and excessive deflection, respectively.  
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Fig. 15. Sensitivity factors for the Tsai-Hill failure criterion 
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Fig. 16. Sensitivity factors for the excessive deflection failure 

With the results of sensitivity analyses in Figs. 15 and 16, we summarize our major 
findings as follows: 

• The river velocity makes the highest contributions to the probability of failure, while the 
uncertainties in material properties make smaller contributions.   
• The river velocity always makes negative contribution to the reliability of composite 
turbine blades. This means that an increase in velocity will result in a decrease in reliability.  
• With respect to the failure mode of excessive deflection, elastic modulus along direction 
1 (i.e. E11), irrespective of river velocity, makes the highest positive contributions to the 
reliability of composite hydrokinetic turbine blades. It is followed by the shear modulus 
G12 (G13).   
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• For the failure mode of the Tsai-Hill failure criterion, E22 turns out to make negative 
contributions to the reliability of turbine blades while the sensitivity with respect to E11 is 
positive and the largest.  
• The shear modulus G23 always makes negligible contributions to both of the failure 
modes.  

 
6. Conclusions 

Using an appropriate reliability analysis method is critical for the probabilistic design of 
composite hydrokinetic turbine blades. In this work, we developed a simulation based time-
dependent reliability model for composite hydrokinetic turbine blades. The BEM-FEM coupled 
method was used to get the responses of failure indicator of the Tsai-Hill failure criterion and 
deflections of turbine blades. The SPCE method was adopted to establish the limit-state 
functions, and JUR/FORM was employed to perform time-dependent reliability analysis. By 
incorporating these analysis methods, we evaluated the influence of uncertainties in river flow 
velocity and composite material properties on the performance of turbine blades.  

The results illustrated that the composite hydrokinetic turbine blade has larger probability of 
failure for the excessive deflection than that due to the Tsai-Hill failure criterion. The former, 
therefore, needs to be paid more attention during the design phase.  

Sensitivity analysis of random variables showed that the river flow velocity makes the 
highest contribution to the probability of failure of the composite hydrokinetic turbine blade for 
both failure modes. The sensitivity analysis of the composite material parameters showed that 
E11 always makes a positive contribution and is the most important composite material parameter 
for the reliability of turbine blades. Therefore, this parameter should be focused on during the 
design stage. The shear modulus G23 makes negligible contributions to the two failure modes. E22 

makes a positive contribution to the reliability of turbine blades against excessive deflection 
while this contribution turns to be negative for the reliability against the failure mode of Tsai-
Hill failure criterion. This demonstrated that the material parameters of the composite material 
make different contributions to the reliability of turbine blades.  

    Our future work includes coupling the CFD simulation with FEM to improve accuracy and 
applying the developed method to the reliability-based design optimization (RBDO) of 
composite hydrokinetic turbine blades. Fatigue reliability analysis will also be our future work.  

 
 

Appendix A: MCS for time-dependent reliability analysis 
 

 The MCS for time-dependent reliability analysis involves both a stochastic process (river 
flow discharge) and random variables. To generate samples for the stochastic process, we 
discretize the time interval 0[ , ]st t

 
into N points. Then the samples of the normalized and 

standardized river flow discharge process mD  is generated by  
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mD= +mD Mςm  (33) 

where 1 2,( , , )T
Nς ς ς=ς   is the vector of N independent standard normal random variables; 

1 2,( ( ) ( ), , ( ))
m m m m

T
D D D D Nt t tm m m= m  is the vector of mean values of 

1 2,( ( ) ( ), , ( ))T
m m m ND t D t D t=mD  ; and M is a lower triangular matrix obtained from the 

covariance matrix of mD . 

Let the covariance matrix of mD  at the N points be N N×C , we have 
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 (34) 

Then M  can be obtained by 

 1 T
N N

−
× = =C PDP MM  (35) 

in which D  is a diagonal eigenvalue matrix of the covariance matrix N N×C , and P  is the N N×  

square matrix whose i-th column is the i-th eigenvector of N N×C .      
After samples of the stochastic process of river flow discharge are generated, they are plugged 

into the limit-state functions, and then the samples (trajectories) of the limit-state functions are 
obtained. A trajectory is traced from the initial time to the end of the time period. Once the 
trajectory upcrosses the limit state, then a failure occurs; and the remaining curve will not be 
checked anymore. The process is illustrated in Fig. 17.  

 

Fig. 17. A trajectory of a limit-state function 
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Appendix B: Computation of 1 2( , )v t t++  

 
Madsen has derived the expression for 1 2( , )v t t++  as follows [31] 
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 (36) 

in which  

 ( ) 2 2 2 2
1 1 2 2{exp[( 2 ) / (2 2 )]} / (2 1 )f β ρβ β β ρ p ρ= − + − −W β  (37) 

1 2,β ββ=[ ]  represents the time-invariant reliability index at time 1t  and 2t . 1 2andµµ  , and 

1 2and ,λ λ κ are the mean values, standard deviations, and correlation coefficient of 1( )L t β

 
and 

2( )L t β , respectively.  They are calculated by the following equations [28]:  
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