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Abstract 

Variations, such as those in product operation environment and material properties, result in 

random fatigue life. Variations in material fatigue properties depend on stochastic stress 

responses due to their nonlinear relationships with other random variables such as stochastic 

loading and dimensions. In this work, an efficient fatigue reliability analysis method is 

developed to accommodate those uncertainties for structures under cyclic loads with known 

loading trend. To reduce the computational cost, the method incorporates the fatigue life analysis 

model and the saddlepoint approximation method with the fast integration method. The new 

method is applied to the fatigue reliability analysis of a cantilever beam and a door cam. The 

results show high accuracy and efficiency of the proposed method benchmarked with Monte 

Carlo Simulations.   
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1.  Introduction 

Fatigue life assessment is a critical issue during the design process for many products. Due to 

inherent uncertainties, fatigue life always varies around the designed fatigue life. It is desirable to 

assess the fatigue life probabilistically rather than deterministically. The most commonly used 

probabilistic assessment method is the fatigue reliability analysis, which provides the probability 

that the actual fatigue life is greater than a desired life.   

Fatigue reliability analysis methods are classified into the following three categories: 
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• Strain-life based method [1, 2] 

The method predicts fatigue life according to the strain response, which is usually related 

to the initial crack. 

• Stress-life based method [3-7] 

Fatigue life is evaluated based on the material S-N curve. The initiation and propagation 

of the crack are not differentiated from each other in the stress-life model. Only the total 

fatigue life is considered. 

• Fracture mechanics method [3-7] 

Fracture mechanics methods are used to estimate if a crack grows to a critical size. This 

method usually combines the strain-life method to estimate the crack initiation. 

This work employs the stress-life based fatigue reliability analysis method, and the effects of 

uncertainties in the design variables and the S-N curve on the fatigue life are investigated. The 

relevant research is reviewed below. 

In addition to aforementioned methods [8-10], other methods have also been proposed. For 

instance, Guo and Chen [3-7] developed a fatigue reliability analysis method for steel bridges 

based on the long-term stress monitoring. Liu [11] proposed an efficient time-dependent fatigue 

reliability analysis method by using the moment matching method and the First Order Reliability 

Method (FORM). A unimodal distribution characterized by four parameters was introduced by 

Low [12] in predicting the uncertainty in fatigue damage. To account for the correlation effect of 

fatigue reliability, a fast reliability assessment approach was proposed based on the detail fatigue 

rating method [13]. The Kriging and radial basis functions were applied to the fatigue reliability 

analysis of a wire bond structure by Rajaguru, et. al [14]. Baumert and Pierron [15] studied the 

implication of fatigue properties of batteries on the reliability of flexible electronics. To 
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overcome the expensive computational effort of Monte Carlo simulation (MCS), Norouzi and 

Nikolaidis [16] presented an efficient fatigue reliability analysis method for structures subjected 

to a dynamic load.   

Many probabilistic models have also been developed to model the statistical characteristics 

of the S-N curve [17]. Studies of the S-N curve indicate that material fatigue properties are 

uncertain with stress-dependent characteristics [18-27]. Since stress responses are usually also 

uncertain, material fatigue properties are uncertain factors whose stochastic nature is governed 

by other uncertainties. The stress-dependent fatigue properties make the fatigue reliability 

analysis different from and more difficult than regular reliability analysis problems. 

The stress-dependent uncertainty in fatigue properties has not been sufficiently considered in 

the majority of fatigue reliability analysis methods. A few studies, such as the two methods 

developed by Liu [28-35], have concentrated on the reliability analysis with the stress-dependent 

properties, and their accuracy and efficiency can be further improved. For instance, the 

assumption of known stress distribution in the methods can be released by relating the fatigue 

reliability with basic random design variables.  

The objective of this work is to improve the accuracy and efficiency of fatigue reliability 

analysis for special problems where structures are under cyclic loads with known loading trend. 

This kind of problem is common in many applications, especially for mechanisms with cyclic 

motions [12], for example, the transmission shaft under periodic loadings [36, 37], cams with 

known motion trajectory, and linkage mechanisms. The new method can account for 

uncertainties in both design variables and stress-dependent uncertainties in material fatigue 

properties. With the saddlepoint approximation (SPA) [38, 39] imbedded in the fast integration 



4 
 

[40], the method can produce a quick and accurate solution. The information required (inputs) 

and the outcome of the method are summarized below. 

Input: 

• Distributions of random input variables (dimensions, loading, etc.) for stress responses 

• Distributions of random fatigue material properties 

• Cyclic loading trend 

Outputs: 

• The distribution of fatigue life 

• Fatigue reliability   

A review of the fatigue life analysis under known loading trend is given in Sec. 2, followed 

by uncertainty analysis for fatigue life in Sec. 3. Sec. 4 discusses the proposed method, whose 

numerical procedure is summarized in Sec. 5. Two numerical examples are presented in Sec. 6, 

and conclusions are made in Sec. 7. 

 

2. Fatigue life analysis with known loading trend 

This work is for structures under cyclic load with known loading trend. As shown in Fig. 1, 

the known loading trend means that the same trend of the load repeats cycle by cycle and that 

each cycle of the load is identical. As stress responses in one load cycle is predictable with a 

mathematical model or computer aided engineering (CAE) simulation model, the trend of the 

stress responses is also known. As mentioned previously, this assumption is applicable for many 

problems.  
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Fig. 1. Illustration of cyclic load with known loading trend 

Many fatigue life prediction methods [41] and fatigue damage accumulation models [42-46] 

are available. We herein briefly review the fatigue life analysis model for structures with known 

loading trend.  

Let 1 2[ , , , ]nx x xx =   be a vector of input variables to the nonlinear function or simulation 

model for stress responses as follows: 

 ( )o gs x=   (1) 

where ( )g x  is the stress responses function, and 1 2[ , , , ]o o o o
ms s ss =   are blocks of stress 

responses in one cycle of the cyclic load. It should be noted that the left hand side of Eq. (1) is a 

vector because one cycle of the cyclic load may contain multiple loading peaks as can be seen in 

the numerical examples. 

When the stress response is available and deterministic, the fatigue life analysis is 

straightforward. The most commonly used model is the Palmgren-Miner’s rule [47-49], which is 

given by [50] 

 
1

m
i

i i

nD
N=

=∑   (2) 

Cycle 1 

t 

Load Cycle 2 
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where D  is the accumulative fatigue damage, m  is the number of stress blocks, in  is the number 

of stress cycles at stress level is , and iN  is the number of cycles to failure at stress level is . iN  

is obtained from the constant amplitude fatigue experiment.  

In this work, we use the Palmgren-Miner’s rule for fatigue damage analysis. However, other 

fatigue damage analysis methods can also be used with the proposed method. Since the fatigue 

experiments are conducted under constant amplitude loadings, the mean value corrections are 

usually applied before evaluating the fatigue damage using the Palmgren-Miner’s rule [50]. 

Many empirical corrections were developed in the past decades. The most widely accepted 

corrections include the Goodman’s and the Gerber’s corrections. The two corrections relate the 

alternating stress amplitude to the mean stress response with the ultimate tensile strength [50]. 

 For a general stress response os  (a component of os ), the Goodman’s correction is given by 

[51] 

 1a m

u

s s
s s
+ =   (3) 

where us  is the ultimate tensile strength, s  is the stress response after correction, and as  and ms  

are the alternating stress amplitude and the mean stress, respectively, which are given by 

 max min

2

o o

a
s ss −

=   (4) 

and 

 max min

2

o o

m
s ss +

=   (5) 

in which max
os  and min

os  are the maximum and minimum values of os , respectively.  

The Gerber’s correction is [52] 
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2

1a m

u

s s
s s

 
+ = 
 

  (6) 

It is usually recommended that the Goodman correction is used for brittle materials and that 

the Gerber’s correction is used for ductile materials. After the mean value correction is made, the 

number of cycles to failure at stress level s  is then computed by 

 ( )N h s=   (7) 

where ( )h s  is obtained from the S-N curve and is a function of stress level s . 

With the Palmgren-Miner’s rule, the fatigue life is estimated by 

 
1 2

1

1 1
1/ 1/ 1/ 1/

F m
m

j
j

L
N N N N

=

= =
+ + + ∑

  (8) 

where FL  is the number of load cycles or fatigue life, and 11/m
jj N

=Σ  is the fatigue damage in 

one cycle.  

 

3. Uncertainty analysis of fatigue life  

3.1.Uncertainties in stress responses  

The fatigue life analysis model in Sec. 2 is in a deterministic form. In reality stress responses 

from one product to another vary inevitably even if the design is the same. The stress variations 

stem from variations in stress analysis input variables, for instance, stochastic loading, 

manufacturing imprecision, and other noises in the operating environment.  

 We divide input variables into deterministic variables d  and random variables X . The stress 

response is then presented by 

 ( , )o gS X d=   (9) 
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Output variables oS  become random variables with distributions governed by the nonlinear 

function ( )g ⋅  and the distributions of X . The cumulative distribution function (CDF), or the 

probability that oS , which is a component of oS , is less than a specific value s , is then 

computed by 

 
0

Pr{ } ( )o

S s

S s f dx x
≤

≤ = ∫   (10) 

in which Pr{}⋅  stands for a probability, and ( )f x  is the joint probability density function (PDF) 

of X . 

 

3.2.Uncertainty in material fatigue properties  

Uncertainty in material fatigue properties also results in uncertainty in fatigue life. The 

variations in material fatigue properties have been extensively studied [53]. For instance, the 

uncertainty of the fatigue crack growth model has been investigated [18-27], several probabilistic 

fatigue damage accumulation models have been developed [18-21], and models for probabilistic 

S-N curves have also been developed [22-25].  

As the stress-life model is used in this work, we mainly consider variations in the S-N curve. 

In the past decades, many models were developed for describing the statistical nature of the S-N 

curve. The associated methods are classified into three groups - the statistical S-N curve [26, 27], 

the quantile S-N curve [28-31], and the stochastic S-N curve [32-34]. A detailed review about all 

the three groups can be found in [35].  

What distinguishes the three groups is the way of handling correlations between stress levels. 

The statistical S-N curve assumes that the distributions of the cycle number at stress levels are 

independent while the quantile S-N curve assumes that they are dependent. The stochastic S-N 
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curve developed by Liu [35] releases the assumptions by modeling the dependence between 

stress levels using the Karhunen-Loeve (KL) expansion method [35]. We use the statistical S-N 

curve in this paper since the dependence between stress levels is not our focus and the dependent 

random variables can be transformed into independent ones using the Nataf transformation [54-

56] or other methods, such as the method proposed by Noh, Choi, and Du [57, 58]. The 

developed method is also applicable for the other two groups of S-N curves.  

What is in common between the three groups is that the number of cycles to failure under a 

stress level is a stress-dependent random variable. As a result, the mean and standard deviation 

of the number of cycles depend on stress levels [59, 60]. For a specific stress level s , the number 

of cycle, N s  follows a Lognormal distribution or a Weibull distribution [33]. For the 

Lognormal distribution,  

 logN 2

logN

log( )
~ (0,1 )

N s
N

µ
s

−
  (11) 

where logNµ  and logNσ  are respectively the mean and standard deviation of log( )N s  and are 

given by  

 logN 1( )h sµ =   (12) 

and 

 logN 2 ( )h ss =   (13) 

in which 1( )h s  and 2 ( )h s  are functions of mean and standard deviation. These two functions are 

obtained based on the experimental testing data under the constant amplitude fatigue life testing. 

( , )N ⋅ ⋅  stands for a normal distribution with the first parameter being the mean and the second 

parameter being the variance.  
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In the subsequent sections, the effect of the uncertainties on the fatigue life is analyzed. 

Based on the analysis, the new fatigue reliability analysis method is developed.  

 

4. The proposed fatigue reliability analysis approach 

4.1. Fatigue life reliability 

Due to the uncertainties in the stress response and material fatigue properties, the fatigue life 

given in Eq. (8) is random. The CDF of the fatigue life FL  or the probability that FL  is less than 

a specific value l  is given by 

 
1 1 2 2

1Pr{ } Pr
1 ( ) 1 ( ) 1 ( )f F

m m

p L l l
N S N S N S

  = < = < + + +  

  (14) 

where , 1, 2, ,i iN S i m=  , are random numbers of cycles dependent on random stresses iS  

given by 

 1 2[ , , , ] ( , )m CS S S gS X d= =   (15) 

in which ( )Cg ⋅  is the stress response function after mean value correction on ( , )o gS X d= . 

Eqs. (14) and (15) show that the fatigue life is a random variable and is a nonlinear function 

of random variables iN  whose distributions are dependent on iS . Liu and Mahadevan [35] 

developed two methods for estimating the probability given in Eq. (14) when the distribution of 

iS  is known. The two methods include the moment-based method and FORM. Even though they 

can efficiently approximate the fatigue reliability given the stress distribution, there are still some 

limitations. The major limitation is to know the stress distribution, but it is usually unknown in 

the design stage. To obtain the distribution of the stress, we need to call Eq. (15) many times. If 

Eq. (15) involves CAE simulations, the computational cost will be high. As will be seen, the 
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method proposed in this work can cut the computational cost. To use the new method, we first 

transform the probability in Eq. (14) into 

 1 1 2 2Pr{ } Pr{1 ( ) 1 ( ) 1 ( ) 1/ }f F m mp L l N S N S N S l= < = + + + >   (16) 

The distribution of iN  is dependent on iS , which is governed by ( , )g X d . The fatigue 

probability of failure fp  depends on X  as shown below.  

 Pr{ ( , ) }f Fp L lX N X= <   (17) 

where 1 2[ , , , ]mN N NN X X X X=   are random numbers of cycles dependent on X . 

In the following sections, we at first discuss the direct use of FORM and SORM for the 

fatigue reliability analysis. As will be seen, this treatment may not be accurate and efficient. We 

then present the new method, which improves both accuracy and efficiency. The comparison of 

the direct FORM/SORM and improved FORM/SORM are shown in the example section. 

4.2. Direct FORM and SORM  

One way of approximating the fatigue reliability is using FORM or SORM directly with the 

Rosenblatt transformation [12]. Before applying FORM or SORM, the most probable point 

(MPP), at which the joint probability density of random variables is the highest, needs to be 

identified. To determine the MPP, the dependent random variables X  and N X  are transformed 

into independent standard normal variables using the Rosenblatt transformation as follows [61]: 

 

1

1

( ( ))

( ( ))

F

F

X X

N N X

U X

U N X

−

−

= F

= F

  (18) 

where 1( )−Φ ⋅  is the inverse CDF of a standard normal variable, ( )FX ⋅  is the CDF of random 

variable iX , ( )FN X ⋅   is the CDF of random variable iN X  conditioned on X , and XU  and NU  
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are independent standard normal variables corresponding to random variables X  and 

1[ , , ]mN NN =  , respectively. 

After the transformation, Eq. (17) becomes 

 Pr{ ( , ) } Pr{ 1/ ( , ) 1/ }f F Fp L l L lX N X NU U U U= < = − < −   (19) 

The MPP *u  is then obtained by solving the following optimization model 

 
[ , ]
min

subject to
1/ ( , ) 1/

X N

FL l

u u u

X N

u

u u

=



− ≤ −

  (20) 

in which ⋅  is the norm of a vector, and 1/ ( , )FL X Nu u  is given by 

 1 21/ ( , ) 1 ( ) 1 ( ) 1 ( )F mL N N NX Nu u = + + +   (21) 

where  

 1 ( ( )), 1, 2, ,
i ii NN sN F i mu−= F =    (22) 

and 

 
1 1 2 2

1 1 1
1 2[ , , , ] ( ( ( ), ( ( ), , ( ( )), )

m mm C X X X X X Xs s s g F u F u F us d− − −= = F F F    (23) 

in which 1 ( )
i iN sF − ⋅  is the inverse CDF of i iN s  conditional on is , and 1( )

iXF − ⋅  is the inverse CDF of 

iX . 

Once the MPP *u is available from Eq. (20), fp  is approximated using FORM as follows: 

 ( )fp β= Φ −   (24) 

where   

 *uβ =   (25) 
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When the accuracy of FORM is not good, SORM can be employed. SORM is in general 

more accurate than FORM but is more computationally expensive than FORM as second 

derivatives are required. The Breitung’s formulation for SORM is given by [61] 

 
1

1/2

1

( ) (1 )
m n

f i
i

p β βn
+ −

=

= Φ − +∏   (26) 

where iν ( 1, 2, , 1i m n= + − ) are the principal curvatures of 1/ ( , )FL X NU U−  at the MPP. 
Details of SORM can be found in [62]. 

For n random variables in X  and m stress responses in S , there are totally n m+  variables in 

Eq. (20). Herein, the m stress responses in S  are m different peak stresses in the dynamic stress 

responses. When m is large, the number of calling the stress response function in Eq. (15) will be 

high, and the efficiency will be low. In this work, we regard the situation that given a group of x  

and getting the corresponding m stresses as one function evaluation. The efficiency of direct use 

of FORM and SORM for reliability analysis can be improved. As will be seen in the example, 

the accuracy of the direct use of FORM may not be good either, and its accuracy also needs to be 

improved. 

4.3. Proposed method 

To overcome the drawbacks of the direct use of FORM or SORM, we propose a new method 

that integrates the fast integration method [61] and SPA [41]. The fatigue reliability introduced 

in Sec. 4.1 is computed with two steps: calculating the conditional fatigue reliability and 

calculating the unconditional fatigue reliability.   

4.3.1. Conditional fatigue reliability analysis  
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The conditional fatigue reliability is based on the condition that random variables X  are 

fixed at specific values x , which lead to specific (deterministic) stress responses s . The 

conditional probability of failure is then given by 

 ( ) Pr{ }f Fp L lx X x= < =   (27) 

or 

 
1

1 1 1( ) Pr
m

f N
iF i i

p L
L N s l

x X x
=

  = = = ≥ = 
  

∑   (28) 

With the known values of s , computing the above probability is just a traditional reliability 

analysis problem, and therefore existing methods, such as FORM, SORM, and SPA, can be used. 

In this work, we use SPA [40] because of the following reasons: (1) The limit-state function 

1
1/ ( ) ( 1, 2, , )

m

i i
i

N s i m
=

=∑   in Eq. (28) is nonlinear with respect to random variables 

 ( 1, 2, , )i iN s i m=  . The first order and second order approximations of the limit-state function 

may result in errors if FORM and SORM are used. (2) SPA treats the limit-state function 

1
1/ ( ) ( 1, 2, , )

m

i i
i

N s i m
=

=∑  as a function of random variables1/ ( ) ( 1, 2, , )i iN s i m=  , and the 

limit-state function becomes the sum of independent random variables and is therefore linear. 

There will be no error from the function approximation.    

To use SPA, we first derive the Cumulant Generating Function (CGF) of  
1
1/ ( )

m

N i i
i

L N s
=

=∑ , 

which is given by 

 ( ) ln[ ( ) ]n

N N

tl
L L n nK t e f l dl

∞

−∞
= ∫   (29) 

where ( )
NL nf l  is the probability density function (PDF) of the random response NL . 
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When i iN s , 1, 2, ,i m=   are independent, we have 

 
1 1 2 21 2( ) ( ) ( ) ( )

N m mL n mN s N s N sf l f n f n f n=    (30) 

in which ( )
i i iN sf n  is the PDF of i iN s . 

Substituting Eq. (30) into (29) yields 

 1

1 1 2 2

1/( )

1 2 1 2( ) ln[ ( ) ( ) ( ) ]

m

i i
i

N m m

t n s

L m mN s N s N sK t e f n f n f n dn dn dn=
∞

−∞

∑
= ∫     (31) 

Eq. (31) is rewritten as 

 
1 1 2 2

( ) ( ) ( ) ( )
N m mL N s N s N sK t K t K t K t= + + +   (32) 

Directly evaluating Eq. (32) is very difficult. Herein, we use the power expansion of the CGF 

[40]. For ( )
i iN sK t , the power expansion is given by 

 ,
1

( )
!i i

j

i jN s
j

tK t
j

κ
∞

=

=∑   (33) 

where ,i jκ  is the j-th cumulant of i iN s . 

If the first four cumulants are used, the cumulants ,i jκ , 1, 2, 3, 4j = , are given in terms of 

moments as follows: 

 

,1 ,1

2
,2 ,2 ,1

3
,3 ,1 ,1 ,2 ,3

4 2 2
,4 ,4 ,1 ,3 ,1 ,1 ,2 ,2

2 3

4 6 12 3

i i

i i i

i i i i i

i i i i i i i i

m

m m

m m m m

m m m m m m m

κ

κ

κ

κ

=


= −


= − +
 = − − + −

  (34) 

in which ,i jm , 1, 2, 3, and 4j = , are the first four moments about zero of i iN s . 

,i jm , 1, 2, 3, 4j = , are given by 
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 , 0

1 ( ) , =1, 2, 3, 4
i i

j

i j i iN s
i

m f n dn j
n

∞  
= ∀ 

 
∫   (35) 

If higher order cumulants are used, the n-th order cumulant is given by 

 
1

, , , ,
1

1
1

n

i n i n i j i n j
j

n
m k m

j
k

−

−
=

− 
= −  − 

∑   (36) 

Plugging Eq. (33) into Eq. (32), we have 

 ,
1 1

( ) ( )
!N

jm

L i j
j i

tK t
j

κ
∞

= =

=∑ ∑   (37) 

Once the expressions of ( )
NLK t  are available, the saddlepoint is obtained by solving the 

following equation: 

 
2 3

,1 ,2 ,3 ,4
1 1 1 1

1 ( ) ( ) ( ) ( )
1! 2! 3!

m m m m

i i i i
i i i il

η η ηκ κ κ κ
= = = =

= + + +∑ ∑ ∑ ∑   (38) 

With the saddlepoint η  solved from Eq. (38), the conditional probability of failure is then 

calculated by [63] 

 

1( ) Pr{ }

1 11 ( ) ( )( )

f Np L
l

w w
w v

x X x

f

= ≥ =

= −Φ − −
  (39) 

in which 

 { }1/2
'sign( ) 2 ( ) ( )

N NL Lw K Kη η η η = −    (40) 

 
1/2" ( )

NLv Kη η =     (41) 

 
4

,
1 1

( ) ( )
!N

jm

L i j
j i

K
j
ηη κ

= =

=∑ ∑   (42) 
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1, 0

sign( ) 0, 0
1, 0

η
η η

η

>
= =
− <

  (43) 

where ( )φ ⋅  is the PDF of a standard normal variable, ' ( )
NLK η  and " ( )

NLK η  are the first and 

second derivatives of ( )
NLK η , respectively.  

The derivation of ( )
NLK t  is based on the condition that i iN s , 1, 2, ,i m=  , are 

independent. It is the assumption for the statistical S-N curve we use in this work. When i iN s , 

1, 2, ,i m=  , are dependent (i.e. stochastic S-N curve), the dependent random variables should 

be transformed into independent random variables. Then, the dimension reduction method 

(DRM) can be applied to estimate ( )
NLK t  [40]. Once the ( )

NLK t  is available, Eqs. (37) through 

(43) are used to approximate the conditional probability of failure.  

Note that, the above analysis only calls the stress analysis once.  

4.3.2. Unconditional fatigue reliability analysis 

The conditional probability of failure obtained in the last subsection is conditional on the 

stress or random variables X . The unconditional probability of failure is given by 

 ( ) ( )f fp p f dXx x x= ∫   (44) 

Directly calculating the integral above is costly, especially when the dimension of X  is high.  

To reduce the cost, following the same principle in Ref. [40], we introduce a new random 

variable 2(0,1 )eU N  such that 

 ( ) Pr{ } ( )
f fp e p fu U u p xΦ = ≤ =   (45) 

Then 
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 1[ ( )]
fp fu p x−= Φ   (46) 

Substituting Eq. (45) into Eq. (44) yields 

 Pr{ } ( ) ( ) ( )
f

e p f

f e p e e
U u

p U u f d u du f dX Xx x x xf
≤

= ≤ =∫ ∫ ∫   (47) 

Eq. (47) can be further written as 

 Pr{ ( )} Pr{ ( ) 0}
f ff e p e pp U u U uX X= ≤ = − ≤   (48) 

Combining Eq. (46) with Eq. (48), we have 

 1Pr{ [ ( )] 0}f e fp U p X−= −Φ ≤   (49) 

To approximate the probability given in Eq. (49), we define a new limit-state function 

 1( , ) [ ( )]new e e fg U U pX X−= −Φ   (50) 

If the FORM or SORM is employed, the MPP search is then given by 

 [ , ]

1

min

[ ( )] 0
eu

e fu p
Xu u

u

x

β
=

−

 =


−Φ ≤
  (51) 

in which a general component x  of x  is -1[ ( )]x Xx F u= F , where Xu  is a general component of 

Xu .  

After the MPP *u  is found, fp  is computed by FORM as follows 

 *1 ( ) 1 ( )fp uβ= −Φ = −Φ   (52) 

If SORM is used to approximate Eq. (49), fp  is obtained by plugging *u  and the main 

curvatures of ( , )new eg U X  at the MPP into Eq. (26). We called the two methods the improved 

FORM and improved SORM, respectively. 

m n+  random variables exist if FORM or SORM is directly used as indicated in Eq. (20). 

With the proposed method, the number of random variables is reduced to 1n +  as shown in Eq. 
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(51). The dimension reduction means less calls of the stress analysis, thereby less computational 

effort. As a result, the proposed method is more efficient than the direct use of FORM or SORM. 

The accuracy of the proposed method is also better than the direct use of FORM. The major 

reason is that the conditional probability obtained from SPA is accurate.   

Since we use MCS as a benchmark for methodology evaluation, next, we briefly discuss how 

to use MCS for the fatigue reliability analysis. 

4.4. Monte Carlo Simulation for fatigue reliability analysis 

For MCS, let the number of samples be MCSn . We first generate samples for the n 

independent variables X , we then generate samples for , 1, 2, ,iN i m=  . The two steps are 

used because , 1, 2, ,iN i m=   depend on X . With the samples of , 1, 2, ,iN i m=  , we 

generate MCSn  samples for FL . The probability of failure is then estimated by 

 fMCS
f

MCS

n
p

n
=   (53) 

in which fn  is the number of samples that satisfy FL l< .  

 

5. Numerical procedure  

Fig. 2 shows the numerical procedure for identifying the MPP. The procedure is explained in 

details below.  
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Fig. 2. Flowchart of MPP search 

Step 1: Initialization: Set initial point [ , ]euXu u=  for the MPP search.  

Step 2: Stress analysis: For a given point Xu  perform stress analysis using Eq. (15). 

Step 3: Use the fatigue life model: Obtain the statistical parameters of the number of stress 

cycles, i iN s , 1, 2, ,i m=  , with Eqs. (12) and (13). 

Step 4: Conditional reliability analysis: Perform the conditional reliability analysis based on 

the information obtained in Step 3.  

Step 5: Limit-state function evaluation: Transform the conditional probability of failure into 

the equivalent standard normal variable and evaluate the limit-state function in Eq. (50).  

Step 6: Convergence check: If the reliability indexes β  in two subsequent iterations are close 

enough, the MPP is identified and convergence is reached; then compute the probability of 

failure using FORM or SORM. Otherwise, generate a new point for Xu  and eu , and go to Step 2. 

Step 4: Conditional reliability analysis  
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6. Numerical examples 

Two numerical examples are presented to evaluate the proposed method.  

6.1.A cantilever beam 

As shown in Fig. 3, a cantilever beam is subjected to a random cyclic load F, which is plotted 

in Fig. 4. There are four blocks of load in each cycle of F. The peak values of the four blocks are 

1F , 2F , 3F , and 4F , respectively. The corresponding valley value of each peak is zero.  

 

 

Fig. 3. A cantilever beam subjected to cyclic load 

 

Fig. 4. Load trend over time 
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The maximum stresses max
oS  of the beam are given by 

 max 1 2 3 4 2

6[ , , , ]o o o o o lS S S S
bh
FS = =   (54) 

where b , l , and h  are the geometrical parameters as shown in Fig. 3 and 1 2 3 4[ , , , ]F F F FF =  is 

the vector of forces in one cycle.  

Since the corresponding valley of each peak of 1 2 3 4[ , , , ]F F F FF =  is zero, we have 

 min [0, 0, 0, 0]oS =   (55) 

Eq. (54) implies that the stress response of the beam is proportional to the load on the beam. 

With the known trend of load over time, the trend of stress response is therefore known. Due to 

the uncertainties in the geometrical parameters, cyclic loading, and material fatigue properties, 

the fatigue life of the beam is also uncertain.  

Since the material is brittle, the Goodman mean value correction is applied [41]. The 

corrected stress amplitude iS  , 1, 2, 3, 4i = , are given by 

 
2

o
i u

i o
u i

S SS
S S

=
−

  (56) 

where uS  is the ultimate tensile strength of the material. 

According to Eq. (8), the fatigue life of the beam presented in cycles is given by 

 4

1

1

1/ ( )
F

i i
i

L
N S

=

=

∑
  (57) 

in which , 1, 2, 3, 4i iN S i = , are numbers of cycles to failure under the stress level iS . 

As discussed in Sec.3.2, i iN S  is a stress-dependent random variable and follows a Log-

normal distribution, defined by 
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 2
log(N) log(N)log( ) ~ N( , )i iN S µ σ   (58) 

log(N)µ  and log(N)σ  are 

 10[ log ( )]
log(N) log{10 }ic d Sµ −=   (59) 

and 

 log(N) log(N)0.04σ µ=   (60) 

where 12.2c = , and 3.68d = . The required fatigue life is 41.5 10l ×=  cycles. 

Table 1 gives the distributions of the random variables.  

Table 1 Random variables 

Variable Mean Value Standard Deviation Distribution Type 
l (in) 9 0.01 Normal 
b (in) 0.2 0.005 Normal 
h (in) 0.4 0.005 Normal 

uS (ksi) 221.7 5 Lognormal 

1F  (lb) 80 3 Lognormal 

2F  (lb) 60 2 Lognormal 

3F  (lb) 70 2 Lognormal 

4F  (lb) 65 2 Lognormal 
 

There are eight random variables (i.e. l , b , h , uS , 1F , 2F , 3F , and 4F ) in the stress 

response function, and four random responses, iS , i=1, 2, 3, 4, in the fatigue life function. The 

problem was solved by the direct FORM and SORM, the improved FORM and SORM, and 

MCS. For MCS, the numbers of samples was 3×106. The percentage error with respect to MCS 

is defined by  

 100%
MCS

f f
MCS
f

p p
p

ε
−

= ×  (61) 
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where MCS
fp  is obtained from MCS while fp  is obtained from other methods.    

Table 2 shows the results, including the MCS solution and the associated 95% confidence 

interval in brackets, and the number of function calls (NOF) of the stress response function, 

which is used as the measure of efficiency.  

 

Table 2 Results of fatigue reliability analysis of a cantilever beam 

Method FORM 
Improved 

FORM SORM 
Improved 

SORM 
MCS 

fp  0.0056 0.0096 0.0085 0.0096 0.0095 [0.0094, 0.0097] 
Error (%) 41.32 1.06 10.67 1.06 - 

NOF 261 80 352 135 3×106 
 

The results show that the proposed method is more accurate and efficient than the direct 

FORM and SORM.   

To study the robustness of the proposed method, we also performed reliability analyses at 

different failure levels using the direct FORM and SORM, the improved FORM and SORM, and 

MCS. The number of simulations of MCS is 3×106. The failure thresholds vary from 40.9 10×  to 

43.0 10× . The results are given in Table 3 and plotted in Fig. 5.  Table 4 presents the percentage 

errors of the four methods with respect to MCS. The percentage errors are also plotted in Fig. 6. 

The numbers of function calls are listed in Table 5 and plotted in Fig. 7.  
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Fig. 5 Probability of failure under different failure levels 

Table 3 Probabilities of failure at different failure levels 

Limit 
State 

fp  

FORM Improved 
FORM SORM Improved 

SORM MCS 

40.8 10×  52.13 10−×  52.78 10−×  53.13 10−×  52.95 10−×  53.07 10−×  
[2.44×10-5, 
3.69×10-5] 

40.9 10×  56.89 10−×  41.04 10−×  41.03 10−×  41.11 10−×  41.14 10−×  
[1.02×10-4, 
1.26×10-4] 

41.1 10×  44.44 10−×  47.75 10−×  46.73 10−×  47.75 10−×  47.69 10−×  [7.38×10-4, 
8.01×10-4] 

41.2 10×  49.43 10−×  31.68 10−×  31.44 10−×  31.68 10−×  31.63 10−×  
[1.58×10-3, 
1.68×10-3] 

41.4 10×  33.30 10−×  35.83 10−×  35.06 10−×  35.83 10−×  35.66 10−×  
[5.58×10-3, 
5.75×10-3] 

41.6 10×  38.93 10−×  0.0150 0.0136 0.0150 0.0151 [0.0150, 0.0153] 
41.8 10×  0.0199  0.0315 0.0298 0.0339 0.0330 [0.0328, 0.0332] 
42.0 10×  0.0385 0.0570 0.0557 0.0616 0.0615 [0.0613, 0.0618] 
42.2 10×  0.0662  0.0925 0.0923 0.1005 0.1018 [0.1014, 0.1021] 
42.4 10×  0.1037  0.1386 0.1387 0.1505 0.1534 [0.1530, 0.1538] 
42.6 10×  0.1507  0.1948 0.1928 0.2092 0.2148 [0.2144, 0.2153] 
42.8 10×  0.2058 0.2598 0.2516 0.2725 0.2830 [0.2824, 0.2835] 
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43.0 10×  0.2670  0.3306 0.3120 0.3385 0.3550 [0.3545, 0.3555] 

 

Table 4 Percentage of error under different failure levels 

Limit State Error (%) 
FORM Improved FORM SORM Improved SORM 

40.8 10×  30.42 9.32 2.23 3.70 
40.9 10×  39.72 8.80 10.29 2.87 
41.1 10×  42.30 0.72 12.48 0.72 
41.2 10×  42.14 3.29 11.69 3.29 
41.4 10×  41.74 2.97 10.69 2.97 
41.6 10×  41.01 0.77 10.28 0.76 
41.8 10×  39.62 4.74 9.95 2.57 
42.0 10×  37.43 7.44 9.40 0.09 
42.2 10×  34.98 9.11 9.28 1.26 
42.4 10×  32.42 9.68 9.58 1.93 
42.6 10×  29.87 9.31 10.26 2.74 
42.8 10×  27.28 8.19 11.07 3.81 
43.0 10×  24.78 6.89 12.11 4.72 

 

 
Fig. 6 Percentage error under different failure levels 
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Table 5 Number of function calls needed under different failure levels 

Limit State NOF  
FORM Improved FORM SORM Improved SORM MCS 

40.8 10×  313 100 404 155 63 10×  
40.9 10×  287 80 378 135 63 10×  
41.1 10×  287 80 378 135 63 10×  
41.2 10×  261 80 352 135 63 10×  
41.4 10×  261 80 352 135 63 10×  
41.6 10×  235 80 326 135 63 10×  
41.8 10×  235 80 326 135 63 10×  
42.0 10×  209 80 300 135 63 10×  
42.2 10×  183 100 274 155 63 10×  
42.4 10×  183 100 274 155 63 10×  
42.6 10×  157 100 248 155 63 10×  
42.8 10×  157 80 248 135 63 10×  
43.0 10×  131 60 222 115 63 10×  

 

 
Fig. 7 Function evaluations under different failure levels 
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The robustness study indicates that the improved FORM and SORM significantly increase 

the accuracy and efficiency of the direct FORM and SORM, respectively. 

6.2.A door cam 

A door cam, as shown in Figs. 8 and 9, is used to hold the door open while stocking. The 

fatigue reliability of the cam is to be evaluated during the product development process.  

For each cycle of the door opening and closing, the cam experiences two kinds of motion, 

which are the engagement and disengagement of the shoulder. During the motion cycle, the 

upper and lower legs of the cam deflect until the shoulder passes the gap between the two legs. 

Figs. 10 and 11 show the working positions and force analysis for the engagement and 

disengagement of the cam, respectively.  

 

 

Fig. 8. A door cam 
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Fig. 9 Door cam and door 

 

Fig. 10. Working position of the shoulder and force analysis for the engagement 
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Fig. 11. Working position of the shoulder and force analysis for the disengagement 

Fig. 12 shows the simplified stress history of the corner of the upper leg during cycles of 

engagement and disengagement. Since the motion trend of the cam is known, the stress response 

of the cam is also known. For every cycle of motion, we have max 1 2[ , ]o o oS SS =  and min [0, 0]oS =  . 

 

Fig. 12. Stress trend of the corner on the upper leg over cycles 
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stress response is dependent upon the open distance opend  between the upper and lower legs. The 

stress responses therefore can be expressed as functions of opend .  

opend  is a parameter related to the initial gap between two legs and the diameter of the 

shoulder and is given by 

 open sh gapd d d= −   (62) 

in which shd  is the diameter of the shoulder, and gapd  is the initial gap between the two legs.  

To explore the relationship between the stress responses and opend , we performed finite 

element analyses (FEA) based on the force analyses given in Figs. 10 and 11, which result in the 

following stress responses: 

 3
1 ( ) 1.437 10 ( ) 0.1021o

open sh gapS d d d= × − −   (63) 

 3
2 ( ) 1.2 10 ( ) 0.5o

open sh gapS d d d= × − −   (64) 

Two snapshots of the stress distribution under engagement and disengagement of the cam 

obtained from FEA are given in Figs. 13 and 14. 

The cam is made of brittle material, and the Goodman correction was made as well. The 

corrected stress responses, iS , 1, 2i =  are given by 

 
( )

2 ( )

o
i open u

i o
u i open

S d S
S

S S d
=

−
  (65) 

Due to manufacturing imprecision, the initial gap gapd  and the diameter of the shoulder shd  

are random. But we treat shd  as deterministic because its randomness is negligible compared 

with that of gapd . Also considering variations in the ultimate tensile strength of the material, we 

have two random variables gapd  and uS  in the stress response function. According to the stress 
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response analysis given in Fig. 12, there are also two random variables in the fatigue life analysis 

model.  

 

Fig. 13. One snapshot of stress distribution under engagement motion 

 

Fig. 14. One snapshot of stress distribution under disengagement motion 

The number of cycles to failure follows a Lognormal distributions with mean value of  

 10[12.2 3.68log ( )]
log(N) log{10 }iSµ −=   (66) 

and standard deviation of  
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 log(N) log(N)0.03σ µ=   (67) 

In this example, 0.187 inshd = , and the target fatigue life is 42 10l = ×  cycles. Table 6 

provides all the random variables needed for the analysis.  

  

Table 6 Random variables of example 2 

Variable Mean Value Standard Deviation Distribution Type 

gapd  (in) 0.107 0.009 Normal 

uS  (ksi) 221.7 5 Lognormal 
 

 

The probability of fatigue failure of the cam was computed by the direct FORM, SORM, the 

improved FORM, the improved SORM, and MCS. The numbers of samples of MCS was 1×106.  

Results are given in Table 7.  

Table 7 Results of reliability analysis 

Method FORM Improved 
FORM 

SORM Improved 
SORM 

MCS 

fp (×10-4) 6.53 7.70 7.55 7.82 8.16 [7.84, 8.48] 
Error (%) 19.96 5.61 7.53 4.15 - 

NOF 142 32 157 42 1×106 
 

The results also confirm that the proposed method is more accurate and efficient than the 

direct use of FORM and SORM.   

 

7. Conclusion 



34 
 

It is important to account for the stress-dependent characteristics of material fatigue 

properties for fatigue reliability analysis. Directly using the First Order Reliability Method 

(FORM) or Second Order Reliability Method (SORM) for the analysis may not be efficient and 

may produce large errors in the predicted fatigue reliability as shown in the examples. The 

accuracy, as well as the efficiency, can be improved with the proposed method that integrates the 

saddlepoint approximation and the conditional fatigue reliability analysis.  

The new method can predict the fatigue reliability or the probability distribution of the 

fatigue life for structures under cyclic loadings with known trend. This assumption holds for 

many applications. The method accommodates not only random variables with different 

distributions in the input variables to stress response functions, as well as uncertain parameters in 

the S-N curve.  
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