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Abstract 

In time-dependent reliability analysis, an upcrossing is defined as the event when a limit-state 

function reaches its failure region from its safe region. Upcrossings are commonly assumed to 

be independent. The assumption may not be valid for some applications and may result in 

large errors. In this work, we develop a more accurate method that relaxes the assumption by 

using joint upcrossing rates. The method extends the existing joint upcrossing rate method to 

general limit-state functions with both random variables and stochastic processes. The First 

Order Reliability Method (FORM) is employed to derive the single upcrossing rate and joint 

upcrossing rate. With both rates, the probability density of the first time to failure can be 

solved numerically. Then the probability density leads to an easy evaluation of the time-

dependent probability of failure. The proposed method is applied to the reliability analysis of 

a beam and a mechanism, and the results demonstrate a significant improvement in accuracy. 

Keywords: Time-dependent reliability, stochastic processes, first passage, autocorrelation 

 

1. Introduction 

    Reliability is the probability that a product performs its intended function over a specified 

period of time and under specified service conditions [1]. Depending on whether the 

performance of the product is time-dependent or not, reliability can be classified into two 

types: time-variant (time-dependent) reliability and time-invariant reliability.  

For a time-invariant performance, its reliability and probability of failure remain constant 

over time. The time-invariant probability of failure is defined by 

 { }Pr ( )Xfp D g e= = >  (1)  
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where 1 2( , , )X nX X X=   is a random vector, ( )g ⋅  is a time-invariant performance function or 

limit-state function, D  is a performance variable, e  is a limit state, and Pr{}⋅  stands for a 

probability. Many reliability methods are available for calculating the time-invariant 

reliability, including the First Order Second Moment Method (FOSM), FORM, and Second 

Order Reliability Method (SORM) [2-8].  

On the other hand, limit-state functions may vary over time. For instance, over the service 

life of the Thermal Barrier Coating (TBC) of aircraft engines, the stresses and strains of the 

TBC are time dependent [9]. Many mechanisms also experience time varying random motion 

errors due to random dimensions (tolerances), clearances, and deformations of structural 

components [10-14]. In the systems of wind turbines, hydrokinetic turbines, and aircraft 

turbine engines, the turbine blade loading always varies over time. Likewise, the wave 

loading acting on offshore structures fluctuates randomly with time [15-17]. Almost all 

dynamic systems involve time-dependent parameters [18-20]. For all the above problems, 

reliability is a function of time and typically deteriorates with time.  

Therefore, a general limit-state function is a function of time t. In addition to random 

variables 1 2( , , )X nX X X=  , stochastic processes 1 2( ) ( ( ), ( ), ( ))Y mt Y t Y t Y t=   may also 

appear in the limit-state function. A stochastic process can be considered as a random variable 

that varies over time. Hence a general time-dependent limit-state function is given by 

 ( ) ( , ( ), )X YD t g t t=  (2) 

If we want to know the likelihood of failure at a particular instant of time t, we can still use 

the time-invariant probability of failure because t is fixed at the instant. Using Eq. (1), we 

obtain the instantaneous probability of failure 
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 { }( ) Pr ( , ( ), ) ( )X Yfp t g t t e t= >  (3) 

The aforementioned methods, such as FOSM, FORM, or SORM, are ready to calculate 

( )fp t .  

For time-dependent problems, we are more concerned with the time-dependent probability 

of failure because it provides us with the likelihood of a product performing its intended 

function over its service time, or a system fulfilling its task during its mission time. The time-

dependent probability of failure over a time interval 0[ , ]st t  is defined by 

 { }0 0)( , ) Pr ( , ( , ( ), [ , ])X Ysf sp t t g e t tt t t t= > ∃ ∈  (4) 

where 0t  is the initial time when the product is put into operation, and st  is the endpoint of the 

time interval, such as the service time of the product.  

Let the first time to failure (FTTF) be 1T , which is the time that ( )g ⋅  reaches its limit state  

for the first time. 1T  is also the working time before failure and is obviously a random variable. 

0( , )f sp t t  can also be given by 

 { }
10 1(( , ) Pr)ss Tf stp t t F T t= <=  (5) 

where 
1
( )TF ⋅  is the cumulative distribution function (CDF) of the FTTF. 

Time-dependent reliability methodologies are classified into two categories. The first 

includes the extreme-value methods, which use the time-invariant reliability analysis methods 

(FOSM, FORM, SORM, etc.) if one can obtain the distribution of the extreme value of 

) (( , )( )X Yg eττ − over 0[ , ]st t  [21-23]. The reason is that the failure event 

{ }0( , ( , ( ), [ ]) ,)X Y sg e t tt ttt > ∃ ∈ is equivalent to the event 
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[ ]{ }0)) ( )max ( , ( , [ ,0 ]X Y sg t te
t

t t t− > ∃ ∈ . However, it is difficult to obtain the distribution of 

the extreme value. Therefore, in most cases, the methods in the second category are used. 

The second category includes the first-passage methods because they directly use the first-

passage time or the first time to failure (FTTF) 1T  in Eq. (5). The failure event 

{ }0( , ( , ( ), [ ]) ,)X Y sg e t tt ttt > ∃ ∈  is equivalent to the event that at least a failure occurs over 

0[ , ]st t  or equivalent to the event of 0 1 st T t≤ ≤ . The most commonly used method is the Rice’s 

formula [24], which is based on the concept of upcrossing.  

Define 0( , )sN t t  as the number of upcrossings that ( )g ⋅  reaches the limit state e from the safe 

region ( ) 0g ⋅ <  over the time period 0[ , ]st t . The basic probability theory shows that 0( , )sN t t  

follows a binomial distribution. When the probability of upcrossing is very small, it is equal 

to the mean number of upcrossings per unit time (the upcrossing rate). Because the binomial 

distribution converges to the Poisson distribution when the time period is sufficiently long or 

the dependence between crossings is negligible, the upcrossings are assumed to be statistically 

independent [25]. With this assumption, the upcrossing rate becomes the first-time crossing 

rate or the failure rate. Then the probability of failure can be estimated from the upcrossing 

rate.  

Since the development of the Rice’s formula, many improvements have been made [26-38]. 

For example, an analytical outcrossing rate [29] has been derived for Gaussian stationary 

processes. An analytical outcrossing rate has also been given for general Gaussian stochastic 

processes [30, 31] and has been applied to mechanism analysis [32]. If upcrossing events are 

rare over the considered time period [32], the Poisson assumption-based approaches [26-38] 

have shown good accuracy. 
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When upcrossings are strongly dependent, however, the above approaches may leads to 

large errors. In this case, the memory of failure should be considered to guarantee that the 

obtained first passage failure is indeed the first. Even though the Markov process methods 

have a property of memory, such memory is weak and is only valid for Markov or similar 

processes [39, 40]. Vanmarcke [41] and Preumont [42] have made some empirical 

modifications to the Poisson assumption-based formulas. These modifications are good for 

Gaussian processes.   

A promising way to improve accuracy is to relax the independent assumption for 

upcrossing events. In other words, we may consider the dependence between two or more 

instants of time [43, 44], instead of considering a single upcrossing at one instant. The 

accuracy improvement has been shown in [44] for a Gaussian process in vibration problems.  

Inspired by the work in [44], we develop a time-dependent reliability analysis method with 

joint upcrossing rates, which extends the method in [44] to more general limit-state functions 

that involve time, random variables, and stochastic processes. Because the method combines 

the joint upcrossing rates (JUR) and First Oder Reliability Method (FORM), we call it 

JUR/FORM.  

In section 2, we review the commonly used time-dependent reliability analysis methods 

upon which JUR/FORM is built. We then discuss JUR/FORM in Section 3 followed by two 

case studies in Section 4. Conclusions are made in Section 5.  
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2. Review of time-dependent reliability analysis methods 

In this section, we review the integration of the Poisson assumption based method with the 

First Order Reliability Method (FORM). By this method, 0( , )f sp t t  is calculated by [32, 44] 

 { }
0

00 ( )]( , ) 1 [1 exp ( )s

f

t

f s t
p t t p v t tt d+= − − −∫  (6) 

where 0( )fp t  is the instantaneous probability of failure at the initial time point 0t , and ( )v t+  is 

the upcrossing rate at t. 

0( )fp t  can be calculated by any time-invariant reliability methods, such as FOSM, FORM, 

and SORM. If we know ( )v t+ , then we can calculate 0( , )f sp t t  by integrating ( )v t+  over 0[ , ]st t  

as indicated in Eq. (6). 

For a general limit-state function ( ) ( , ( ), )X YD t g t t= , at a given instant t, the stochastic 

proceses ( )Y t  become random variables. If we use FORM, we first transform random 

variables ( , ( ))X Y t  into standard normal variables ( ) ( , ( ))X YU U Ut t= [2-6, 32].  Then we 

search for the Most Probable Point (MPP) ( ) ( , ( ))X YU U Ut t=   . The MPP is a point at the limit 

sate, and at this point the limit-state function has its highest probability density. After the 

limit-state function is linearized at the MPP, the failure event ( , ( ), ) ( )X Yg t t e t>  is equivalent 

to the event given by [1]. 

  ( ( ), ) ( ) ( ) ( )U U TW t t t t tβ= >a  (7) 

where  
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 ( ) ( )

( [ ( )], ) ( [ ( )], )( )
( ) ( )

( [ ( )], ) ( [ ( )], )

t t

T t t T t tt
t t

T t t T t t

∂ ∂
=

∂ ∂

= ∇ ∇

U U

g U g U
U U

g U g U

 

 

a
 (8) 

( )tβ  is the reliability index, which is the length of ( )U t . ( )T ⋅  is the operator of 

transforming non-Gaussian random variables ( , ( ))X Y t  into Gaussian random variables ( )U t . 

⋅  stands for the magnitude of a vector.  

Then the upcrossing rate ( )v t+  is [45] 

 ( )( ) ( ) ( ( )) ( ) / ( )v t t t t tφ β β+ = Ψ 

 a a  (9) 

where ( )ta  and ( )tβ  are the derivatives of ( )ta  and ( )tβ , respectively, with respect to time t, 

and ( )Ψ ⋅  is a function defined by 

 ( ) ( ) ( )x x x xφΨ = − Φ −  (10) 

in which ( )xφ  and ( )xΦ −  stand for the probability density function (PDF) and cumulative 

density function (CDF) of the standard normal random variable, respectively.  

As mentioned previously, the above method may produce large errors if upcrossings are 

strongly dependent. Next we use the joint upcrossing rate to improve the accuracy of time-

dependent reliability analysis.  

 

3. Time-dependent reliability analysis with joint upcrossing rates and FORM 

In this section, we first provide the equations given in [44] for a Gaussian stochastic 

process. Based on these equations and FORM, we then derive complete equations in the 

subsequent subsections. 
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3.1. Time-dependent reliability analysis with joint upcrossing rates 

We now summarize the methodology in [44] where the joint upcrossing rates are used. 

Based on the methodologies, necessary equations are developed in Secs. 3.2 and 3.3.  

For a general stochastic process ( )Q t , suppose its failure event is defined by { ( ) ( )}Q t e t> . 

{ }0 0)( , ) Pr ( ,( , [) ]f sp t Q e tt tt t t= > ∃ ∈
 
is then given by 

 { } { } { }0 0 00 0 0( , ) Pr ( ) ( Pr ( ) ( Pr ( ( ,) ) ) ) ,[ ]f s sp t t Q t e t Q t e t Q e t tt t t= > + < > ∃ ∈  (11) 

or 

 { } { } ( )
1

0
0 00 00( ) Pr ( ) ( Pr ( ) (, ) ) st

f s t Tp t t Q t e t Q t e t f t dt= > + < ∫  (12) 

where 
1
( )Tf t  is the probability density function (PDF) of the first time to failure (FTTF). The 

first term in the above equation is the probability of failure at the initial time, and the second 

term is the probability of failure over 0[ ], st t  and no failure occurs at 0t . 

The upcrossing rate ( )v t+  is the probability that an upcrossing occurs at time t per unit of 

time. It is equal to the summation of two probabilities. The first probability is the PDF 
1
( )Tf t , 

which is the upcrossing rate occurring for the first time at t. The second probability is the 

probability rate that the upcrossing occurred at time t given that the first-time upcrossing 

occurs at time τ  prior to t. Thus [44]   

 ( )
1 1

0

( ) ( ) ( )
t

tT Tv t f t v t f dt t t+ += + ∫  (13) 

According to the characteristics of conditional probability for two events A and B, we have 

(A B) (A,B) (B)P P P= . Thus, the conditional probability ( )v t t+

 
is equal to ( , ) ( )v t v tt++ + , 

and Eq. (13) is rewritten as 
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1 1

0

( ) ( ) ( , ) ( ) / ( )
t

T Tt
v t f t v t f v dt t t t+ ++ += + ∫  (14) 

where ( , )v t t++  is the second order upcrossing rate or the joint outcrossing rate at t and τ . It 

indicates the joint probability that there are outcrossings at both t and τ .  

After solving for 
1
( )Tf τ  numerically using Eq. (14), we can obtain 0( , )f sp t t  with Eq. (12). 

The above methodology is applicable for a single stochastic process. We now extend it to a 

general limit-state function ( ) ( , ( ), )X YD t g t t= . As ( )D t can be converted into a Gaussian 

process at the MPP, the extension is possible. Since both of the single and joint upcrossing 

rates are needed, we first derive equations for the two rates by using FORM and Rice’s 

formula. We then discuss how to obtain the time-dependent probability of failure based on 

these rates.  

 

3.2.  Single upcrossing rate ( )v t+

  

Recall that after the MPP is found, the general limit-state function ( , ( ), )X Yg t t  becomes 

( ( ), )UW t t , and the failure event is ( ( ), ) ( ) ( ) ( )U U TW t t t t tβ= >a . According to the Rice’s 

formula [24, 46], the single upcrossing rate ( )v t+  is given by  

 ( ) ( ) ( )( ) ( ) ( ) / ( )v t t t t tω φ β β ω+ = Ψ   (15) 

where ( )tω  is the standard deviation of ( )W t , which is the time derivative process of ( )W t .  

2 ( )tω  is given in terms of the correlation function 1 2( , )t tρ  of ( )W t  as follows: 

 
1 2

2 2
1 2 1 2( ) ( , ) / ( )

t t t
t t t t tω ρ

= =
= ∂ ∂ ∂  (16) 

We use the finite difference method to estimate ( )tβ . This means that we need to perform 

the MPP search twice. Ref. [45] also uses the finite difference method but introduces 
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additional random variables for the second MPP search. As will been seen, the method 

presented here does not introduce any extra random variables.  

As mentioned above, ( ) ( ) ( )U TW t t t= a , and from Eq. (8), we have ( ) 1t =a . ( )W t  is 

therefore a standard normal stochastic process, and its coefficient of correlation is given by 

 1 2 1 1 2 2( , ) ( ) ( , ) ( )C Tt t t t t tρ = a a  (17) 

where 1 2( , )C t t  is the covariance matrix of 1( )U t  and 2( )U t .  

Since ( ) ( , ( ))X YU U Ut t=  is a vector of standard normal random variables and stochastic 

processes, 1 2( , )C t t  is given by: 

 1 2
1 2

0
( , )

0 ( , )
I

C
C

n n
Yt t

t t
× 

=  
 

 (18) 

where In n×  is an n n×  identity matrix, which is the covariance matrix of the normalized random 

variables XU  from X . The covariance matrix of the normalized stochastic processes ( )YU t  

from ( )Y t  is given in terms of its correlation coefficients as 

 

1 1
1 2

1 2

1 2

( , ) 0 0 0 0
0 0 0 0

( , )

0 0 ( , ) 0 0

C

m m

Y Y

Y

Y Y

C t t

t t

C t t

ρ

ρ

   
   
   = =
   
   

  

 

   

       

 

 (19) 

where ( , )C ⋅ ⋅  standard for the covariance, 1 2( , )iYC t t  is the covariance of the normalized 

stochastic process ( )
iYU t  at time instants 1t  and 2t . iYρ is the corresponding correlation function 

of the normalized stochastic process ( )
iYU t  at these two time instants and is given by 

 1 2( , )i iY Y t tρ ρ=  (20) 

Substituting Eq. (17) into Eq. (16) yields 
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1 2

2 2
1 2 1 2

2

12 1

( ) ( , ) / ( )

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , ) ( )

C C

C C

t t t

T T

T T

t t t t t

t t t t t t t t

t t t t t t t t

ω ρ
= =

= ∂ ∂ ∂

= +

+ +



  

 



a a a a

a a a a

 (21) 

Since we perform the MPP search at two instants and Eq. (21) also needs two instants ( , )t t , 

we now derive equations for two general instants 1t  and 2t . For time derivatives, such as ( )tβ , 

we let 1 1t t= , 2 1t t t= + ∆ , where t∆  is a small step size.  

Differentiating Eq. (18), we obtain 

 1 1 2 1 2 1
1 1 2

0
( , ) ( , ) /

0 ( , )
0

C C
CYt t t t t

t t
 

= ∂ ∂ =  
 





 (22) 

 2 1 2 1 2 2
2 1 2

0
( , ) ( , ) /

0 ( , )
0

C C
CYt t t t t

t t
 

= ∂ ∂ =  
 





 (23) 

and 

 12 1 2
12 1 2

0
( , )

0 ( , )
0

C
CYt t

t t
 

=  
 





 (24) 

1 1 2( , )CY t t , 2 1 2( , )CY t t , and 12 1 2( , )CY t t  are given by 

 1 1 2 1 2 1( , ) ( , ) / , 1, 2, ,i iY YC t t t t t i mρ= ∂ ∂ =

  (25) 

 2 1 2 1 2 2( , ) ( , ) / , 1, 2, ,i iY YC t t t t t i mρ= ∂ ∂ =

  (26) 

and 

 2
12 1 2 1 2 1 2( , ) ( , ) / ( ), 1, 2, ,i iY YC t t t t t t i mρ= ∂ ∂ ∂ =

  (27) 

Specially, for a pair of the same time instant ( , )t t , we have 

 ( , ) 1iY t tρ =  (28) 

 ( , )C In mt t ×=  (29) 
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 ( )1( , ) / ( ), ( ) 0iY t t t C W t W tρ∂ ∂ = =  (30) 

 1( , )C On mt t ×=  (31) 

 ( )2( , ) / ( ), ( ) 0iY t t t C W t W tρ∂ ∂ = =  (32) 

and 

 2 ( , )C On mt t ×=  (33) 

Therefore, Eq. (21) is rewritten as 

 2
12( ) ( ) ( ) ( ) ( , ) ( )CT Tt t t t t t tω = + 

 a a a a  (34) 

where 12 ( , )C t t  is computed by substituting 1 2( , )t t with ( , )t t in Eq. (24), ( )ta  and ( )tβ are 

calculated by 

 ( ) ( ( ) ( )) /t t t t t= + ∆ − ∆a a a  (35) 

and 

 ( ) ( ( ) ( )) /t t t t tβ β β= + ∆ − ∆  (36) 

We have obtained all the equations for the single upcrossing rate ( )v t+  in Eq. (15).   

 

3.3. Joint upcrossing rate 1 2( , )v t t++  

Now we derive the joint upcrossing rate 1 2( , )v t t++  between two arbitrary time instants 1t  

and 2t .  The joint upcrossing rate 1 2( , )v t t++ , which indicates the joint probability that 

outcrossing events occur at both 1t  and 2t , is defined by the Rice’s formula as follows [24, 46] :  

 ( )
1 2

1 2 1 1 2 2 1 2( , ) , ( )( )zZWWv t t f z dz dz
β β

β β
∞ ∞++ = − −∫ ∫ 

 

 b  (37) 
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where ( , )WW WW f


 is the joint normal density function of 1 2( ( ), ( ))W W t W t=   , and 

1 2( ( ), ( ))W W t W t= , 1 2( , )β β=b , 1 1( )tβ β= , and 2 2( )tβ β= . The covariance matrix of W  and 

W is given by [44]   

 

2
1 12 1

2
21 2 2

2

1

( ) 0
( ) 0

0 1
0 1

WWWW

WWWW

c c
c

c c

t
t

ω ρ ρ
ρ ω ρ

ρ ρ
ρ ρ

 
    = =    
 
 

  



 (38) 

in which  

 1 2( , )t tρ ρ=  (39) 

 1 1 2 1( , ) /t t tρ ρ= ∂ ∂  (40) 

 2 1 2 2( , ) /t t tρ ρ= ∂ ∂  (41) 

 2
12 1 2 1 2( , ) / ( )t t t tρ ρ= ∂ ∂ ∂  (42) 

and 

 2
21 1 2 2 1( , ) / ( )t t t tρ ρ= ∂ ∂ ∂  (43) 

Substituting Eq. (17) into Eqs. (40)-(43) yields 

 1 1 1 2 2 1 1 1 2 2( ) ( , ) ( ) ( ) ( , ) ( )C CT Tt t t t t t t tρ = + 

a a a a  (44) 

 2 1 1 2 2 1 2 1 2 2( ) ( , ) ( ) ( ) ( , ) ( )C CT Tt t t t t t t tρ = + 

a a a a  (45) 

                                     12 1 2 1 2 2 1 1 2 2

1 12 1 2 2 1 1 1 2 2

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , ) ( )

C C

C C

T T

T T

t t t t t t t t

t t t t t t t t

ρ = +

+ +



  

 



a a a a

a a a a
  (46) 

and 

 21 1 1 2 2 1 1 1 2 2

1 21 1 2 2 1 2 1 2 2

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , ) ( )

C C

C C

T T

T T

t t t t t t t t

t t t t t t t t

ρ = +

+ +



  

 



a a a a

a a a a
 (47) 
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in which 

 21 1 2
21 1 2

0
( , )

0 ( , )
0

C
CYt t

t t
 

=  
 





 (48) 

and 

 2
21 1 2 1 2 1 2( , ) ( , ) / ( ), 1, 2, ,i iY YC t t t t t t i mρ= ∂ ∂ ∂ =

  (49) 

1 2( , )C t t , 1 1 2( , )C t t , 2 1 2( , )C t t , and 12 1 2( , )C t t  in Eqs. (44)-(47) are computed using Eqs. (18), 

and (22) through (24). 

With the above equations derived, we can now use the equations in [44] directly to 

calculate 1 2( , )v t t++ . The equations are summarized blow. 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 1 1 1 2 2 2

1 2 1 1 1 2 2 2

2 2
1 2 0

( , ) ( ) / ( ) /

( ) / ( ) /

| ;

W

W

W WW

v t t f

f

f K f K dK
κ

λ λ β µ λ β µ λ

λ λ κ µ β λ µ β λ

λ λ κ

++ = Ψ − Ψ −

+ Φ − Φ −

+ −∫ 

 

 



b

b

b b b

 (50) 

in which 

( ) 2 2 2 2
1 1 2 2(exp(( 2 ) / (2 2 ))) / (2 1 )Wf β ρβ β β ρ p ρ= − + − −b             (51) 

1 2andµ µ , 1 2and ,λ λ κ  are the mean values, standard deviations, and correlation coefficient of 

1( )W t b
 
and 2( )W t b, respectively.  They are calculated by substituting the covariance matrix 

in Eq. (38) into the following equations 

 1 1 22 1 1

2 1 2 2

( )
/ (1 )

( )
µ β ρβ ρ

ρ
µ β ρβ ρ

−  − 
= = = −   −   

WWWWμ c c


b  (52) 

 
2

1 1 1 2
2

1 2 2
WW  WWWWWWWW  c c c c c

λ κλ λ
κλ λ λ

−  
= = − =  

 
∑



   

 (53) 
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After the derivation of ( )v t+  and 1 2( , )v t t++ , 0( , )f sp t t  is computed with Eqs. (12), (14), (15), 

and (50).  

 

3.4.  Numerical implementation 

There are many equations involved in JUR/FORM. In this section, we summarize its 

numerical implementation. From Eq. (11) and (12), we know that to obtain 0( , )f sp t t , we need 

to integrate the PDF 
1
( )Tf t  over 0[ , ]st t  numerically. At each of the integration point between 0t  

and st , the integral equation in Eq. (14) should be solved. To maintain good efficiency, we 

propose the following numerical procedure. 

We start to evaluate the PDF at the last instant st . To do so, we discretize the time interval 

0[ , ]st t  into 1p +  instants it  ( 0,1, 2, ,i p=  ), at each of which the integral equation in Eq. (14) 

for 
1
( )sTf t  will be solved. We will then obtain the PDFs at all these instants. Thus the total 

number of the MPP will be 2 p . This procedure is summarized below, and the associated 

flowchart is given in Fig. 1.  
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Figure1 Flowchart of the JUR/FORM 

• Step 1: Initialize the random variables and stochastic processes, including transforming 

non-Gaussian variables into Gaussian ones, discretizing the time interval 0[ , ]st t  into 

1p +  time instants 0 1 1, , , , , pi st t t t t+ =  ,
 
and setting a time step t∆  for the MPP search 

at ( 1, 2, , 1)it t i p+ ∆ = + .  

• Step 2: Perform the MPP search at every discretized point it , as well as at it t+ ∆ ; 

calculate ( )ita , ( )itβ , ( )ita , ( )itβ , covariance matrix ( , )C i jt t  ( , 1, 2, , 1i j p= + ), and c 

by using Eqs. (18), (35), (36) and (38)-(49).  

Step 1: Initialize parameters 

Reliability analysis at it and it t+ ∆  

 

Step 2: Perform the MPP search 

Solve for 

i i i i(t ), (t ), (t ), (t ),b ba a i j(t , t )C and c  

Solve for 
upcrossing 

rate ( )iv t+  
Solve for joint upcrossing rate ( , )i jv t t++  

Solve for PDF 
1
( )T if t  

Step4: Calculate 0( , )f sp t t  

Solve for i jκλ λ , 2
iλ , 2

jλ , iµ  and jµ  

Step 3: Compute PDF 
1
( )T if t  

Initial reliability 0( )R t  
0( , )f sp t t
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• Step 3: Solve for the single upcrossing rate ( )iv t+  using Eq. (15), joint upcrossing rate 

( , )i jv t t++  ( , 1, 2, , 1i j p= + ) using Eq. (50), and compute the PDF 
1
( )T if t  at each time 

instant using Eq. (14).  

• Step 4: Calculate 0( , )f sp t t . 

 

4. Numerical Examples 

In this section, two examples are used to demonstrate the developed methodology. The first 

one is the reliability analysis of a corroded beam under time-variant random loading, and the 

second one is the reliability analysis of a two-slider crank mechanism. The two examples are 

selected because they represent two kinds of important applications. Specifically, the first 

example involves both of a stochastic process and random variables in the input of the limit-

state function. The stochastic process is the time-variant random load acting on the beam. In 

the second example, there are no stochastic processes in the input of the limit-state function. 

But the limit-state function is still time-dependent because it is an explicit function of time.  

To show the accuracy improvement of JUR/FORM, we compare its results with those of 

the traditional Poisson assumption based single upcrossing rate method, which has been 

reviewed in Sec II. Because the exact solutions are not available, we use Monte Carlo 

Simulation (MCS) as a benchmark.  

In order to investigate the effects of parameter settings on the accuracy of JUR/FORM, 

numerical studies were also performed for Example 1. The effects studied include the effects 

of number of discretization points for the time interval 0[ , ]st t , the time step size t∆ , the level of 



18 

 

probability of failure, and the dependency of the limit-state function between two successive 

time instants.  

Next we briefly review the MCS that we used. 

4.1.  Monte Carlo Simulation 

    When there are stochastic processes involved in the limit-state function, to generate the 

samples of the stochastic process iY , we treat the stochastic process as correlated random 

variables 1 2,( ( ) ( ), , ( ))Y T
i i i i NY t Y t Y t=   after discretizing the time interval 0[ , ]st t

 
into N 

instants. For a Gaussian stochastic process, the correlated random variables Yi are generated 

after transforming the correlated random variables into uncorrelated ones as follows [47] 

 Y L
ii y= +m x (54) 

where 1 2,( , , )T
Nξ ξ ξ= x  is the vector of N independent standard normal random variables; 

1 2,( ( ) ( ), , ( ))
i i i i

T
Y Y Y Y Nt t tµ µ µ= m  are the vector of mean values of 

1 2,( ( ) ( ), , ( ))Y T
i i i i NY t Y t Y t=  ; and L is a lower triangular matrix obtained from the covariance 

matrix of Yi. 

    Let matrix AN N×  be the covariance matrix of Yi. L can be obtained by 

 1A PDP LLT
N N

−
× = =  (55) 

in which D is a diagonal eigenvalue matrix of the covariance matrix A, and P is the N N×  

square matrix whose i-th column is the i-th eigenvector of A.  

4.2. Example 1: Corroded beam under time-variant random loading 

4.2.1 Problem statement 
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The beam problem in [45] is modified as our first example. As shown in Fig. 2, the cross 

section A-A of the beam is rectangular with its initial width a0 and height b0. Due to corrosion, 

the width and height of the beam decrease at a rate of r. A random load F acts at the midpoint 

of the beam. The beam is also subjected to a constant load due to the weight of the steel beam. 

 

Figure 2 Corroded beam under time-variant random loading  

     A failure occurs as the stress of the beam exceeds the ultimate stress of the material, and 

the limit-state function is given by   

 ( ) ( ) ( )2
0 0 0 0( , , ) ( ) / 4 / 8 2 2 / 4X Y st ug t F t L a b L a rt b rtr s= + − − −  (56) 

where uσ  is the ultimate strength, stρ  is the density, and L is the length of the beam.  

The variables and parameters in Eq. (56) are provided in Table 1.  

Table 1 Variables and parameters of Example 1 

Variable Mean Standard deviation Distribution Autocorrelation 
0a  0.2 m 0.01 m Lognormal N/A 
0b  0.04 m 4×10-3 m Lognormal N/A 
uσ  2.4×108 Pa 2.4×107 Pa  Lognormal N/A 

( )F t  3500 N 700 N Gaussian In Eq. (57) 
L 5 m 0 Deterministic N/A 

stρ  78.5 kN/m3
 

0 Deterministic N/A 
r 5×10-5 m/year 0 Deterministic N/A 

 

The auto-correlation function of the stochastic process ( )F t  is given by 

A 

L/2 
F A-A 

a0 

 

b0 

 

rt 

 

rt 

 

L 

A 
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 2
1 2 2 1( , ) exp( (( ) / ) )F t t t tρ ζ= − −  (57) 

where 1 yearζ =  is the correlation length. The auto-correlation becomes weaker with a longer 

time interval 2 1t t− . 

4.2.2 Results   

  Following the numerical procedure of JUR/FORM in Fig.1, we computed the time-

dependent probabilities of failure over different time intervals up to [0, 30] years. The time 

intervals were discretized into 80 small intervals, and the time size for the second MPP search 

was taken as 0.001 years. For MCS, the evaluated time intervals were discretized into 600 

time instants with a sample size of 2×106 at each time instant to generate the stochastic 

loading ( )F t . The results of the three methods are plotted in Fig. 3 and are given in Table 2. 

The relative errors, ε , with respect to the MCS solutions, and the confidence intervals (CI) of 

the MCS solutions, are also given in Table 2. 
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Figure 3 Probability of failure of the beam over different time intervals 

 

Table 2 Time-dependent probabilities of failure 

Time 
interval 

Traditional Method JUR/FORM MCS 
fp  ε  (%) fp  ε  (%) fp  95% CI 

[0, 5] 0.309×10-4 6.55 0.292×10-4 0.69 0.29×10-4 [0.215×10-4, 0.365×10-4] 
[0, 10] 0.864×10-4 25.22 0.722×10-4 4.64 0.69×10-4 [0.575×10-4, 0.805×10-4] 
[0, 15] 1.930×10-4 31.29 1.435×10-4 2.38 1.47×10-4 [1.302×10-4, 1.638×10-4] 
[0, 20] 3.924×10-4 44.80 2.633×10-4 2.84 2.71×10-4 [2.482×10-4, 2.938×10-4] 
[0, 25] 7.553×10-4 50.76 4.625×10-4 7.68 5.01×10-4 [4.700×10-4, 5.320×10-4] 
[0, 30] 14.027×10-4 62.73 8.247×10-4 4.33 8.62×10-4 [8.213×10-4, 9.027×10-4] 
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The results indicate that the proposed JUR/FORM method is much more accurate than the 

traditional method. The traditional method leads to unacceptable errors while JUR/FORM 

shows excellent agreement with the MCS solution 

In Table 3, we also give the numbers of function calls, funcN ,  as a measure of efficiency. 

The actual computational cost (times) is also given. The computational times were based on a 

Dell computer with Intel (R) Core (TM) i5-2400 CPU and 8GB system memory that we used. 

JUR/FORM produced much higher accuracy with a cost of increased computational effort, 

but the increased computational cost is moderate.  

 

Table 3 Number of function calls and computational times 

Time 
interval 

Traditional Method JUR/FORM MCS 
Time (s) funcN  Cost (s) funcN  Time (s) funcN  

[0, 5] 1.07 1250 6.19 5560 127.66 2×108 
[0, 10] 1.04 1170 6.16 5280 1.29×103 4×108 
[0, 15] 1.02 1155 6.27 5175 2.08×103 6×108 
[0, 20] 1.03 1165 6.26 5195 2.70×103 8×108 
[0, 25] 0.99 1135 6.23 5125 4.19×103 10×108 
[0, 30] 2.61 2965 6.17 5005 4.51×103 12×108 

 

 

4.2.3 Numerical studies   

(a) Effect of discretization and time step size 

As shown in the numerical procedure, the time interval 0[ , ]st t  is discretized into 1p +  time 

instants  it  ( 0,1, 2, ,i p=  ) or p  small intervals. The number of discretization points may 

affect the accuracy of the analysis result. If the number is too small, the error will be large. On 

the contrary, if the number is too large, the error will be small but the efficiency will be low. 
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To study the effect of the number of discretization points, we discretized the time interval [0, 

30] years into 20, 30, 40, 50, 60, 70 and 80 small intervals.   

Table 4 shows the results from JUR/FORM with different numbers of discretization points. 

When the time interval is divided into 20 small intervals, as expected, the error is the largest; 

however, the result is still more accurate than the traditional method. With the higher number 

of discretization points, the accuracy of JUR/FORM is higher. 

 

Table 4 Time-dependent probability of failure with different discretization points 

 MCS Traditional 
Method 

JUR/FORM with p small intervals 
20 30 40 50 60 70 80 

fp
 
(10-4) 8.6 14.027 7.83 7.98 8.09 8.13 8.21 8.24 8.25 

ε (%) N/A 62.73 9.16 7.42 6.15 5.68 4.76 4.41 4.33 
 

In addition to the number of discretization, there is another parameter that may affect the 

performance of JUR/FORM. This parameter is the time-step size t∆ , which is used for 

numerically evaluating the derivatives ( )ita  and ( )itβ  in Eqs. (35) and (36), respectively.  We 

used 0.0005, 0.001, 0.005t∆ =  and 0.01
 
to study its effect. Table 5 provides the results, which 

show that the time-step size does affect the accuracy, but the effect is not significant. The 

general discussions regarding the effect of a step size for numerical derivatives can be also 

found in [48-50]. 

Table 5 Time-dependent probability of failure with different t∆  

Method MCS Traditional 
Method 

JUR/FORM with different t∆  
5×10-4 0.001 0.005 0.01 

fp (10-4) 8.62 14.03 8.41 8.25 8.0 7.98 
ε  (%) N/A 62.73 2.47 4.33 7.16 7.40 
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(b) Effect of larger probability of failure 

 To investigate the accuracy of JUR/FORM when the probability of failure becomes larger, 

we compared the results of MCS, JUR/FORM and traditional method for six cases at different 

probability levels. Table 6 show that the larger is the probability of failure, the worse is the 

traditional method, while JUR/FORM is always much more accurate than the traditional 

method.   

 

Table 6 Time-dependent probability of failure UR/FORM at different probability levels  

Traditional Method JUR/FORM MCS 
fp  ε  (%) fp  ε  (%) fp  95% CI 

14×10-4 71.15 8.25×10-4 0.86 8.18×10-4 [7.62×10-4, 8.74×10-4] 
19×10-4 72.73 10×10-4 9.09 11×10-4 [10.4×10-4, 11.6×10-4] 
95×10-4 93.88 46×10-4 6.12 49×10-4 [47.6×10-4, 50.4×10-4] 
176×10-4 97.75 83×10-4 6.74 89×10-4 [87.2×10-4, 90.8×10-4] 
1083×10-4 127.52 444×10-4 6.72 476×10-4 [472×10-4, 480×10-4] 
3101×10-4 137.81 1246×10-4 4.44 1304×10-4 [1297×10-4, 1311×10-4] 

 

(c) Effect of the auto-covariance of the limit-state function 

JUR/FORM is developed to better account for dependent failures over a time period. To 

demonstrate this, we analyzed the accuracy of JUR/FORM for five cases with different levels 

of dependency. Fig. 4 shows for the five cases the coefficients of auto-correlation ρ, ranging 

from 0.108 to 0.961, between two successive time instants [ it , 1it + ], 1, 2, , 99i =   over [0, 30] 

years. Note that the coefficient of auto-correlation of the limit-state function is almost 

constant given the auto-correlation function of the stochastic process for the external force in 

Eq. (57).    
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Figure 4 Coefficient of correlation between two successive time instants  

Table 7 shows that the error of the traditional method decreases when the dependency 

becomes weaker while the accuracy of JUR/FORM method is always better than the 

traditional effort.  

 

Table 7 Time-dependent probability of failure with different dependencies  

ρ 

Traditional 
Method 

JUR/FORM MCS 

fp  (10-4) ε  (%) fp  (10-4) ε  (%) fp (10-4) 95% CI (10-4) 

0.961 4.756 24.5 5.83 7.46 6.30 [5.81, 6.79] 

0.914 6.952 23.18 8.52 5.86 9.05 [8.46, 9.64] 
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0.698 13.54 20.07 16.60 2.01 16.94 [16.13, 17.75] 

0.368 22.32 17.27 27.36 1.41 26.98 [25.96, 28.00] 

0.108 33.29  12.12 38.65 2.03 37.88 [36.68, 39.08] 
 

 

4.3. Example 2: Two-slider crank mechanism 

A two-slider crank mechanism is shown in Fig. 5. This type of mechanism is widely used 

in engines. The crank is rotating at an angular velocity of ω. The motion error is defined as 

the difference between the desired displacement difference and the actual displacement 

difference between sliders A and B. The error should not exceed 0.94 mm over one motion 

cycle.  

 

Figure 5. Two-slider crank mechanism 

 

As  Bs  

R1 

R2 

R3 

R4 

θ
 

0δ  
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1θ  
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The limit-state function is given by 

 ( , , )X Y desired actualg t s s= ∆ − ∆  (58) 

in which 

 
2 2 2

1 0 2 1 0

2 2 2
3 1 0 0 4 3 1 0 0

cos( ) sin ( )

cos( ) sin ( )

actuals R R R

R R R

θ θ θ θ

θ θ θ δ θ θ θ δ

∆ = − + − −

− + − − − − + − −
 (59) 

 
2 2 2

0 0

2 2 2
1 0 0 1 0 0

108cos( ) 211 108 sin ( )

100cos( ) 213 100 sin ( )

desireds θ θ θ θ

θ θ θ d θ θ θ d

∆ = − + − −

− + − − − − + − −
 (60) 

    The variables and parameters in the limit-state function are given in Table 8. 

 

Table 8 Variables and parameters in Example 2 

Variable Mean Standard deviation Distribution 
R1 108 mm 0.05 mm Normal 
R2 211 mm 0.2 mm  Normal 
R3 100 mm 0.05 mm Normal 
R4 213 mm 0.2 mm Normal 

0θ  45° 0 Deterministic 
1θ  60° 0 Deterministic 
0δ  10° 0 Deterministic 
ω 

π  rad/s 0 Deterministic 

    

This mechanism problem is different from the beam problem in the follow two aspects. 

First, this problem does not involve any input stochastic processes, but the limit-state function 

is still a stochastic process because it is a function of time. Second, the dependence of the 

limit-state function at any two time instants is strong. The auto-dependence does not decay 

with a longer time period. On the contrary, in the first problem, the auto-dependency between 



28 

 

the performance values at 1t  and 2t  will be weaker and weaker when 2 1t t−  becomes larger and 

larger as indicated in Eq. (57).  

     The angular velocity of the crank is ω π=  rad/s, and the time period of one motion cycle is 

then [0, 2] seconds. Following the numerical procedure of JUR/FORM, we computed the 

probabilities of failure over different time intervals. Each of the evaluated time intervals were 

discretized into 60 smaller intervals. The step size for the second MPP search was 8×10-5 

seconds. The traditional method and MCS with a sample size of 106 were also applied. The 

results from the three methods are plotted in Fig. 6 and are given in Table 9.   
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Figure 6 Time-dependent probabilities of failure 
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Table 9 Time-dependent probabilities of failure 

Time 
interval 

Traditional Method JUR/FORM MCS 

fp
 
(10-3) ε  (%) fp

 
(10-3) ε  (%) fp

 
(10-3) 95% CI (10-3) 

[0, 0.4] 1.76 22.03 1.51 4.27 1.45 [1.37, 1.52] 
[0, 0.8] 3.06 53.84 1.99 0.08 1.99 [1.90, 2.08] 
[0, 1.2] 4.01 85.72 2.16 0.17 2.16 [2.073, 2.25] 
[0, 1.6] 4.64 111.46 2.32 5.40 2.20 [2.10, 2.29] 
[0, 2.0] 6.16 168.36 2.44 6.27 2.30 [2.20, 2.39] 

 

Table 10 Number of function calls and MPP searches 

Time 
interval 

Traditional Method JUR/FORM MCS 
MPP 

searches 
Function 

Calls 
MPP 

searches 
Function 

Calls 
MPP 

searches 
Function 

Calls 
[0, 0.4] 216 1927 120 2452 N/A 6×107 

[0, 0.8] 96 720 120 2455 N/A 1.2×108 
[0, 1.2] 96 4320 120 2437 N/A 1.8×108 
[0, 1.6] 156 3140 120 2451 N/A 2.4×108 
[0, 2.0] 816 16531 120 2437 N/A 3.0×108 

The results indicate that JUR/FORM is significantly more accurate than the traditional 

method. The number of MPP searches and function calls are provided in Table 10. The 

increased computational cost by JUR/FORM is reasonable given its significantly improved 

accuracy. From Table 10, we also see that JUR/FORM does not always require more function 

calls than the traditional method as in the cases for the time periods [0, 1.2], [0, 1.6] and [0, 

2.0]. The reason is that the traditional method needs to numerically solve the integral in Eq. 

(6). For a shorter time period, the numerical integration may need more function calls than 

JUR/FORM where the number of discretization points may not need to be high for short time 

periods. 

 



30 

 

5. Conclusion 

    Time-dependent reliability analysis is needed in many engineering applications. When 

multiple dependent upcrossings occur over a time interval, the single upcrossing rate method 

with Poisson assumption may produce large errors in estimating the time-dependent 

probability of failure.    

    This work demonstrates that the joint upcrossing rates proposed in [44] can be extended to 

a general time-dependent limit-state function with much higher accuracy. This work 

integrates the FORM with the joint upcrossing rates so that high computational efficiency can 

be maintained. Analytical expressions of the single and joint upcrossing rates are also derived 

based on FORM.  

The proposed method has shown good accuracy when the probability of failure is small and 

the dependency between failures is strong. When the probability of failure becomes larger or 

the dependency becomes weaker, the proposed method remains more accurate than the 

traditional upcrossing rate method. Since the proposed method requires a numerical method in 

solving the integral equation and derivatives, its accuracy may be affected by the number of 

discretization points and the time size between two consecutive MPP searches. 

Possible future work includes improving the efficiency and robustness of the method and 

applying it to time-dependent reliability-based design optimization.  
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