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Abstract 

Quality characteristics are important product performance variables that determine 

customer satisfaction. Their expected values are optimized and their standard deviations 

are minimized during robust design. Most of robust design methodologies consider only a 

single quality characteristic, but a product is often judged by multiple quality 

characteristics. It is a challenging task to handle dependent and oftentimes conflicting 

quality characteristics. This work proposes a new robustness modeling measure that uses 

the maximum quality loss among multiple quality characteristics for problems where the 

quality loss is the same no matter which quality characteristics or how many quality 

characteristics are defective. This treatment makes it easy to model robust design with 

multivariate quality characteristics as a single objective optimization problem and also 

account for the dependence between quality characteristics. The new method is then 

applied to problems where bivariate quality characteristics are involved. A numerical 

method for robust design with bivariate quality characteristics is developed based on the 

First Order Second Moment method. The method is applied to the mechanism synthesis 

of a four-bar linkage and a piston engine design problem. 

 
1. INTRODUCTION 

 
In engineering applications, there are many uncertainties. For example, the loading 

acting on mechanical systems is stochastic because of random operation conditions. The 

actual dimensions of a mechanical part fluctuate randomly around their designed nominal 
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values due to the random manufacturing imprecision. The uncertainties may have 

significant impact on the quality, safety, and performance of a product. There are several 

design methodologies that mitigate the effects of uncertainty, and robust design (RD) [1] 

is one of them. 

As an optimization technique, RD optimizes the performance (objective) of a product 

subject to design requirements (constraints). In addition, RD also minimizes the variation 

of the objective function caused by the aforementioned uncertainties. As a result, the 

performance of the product will be insensitive to uncertainty and remains within a small 

range around its designed value in the presence of uncertainty. 

The robustness is commonly measured by the Taguchi quality loss function (QLF) [2]. 

Let a performance function be 

 ( , , )d X PY f=   (1) 

where Y  is a quality characteristic (QC), which is a response variable that determines the 

performance of  a product and customer satisfaction. d  is a vector of deterministic design 

variables, and X  is a vector of random design variables, whose means xμ  are to be 

determined during optimization. P  is a vector of random parameters or noise factors. Due 

to the uncertainties in random variables ( , )=Z X P , Y  is also a random variable. 

For a nominal-the-best (NTB) type QC, the Taguchi’s QLF is given by 

 2( )L k Y m= −   (2) 
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where L  is the quality loss, m  is a target for Y , and k  is a quality loss constant. The 

smaller-the-better QCs can also be treated as NTB QCs by setting their targets to zero. 

The QLF of the larger-the-better (LTB) type can be found in [2]. Next we only discuss 

the NTB and STB QCs. 

RD minimizes the expected quality loss, which is computed by 

 ( )2 2( ) Y YE L k mm σ = − +    (3) 

where Yµ  and Yσ  are the mean and standard deviation of Y , respectively. Minimizing 

( )E L  can bring Yµ  to the target m and simultaneously minimize the variation in Y . 

Most of the methodologies of RD are only for problems with a single QC. In real 

applications, the common task that engineers encounter is to select the optimal design 

variables by considering multiple QCs simultaneously. It is a challenging task because of 

the following complexities: 

• The QCs may be in different orders of magnitude with different measuring units. 

• The importance of the QCs may be different. 

• The directions of the improvement of the QCs may be different. 

• The QCs may conflict with one another. The improvement on one QC may lead to 

degradation of other QCs and vice versa. 

• The QCs are statistically dependent if they are determined by common design 

variables and are affected by common random variables. 
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The most straightforward way of handling QCs is to use the simple summation of 

their quality losses. The summation is given by 

 ( )2 2

1 1
( ) ( )

i i

n n

i i Y i Y
i i

E L E L k mm σ
= =

 = = − +  ∑ ∑   (4) 

where n  is the number of QCs. 

Since there is only one objective in the above objective function, it is easy to solve 

the RD problem. But there are several disadvantages. The expected quality loss obtained 

from summing up the individual quality losses may be much higher than the actual 

quality loss. The larger is the number of QCs under consideration, the higher is the 

expected quality loss than the true quality loss. The simple summation cannot take the 

dependence between the QCs into consideration as only the means and standard 

deviations of QCs appear in Eq. (4). 

Other RD approaches [3-10] have also been proposed for multiple QCs. For example, 

a multivariate quality loss function is used to account for the joint losses of all pairs of 

quality characteristics [9]. The dependence of any pairs of two QCs is considered by 

accounting for the quality loss if both QCs are defective. But it might be difficult to 

determine such a joint quality loss, and the dependence between more than two QCs 

cannot be included in the overall quality loss.  

The expected overall quality loss function in [9] is just an approximation. The 

analytical expected overall quality loss is derived in [10] for bivariate quality loss 

functions. The method is based on the First Order Second Moment (FOSM) and is 

efficient because of the analytical formulas.  
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In addition to the use of quality loss function, other robustness measures have also 

been proposed. A multivariate process capability index measure is defined in [11] where 

the ratio of the volume of the specification region over that of the process spread region is 

employed. Another multivariate process capability index is also developed in [12]. A 

more general RD framework is set up in [13] where all the three types of QCs are 

included; conflicting and dependent QCs can be handled. 

Another way to deal with multiple QCs is to use the joint probability density function 

(PDF) of the QCs to minimize the associated variation. With the joint PDF available, the 

joint probability that the QCs are bounded within their specification limits can be 

estimated. Using this strategy, the work in [14] minimizes the determinant of the 

covariance matrix of the QCs in order to ensure the joint robustness. This method 

involves only one objective function and does not use a quality loss function; thus, no 

quality loss is provided. 

This work is concerned with the situation where the quality loss is the same no matter 

which QCs or how many QCs are defective. This problem is commonly encountered in 

practices. We propose to use the maximum quality loss among the quality losses of all the 

QCs. 

We explain why the maximum quality loss is needed and also give the robustness 

analysis model in Section 2. We then derive analytical equations for the robust analysis 

when bivariate QCs are involved in Section 3. The robust design model is given in 

Section 4 followed by examples in Section 5. Conclusions and future work are discussed 

in Section 6.     
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2. Robust Design with the Maximum Quality Loss 

In this section, we discuss the use of the maximum quality loss to model a RD 

problem with multiple QCs. 

2.1  Maximum quality loss 

This work is concerned with a design problem where the quality loss is a constant if 

at least one QC reaches its specification limit regardless which QC it is. This problem is 

common and is encountered in the following situations: 

• If at least one QC is defective, the component or product should be discarded and 

replaced by a new one. No matter what QCs are defective, the cost is the same. 

• If at least one QC is defective, the component or product must be reworked. The 

rework requires the same process and materials, and the cost is the same regardless 

which QCs or how many QCs are defective. 

Next we use a problem with three NTB QCs 1Y , 2Y  and 3Y  as  an example to discuss 

how to quantify the quality loss for the above situations. 

Let the quality loss of iY  ( 1, 2,3)i =  be 

 2( )i i i iL k Y m= −   (5) 

Let the specification limits of iY  be i im ± ∆  and the quality loss be A  if iY  is at its 

specification limit or when i i iY m= ± ∆ . Since iL A= ,  

 2
i iA k= ∆   (6) 
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Then the quality constant is given by 2/i ik A= ∆  .  

When at least one QC reaches its specification limit, the quality loss is A . The 

situation is expressed by 

 

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
2 2 2 1 1 1 3 3 3

2 2 2 2 2 2
3 3 3 1 1 1 2 2 2

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2
1 1 1 3 3 3 2

if ( ) , ( ) , ( )

if ( ) , ( ) , ( )

if ( ) , ( ) , ( )

if ( ) , ( ) , ( )

if ( ) , ( ) , (

A Y m Y m Y m
A Y m Y m Y m
A Y m Y m Y m

L A Y m Y m Y m
A Y m Y m Y m

− = ∆ − < ∆ − < ∆

− = ∆ − < ∆ − < ∆

− = ∆ − < ∆ − < ∆

= − = ∆ − = ∆ − < ∆

− = ∆ − = ∆ − 2 2
2 2

2 2 2 2 2 2
2 2 2 3 3 3 1 1 1

2 2 2 2 2 2
1 1 1 2 2 2 3 3 3

)

if ( ) , ( ) , ( )

if ( ) , ( ) , ( )

A Y m Y m Y m
A Y m Y m Y m







 < ∆
 − = ∆ − = ∆ − < ∆


− = ∆ − = ∆ − = ∆

  (7) 

2 2( )i i iY m− = ∆  means 2 2 2( ) ( / )i i i i i iL k Y m A A= − = ∆ ∆ = , and 2 2( )i i iY m− < ∆  means 

iL A< . Thus Eq. (7) is rewritten as 

 

1 2 3

2 1 3

3 1 2

1 2 3

1 3 2

2 3 1

1 2 3

if , ,
if , ,
if , ,
if ,
if ,
if ,
if

A L A L A L A
A L A L A L A
A L A L A L A

L A L L A L A
A L L A L A
A L L A L A
A L L L A

= < <
 = < <
 = < <


= = = <
 = = <
 = = <
 = = =

  (8) 

The equation is equivalent to  

 1 2 3if max{ , , }L A L L L A= =   (9) 
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Eq. (9) suggests that the maximum quality loss should be used for the multiple QCs. 

Suppose there are n  QCs denoted by 1,{ }i i nY =  and their quality losses are 1,{ }i i nL = . Denote 

the maximum quality loss by W , which is given by 

 1,max{ }i i nW L ==   (10) 

Since iL  is random, so is W . Then during RD we should minimize the expected 

maximum quality loss ( )E W . 

The cumulative distribution function (CDF) ( )WF ⋅  of W  is given by 

 

{ }

{ } { }1 2
1

( ) Pr

Pr , , , Pr

( )

W

n

n i
i

F w W w

L w L w L w L w

f z dz

=

W

= <

= < < ⋅⋅⋅ < = <

= ∫ Z

<

  (11) 

where 
1

n

i
i

L w
=

Ω = << , and ( )f ⋅Z  is the joint PDF of ( , )=Z X P . 

The PDF of w  is  

 ( )( ) W
W

dF wf w
dw

=   (12) 

Then the expected maximum quality loss is 

  
0

( ) ( )WE W wf w dw
∞

= ∫   (13) 
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As indicated in the above equation, the key to obtaining ( )E W  is to know the PDF 

( )Wf w . We will discuss how to get it in Section 3. 

2.2  Advantages of using the maximum quality loss 

Using the maximum quality loss has the following advantages: 

(1) The RD is a single objective optimization problem. 

There is no need to assign weights to QCs. This avoids the subjectivity and difficulty 

of identifying different weights. 

(2) Using the maximum quality loss is more realistic. 

As discussed above for the situation that this work addresses, if a QC is beyond its 

specification limit, the product or component needs to be reworked, repaired, or 

discarded, and the cost is the same no matter what QC is defective or how many QCs are 

defective. Simply summing up the quality losses of multiple QCs will give a much higher 

quality loss, sometimes far away from the true quality loss, as mentioned previously. 

(3) The maximum quality loss can automatically account for the dependence between 

QCs. The reason is explained below. 

According to Eq. (1), QC ( 1, )iY i n=  is given by ( , , )i iY f= d X P . All the QCs share 

the common variables d , X , and P , and they are therefore dependent. The degree of 

dependence between two QCs affects the likelihood of the following two events: both of 

the QCs are defective and either QC is defective. The dependence therefore also 
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determines the expected quality loss with multiple QCs. Simply adding the quality losses 

of individual QCs cannot account for the dependence because the expectation of the sum 

of quality losses does not require knowing the covariance of the QCs. 

The expected maximum quality loss accounts for the dependence of QCs. Let us look 

at a simple example where two quality losses 1L  and 2L  follow normal distributions 

1 1

2( , )L LN µ σ  and 
2 2

2( , )L LN µ σ , respectively, where µ  and σ  stand for a mean and a 

standard deviation, respectively. 1L  and 2L  are dependent with the coefficient of 

correlation 
1 2L Lρ . Let the maximum quality loss be W .  

 1 2( ) max( , )L W L L=   (14) 

The expected maximum quality loss is given by [15] 

 1 2 2 1 1 2

1 2
( ) L L L L L L

L LE W
µµµµµµ    

µµ  θφ
θ θ θ
− − −     

= Φ + Φ +     
     

  (15) 

where 
1 2 1 2 1 2

2 2 2L L L L L Lθ σ σ ρ σ σ= + −   

As indicated above, ( )E W  is determined by the dependence of 1L  and 2L , or the 

coefficient of correlation 
1 2L Lρ . It is therefore also determined by the dependence of QCs 

1Y  and 2Y . Although it may not likely that a quality loss follows a normal distribution, 

this simple example demonstrates that the maximum expected QC is affected by the 

dependence of the QCs.  
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Eq. (13) indicates that the joint PDF of the QCs is needed to determine the 

distribution of the maximum quality loss, and thereby the expected maximum quality loss. 

 

3. Robustness Assessment for Bivariate NTB and STB QCs 

The task of robustness assessment is to calculate the expected maximum quality loss. 

In this work, we apply the principle of the maximum quality loss to QCs which may 

belong to a NTB or STB type. We then derive analytical equations for the expected 

maximum quality loss based on the First Order Second Moment (FOSM) method [10, 16], 

which is widely used in RD. (Since a LTB QC is the reciprocal of the square of the QC, 

the analytical expression of the expected maximum quality loss may not exist when the 

LTB QC is involved. It is possible in the future work to derive equations that 

approximate the expected maximum quality loss.) In this section we focus on analytical 

derivations for bivariate QCs and also discuss how to extend the result to higher 

dimensions. 

FOSM approximates a QC ( 1,2)iY i =  at the means of ( , )=Z X P , or ( , )=Z X Pμ μ μ , 

where 1,{ }Xμ j xX j nµ == and 1,{ }Pμ pjP j nµ ==  . 

 
1

( , ) ( )
ZZ μd μ

z

j

n
i

i i j Z
j j

fY f Z
Z

µ
=

∂
≈ + −

∂∑   (16) 

where z x pn n n= + . 
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Assume 2( , )
j jj Z ZZ N µ σ , 1, 2, , zj n= ⋅⋅⋅ . Also assume that all the random variables 

are independent. If jZ  is not normally distributed, it can be transformed into a normal 

variable. One can also transform dependent random variables into independent ones by 

Rosenblatt or Nataf transformation [17] before using Eq. (16). 

Then iY  is a linear combination of normal random variables and is also a normal 

random variable. Its mean and standard deviation are 

 ( , )
iY ifµ = Zd μ   (17) 

and 

 

0.52

2

1

z

i j

n
i

Y z
j j

f
Z

σ σ
=

  ∂ =   ∂   
∑ Zμ

  (18) 

respectively. 

The coefficient of correlation of 1Y  and 2Y is 

 
1 2 1 2

21 2

1

z

j

n

Y Y Z Y Y
j j j

f f
Z Z

ρ σ σ σ
=

  ∂ ∂
=     ∂ ∂  
∑ Z Zμ μ   (19) 

For the quality losses 2( ) ( 1, 2)i i i iL k Y m i= − = , let 

 ( ) ( 1, 2)i i i i iQ L k Y m i= = − =   (20) 
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which follows a normal distribution 2( , )i iN µ σ , with its mean and standard deviation 

given by 

 ( )
ii i Y ik mm m= −   (21) 

and 

 
ii i Ykσ σ=   (22) 

respectively. 

The coefficient of correlation of 1Q  and 2Q  is 

 
1 2Y Yρ ρ=   (23) 

Since the two quality losses are 2
1Q  and 2

2Q  now, the maximum quality loss is then 

 2 2
1 2max( , )W Q Q=   (24) 

Our task now is to find the expected value of W  or ( )E W . According to Eq. (11), the 

CDF of W is 

 1

2 2
1 2

12 1 2 1 2

2

( ) Pr{ } Pr{ , }

Pr{ , }

( , )

W

w w

w w

F w W w Q w Q w

Q w Q w

f q q dq dq
− −

= < = < <

= < <

= ∫ ∫

  (25) 
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where 12 ( , )f ⋅ ⋅  is the joint PDF of 1Q  and 2Q . It is a bivariate normal PDF with mean 

1 2( , )µµ   and covariance matrix 
2
1 1 2

2
1 2 2

σ ρσ σ

ρσ σ σ

 
  
 

 . 

Define 2 12 1 2 1( , ) ( , )
w

w
H w q f q q dq

−
= ∫ . Then the PDF of W  is  

 

2 2

2
2

12 2 12 2 2

12 1 12 1 1

12 2 12 2

( )( ) ( , )

( , )1 1( , ) ( , )( )
2 2

1 ( , ) ( , )
2

1 1( , ) ( , )( )
2 2

1 ( , ) ( , )
2

1 ( , ) ( , )
2

wW
W w

w

w

w

w

w

w

dF w df w H w q dq
dw dw

H w qH w w H w w dq
ww w

H w w H w w
w

f w q f w q dq
w w

f q w f q w dq
w

f w q f w q
w

−

−

−

−

= =

∂
= − − − +

∂

 = + − 

 + − − −  

 = + − 

+ + −

∫

∫

∫

∫

2

w

w
dq

−

∫

  (26) 

Let v w= , we have 

 
[ ]

[ ]

12 1 12 1 1

12 2 12 2 2

1( ) ( , ) ( , )
2
1 ( , ) ( , )
2

v

W v

v

v

f w f q v f q v dq
v

f v q f v q dq
v

−

−

= + −

+ + −

∫

∫
  (27) 

and 

 3

0 0
( ) ( ) 2 ( )W WE W wf w dw v f w dv

∞ ∞
= =∫ ∫   (28) 

Plugging Eq. (27) into Eq. (28) yields 
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[ ]

[ ]

2
12 1 12 1 10

2
12 2 12 2 20

( ) ( , ) ( , )

( , ) ( , )

v

v
v

v

E W v f q v f q v dq dv

v f v q f v q dq dv

∞

−

∞

−

= + −

+ + −

∫ ∫
∫ ∫

  (29) 

Next let us evaluate the inner integrals. We start from 12 1 1( , )
v

v
f q v dq

−∫ , which  can be 

written as 

  
2 1 212 1 | 1( , ) ( ) ( )Q Q Q vf q v f v f q==   (30) 

2
( )Qf v  is the PDF of a normal random variable with 2µ  and 2σ  at v . 

1 2|Q Q vf =  is the 

PDF of 1Q  conditional on 2Q v= , and its mean and standard deviation are given by 

 
1 2

2
1 | 1 1

2
Q Q v

v µµµµ   ρσ
σ

+
=

 −
= = +  

 
  (31) 

and 

 
1 2

2
1 | 11Q Q vσ σ ρ σ+

== = −   (32) 

respectively. 

Similarly 

 
2 1 212 1 | 1( , ) ( ) ( )Q Q Q vf q v f v f q=−− = −   (33) 

where 
1 2| 1( )Q Q vf q=−  is the PDF of the normal random variable whose mean and standard 

deviation are 
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1 2

2
1 | 1 1

2
Q Q v

v µµµµ   ρσ
σ

−
=−

 − −
= = +  

 
  (34) 

and 

 
1 21 | 1

21Q Q vσ σ ρ σ−
=−= = −   (35) 

respectively. 

 
1 2 112 2 | 2( , ) ( ) ( )Q Q Q vf v q f v f q==   (36) 

where 
1
( )Qf v  is the PDF of 1Q , and 

2 1| 2( )Q Q vf q=  is the PDF of the normal random variable 

whose mean and standard deviation are 

 
2 1

1
2 | 2 2

1
Q Q v

v µµµµ   ρσ
σ

+
=

 −
= = +  

 
  (37) 

and 

 
2 1

2
2 | 21Q Q vσ σ ρ σ+

== = −   (38) 

respectively. 

 
1 2 112 2 | 2( , ) ( ) ( )Q Q Q vf v q f v f q=−− = −   (39) 

where 
2 1| 2( )Q Q vf q=− is the PDF of the normal random variable whose mean and standard 

deviation are 
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2 1

1
2 | 2 2

1
Q Q v

v µµµµ   ρσ
σ

−
=−

 − −
= = +  

 
  (40) 

and 

  
2 12 | 2

21Q Q vσ σ ρ σ−
=−= = −   (41) 

respectively. 

Then the PDF of w  is given by 

 

2 1 2

2 1 2

1 2 1

1 2 1

| 1 1

| 1 1

| 2 2

| 2 2

1( ) ( ) ( )
2

( ) ( )

( ) ( )

( ) ( )

v

W Q Q Q vv

v

Q Q Q vv
v

Q Q Q vv

v

Q Q Q vv

f w f v f q dq
v

f v f q dq

f v f q dq

f v f q dq

=−

=−−

=−

=−−

= 

+ −

+

+ − 

∫

∫
∫

∫

  (42) 

For a normal PDF ( )f x  with µ  and σ , ( )
b

a

b af x dx µµ
σ σ
− −   = Φ −Φ   

   ∫  and 

1( ) xf x µf
σ σ

− =  
 

, we have 
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2 1 1

2 2 1 1

2 1 1

2 2 1 1

1 2 2

1 1 2 2

1

1 1

1( )
2

1
2

1
2

1
2

W
v v vf w

v

v v v
v

v v v
v

v v
v

µµµ  f
σ σ σ σ

µµµ  f
σ σ σ σ

µµµ  f
σ σ σ σ

µf
σ σ

+ +

+ +

− −

− −

+ +

+ +

      − − − −
= Φ −Φ      

      
      − − − − −

+ Φ −Φ      
      

      − − − −
+ Φ −Φ      

      

 − − −
+ Φ 

 
2 2

2 2

vµµ
σ σ

− −

− −

    − −
−Φ    

    

  (43) 

Then the PDF ( )Wf w  is analytically available, and ( )E W  can be easily calculated 

using Eq. (28) and given by 
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σ σ
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    − − − Φ −Φ     
     

  (44) 

The above derivations can be extended to QCs with higher dimensions. We next 

briefly discuss how to deal with three QCs 1Q , 2Q , and 3Q . Extending Eq. (25), we have 

the following CDF of the maximum QC: 

 3123 1 2 1 2 3( ) ( , , )
w w w

W w w w
F w f q q q dq dq dq

− − −
= ∫ ∫ ∫   (45) 

Thus, the associated PDF is given by 
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 3 3123 1 2 1 2
( )( ) ( , , )

w w wW
W w w w

dF w df w f q q q dq dq dq
dw dw − − −

= = ∫ ∫ ∫   (46) 

With the same idea for the two-dimensional problem above, we obtain 
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123 1 2 31 23
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2
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 = + − 

∂ +  ∂ 

∫ ∫

∫ ∫ ∫
  (47) 

We now use the results we have obtained from Eqs. (25) and (26), which result in the 

following equation: 
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−
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∫ ∫ ∫

∫
  (48) 

 If we replace 12 ( )f ⋅  with 123( )f ⋅  in the above equation and plug it into the second 

term on the right-hand side of Eq. (47), we obtain 
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∫ ∫

∫ ∫

∫ ∫

  (49) 

Then we can use Eq. (28) to obtain the expected maximum quality loss ( )E W  in a 

form of a triple integral, which can be reduced to a double integral by using the 
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conditional joint PDFs such as  
1 2 3, |

( )Q Q Q wf
=

⋅ , 
2 3 1, |

( )Q Q Q wf
=

⋅ , 
1 3 2, |

( )Q Q Q wf
=

⋅ , etc. It is also 

possible to derive analytical equations for more than three QCs. 

 

4. Robust Design with the Maximum QC 

With the maximum quality loss, the RD optimization model can be formulated as 

 
( ){ }

( ) ( )
1( , ) ,

min ( ) max , ,

s. t. , , , , 0, 1, 2, ,
jj j
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g g g

i

g

n
E W E L

j nm β s
=

 =   


+ ≤ = ⋅⋅⋅

Xd μ
d X P

d X P d X P
  (50) 

where jg  is a constraint function, whose satisfaction is guaranteed at a probability level 

( )βΦ  approximately [10]. 
jgµ  and 

jgσ are the mean and standard deviation of ( )jg ⋅ , 

which are given by 

 ( ), , , 1, 2, ,
jg j gg j nµ = = ⋅⋅⋅X Pd μ μ   (51) 

and 
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respectively. 
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5. EXAMPLES 
 

In this section, we apply the RD method with the maximum quality loss to two design 

problems. The first is the robust mechanism synthesis, and the second is the robust piston 

engine design. 

5.1 Robust mechanism synthesis 

A four-bar linkage shown in Fig. 1 is to be designed to realize the following motion 

[10, 18, 19]:  

------------------------------- 

Place Fig. 1 here  

------------------------------- 

 
(1) When the crank angle is 0θ =  , the rocker output angle is 35ψ =  . 

(2) When the crank angle is 100θ =  , the rocker output angle is 95ψ =  . 

(3) The minimal transmission angle is 40λ = . 

The QCs are the motion output angles ψ  at 0θ =   and 100θ =  , which are given by 

( , , ) , , );(i ifQ ψ θ= =d X P d X P  

where 1,2i = ; and 0θ =   for 1i = , and 100θ =   for 2i = . The output angle is given by [18] 

2 2 2

( , ) 2arctan E E D F
F D

ψ θ
 − ± + −

=   − 
X  

where 4 1 22 ( cos )D R R R θ= − , 2 42 sinE R R θ= − ,  and 2 2 2 2
1 2 4 3 1 22 cosF R R R R R R θ= + + − − . 
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The specification limits of the QCs are 1 0.1m ±   and 2 0.2m ±  , where 1 35m =   and 

2 95m =  . If either QC or both QCs are at their specification limits, the quality loss is 

$100. The two quality loss constants are therefore 2
1 100 / 0.1 10000k = =  $/deg2 and 

2
2 100 / 0.2 2500k = =  $/deg2. 

The deterministic design variables are 0 0( , )θ ψ=d , which are the initial crank angle 0θ , 

and the initial output angle 0ψ , respectively. The random design variables are 

2 3 4( , , )R R R=X , which are the link lengths. The random parameter 1R  is the distance 

between revolute joints A and D, and 1)(R=P . The variables are given in Table 1. 

------------------------------- 

Place Table 1 here  

------------------------------- 

 

The constraints are for the existence of a crank and the permitted transmission angle, 

and they should be satisfied at a probability level of 4β = , which is equivalent to a 

probability of failure 53.17 10−× . The constraint functions are given by [20] 

1 2 3 1 4( ) 0g R RR R+ − + ≤=  

2 2 4 1 3( ) 0g R RR R+ − + ≤=  

3 2 1 3 4( ) 0g R RR R+ − + ≤=  

2 2 2
4 3 4 1 2 3 4 c) 2 0o( sg R R RR R R λ−− −+ ≤=  
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2 2 2
5 3 4 1 2 3 4[ ] co( s) 2 0g R R RR R R λ= − + − − ≤+  

The equations for the QCs are given in [20]. The derivatives of the QCs and the 

constraint functions are analytically available, and so are the means and standard 

deviations of the constraint functions. 

To compare different methods, we provide the following design models. Model 1 is 

for the deterministic optimization and is given by 

2 2
1 1 2 2( , )

min  ) )

subject

( (

      g 0 
 to

( 1,2, ,5)j j

f m mψ ψ


 = ⋅⋅

=

⋅

− −



+

≤


d X

 

where the mean values of random variables are used, and the sum of the motion errors is 

minimized. 

The robust design model with the summation of individual quality losses is 

formulated by Model 2 as 

1 2( ,μ )

     

min  ( ) ( ) ( )

subject to
( 1, 2, , 0 5 )

j jg j g

E L E L E L

jm bs

 +


 = ⋅⋅⋅

=

≤ +


∑
Xd

 

where { }2 2( ) ( , , ; ) ) ( , , ; )d X P d X Pi i i i i i iE L k mψ ψm θ σ θ = − +  , 1 0θ = ° , and 2 100θ = ° .  

The robust design model with the maximum quality loss is provided by Model 3 as 
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[ ]{ }max 1 2( ,μ )
min  ( ) ,

subject to

max

      ( 1, 2, ,50 )

Xd

j jg j g

E L L L

j

E

m bs





=

+ =≤ …

 

where [ ]2( , , ; )i i i iL k mψ θ= −d X P .  

 The optimal design variables from the three models are given in Table 2, and the 

robustness of the three designs is summarized in Table 3. 

------------------------------- 

Place Table 2 here  

------------------------------- 

 

------------------------------- 

Place Table 3 here  

------------------------------- 

 
The three methods produced the desired average motion because the means of the 

output angles are almost on their targets. The deterministic optimization (Model 1) has 

the largest expected maximum quality loss $862.1. The robust design with the sum of 

quality losses (Model 2) improves the design significantly with an expected maximum 

quality loss $461.3. With the incorporation of the maximum quality loss, the proposed 

method (Model 3) further improves the robustness. It produces the lowest expected 

maximum quality loss $459.2.  

The coefficients of correlation between the two QCs are also given in Table 3. The 

different coefficients of correlation are also a contributing factor for different maximum 
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quality losses. The sums of individual expected quality loss ( )E L∑  from the three 

methods are also provided in Table 3.  

The expected maximum quality losses max{ }E L  in Table 3 were calculated by the 

proposed methodology. They were confirmed by Monte Carlo simulation (MCS) with a 

sample size of 105 as shown as max{ }(MCS)E L in the last row of Table 3. The MCS 

solutions indicate that the proposed bivariate robust analysis using maximum quality loss 

is accurate. 

5.2 Robust Piston Design 

The second example is the robust piston engine design. Piston slap noise is the engine 

noise that results from the secondary motion of the piston [21, 22]. It is considered as a 

major QC because it is one of the key factors for customer dissatisfaction. One of the 

objectives is to find a design with the minimal piston slap noise that is invariant to noise 

factors. A designer should also consider the friction between the piston skirt and the 

cylinder liner, between the rings and the piston, and between the rings and the liner. The 

friction largely affects the noise and is also treated as another QC. It is desirable to have 

smaller friction. Both of the QCs therefore belong to the STB type. As indicated from the 

simulation study in [21, 22], reducing piston noise will increase piston friction. The two 

QCs hence conflict with each other. 

In this application, we used the models from [21, 22] to perform the robust design. 

The model was developed based on computationally intensive multi-body dynamics 

simulations. Details of the simulation model are given in [21]. Table 4 shows the four 
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deterministic design variables and two random parameters. There are no random design 

variables in this design. The deterministic design variables are 

1 2 3 4[ , , , ] ,[ , , ]d d d SP SOd SL PO= =d , which are the skirt length (SL), skirt profile (SP), 

skirt ovality (SO), and pin offset (PO), respectively. The random parameters are 

1 2[ , ] [ , ]P P CL LP= =P , which are the piston-to-bore clearance (CL) and the location of 

combustion peak pressure (LP). As shown in Table 4, both CL and LP are normally 

distributed.  

------------------------------- 

Place Table 4 here  

------------------------------- 

 

The two QCs are 

( , )iY=Y d P  

where 1,2i = ; and 1i =  is for the slap noise while 2i =  is for the piston friction. 

The specification limits of the noise and friction QCs are 65 dB and 8.0 N, 

respectively. If either QC or both QCs are at their specification limits, the quality loss is 

$2000. The two quality loss constants are therefore 2
1 1000 / 65 0.2367k = =  $/dB2 

2
2 1000 / 8 15.625k = =  $/N2. 

As in Example 1, to compare different methods, we give the following design models. 

The deterministic optimization model is given by Model 1 as 
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where the mean values of random parameters are used. 

The robust design model with the summation of individual quality losses is 

formulated by Model 2 as 

1

1

2

3

4

2( )

      21 25
1 3
1 3
0.5 1

min  ( ) ( ) ( )

subjec

3

t

.

t o
d

d

E L L E L

d
d

E=

≤ ≤
≤ ≤
≤ ≤
≤ ≤

 +









∑d

 

where 2 2( ) ( )
i ii i Y YE L k µ σ= + , and 1,2i = .  
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where 2
i i iL k Y= , and 1,2i = . 

------------------------------- 

Place Table 5 here  

------------------------------- 

 

The deterministic optimization (Model 1) produced the largest expected maximum 

quality loss $718.94, and RD with the sum of quality (Model 2) losses reduced the 

expected maximum quality loss to $711.38. The proposed method (Model 3) generated 

the minimum expected maximum quality loss with the minimum value of $654.53. The 

expected maximum quality losses from the three methods were calculated by the 

equations derived in Section 3. Their accuracy was checked by MCS with a sample size 

of 105, and the MCS solutions are in the last row of Table 5. The solutions from the 

proposed method are close to those from MCS. 

 

6. CONCLUSIONS 

This work investigates robust design that involves multiple quality characteristics for 

problems where the same quality loss occurs if at least one quality characteristic is 

defective. It is found that the maximum quality loss should be used to model the 

robustness. Then the probability distribution is derived for the maximum quality loss. 

The methodology is applied to robust design with two quality characteristics based on 

the First Order Second Moment method. An analytical equation for the probability 
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density function of the maximum quality loss is derived, and the expected maximum 

quality loss can then be evaluated numerically.  

The efficiency of the robust design in this study depends on both the optimization 

algorithm used and the proposed robustness analysis. The proposed robustness analysis 

method is efficient because of the linear approximation of the quality characteristic 

function with respect to random variables. If the efficiency is measured by the number of 

function calls of the quality characteristics, then the efficiency is directly promotional to 

the number of random variables. More specifically, if the derivatives of the quality 

characteristic function are analytically available, the number of function call is only one 

for a robustness analysis; if the derivatives are evaluated numerically by the finite 

difference method, the number of function calls is the number of random variables plus 

one. 

The accuracy of the proposed robustness analysis depends on the nonlinearity of the 

quality characteristic function and the degree of uncertainty in the random variables. The 

accuracy is higher for functions that are less nonlinear or for random variables with 

smaller standard deviations. For the two examples presented, the accuracy is good. 

The analytical equations are derived for the smaller-the-better and the nominal-the-

best quality characteristics and are for problems with two quality characteristics. 

Extending the method to the larger-the-better quality characteristics should be one 

direction of the future work. The other future work is the derivation of the probability 

density function of the maximum quality loss among more than two quality 

characteristics. 
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Table 1 Design variables and parameters 

Variable Distribution Mean (mm) STD (mm) 
1R  Normal 1000.0 2.0 
2R  Normal 

2Rµ  1.0 

3R  Normal 
3Rµ  1.0 

4R  Normal 
4Rµ  1.0 
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Table 2 Optimal design variables 
 

Design variables Model 1 Model 2 Model 3 (proposed) 
2Rµ  416.20 mm 440.96 mm 439.73 mm 
3Rµ  898.78 mm 853.52 mm 855.94 mm 
4Rµ  604.50 mm 688.28 mm 684.46 mm 

0θ  37.01° 66.49° 68.68° 
0ψ  38.83° 56.59° 57.45° 
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Table 3 Optimal points 
 Model 1 Model 2 Model 3 (proposed) 

1ψ
µ  35.0° 35.0024° 35.0006° 

2ψµ  95.0° 94.9904° 94.9908° 
1ψ

σ  0.2877° 0.1978° 0.1965° 
2ψσ  0.270° 0.2956° 0.3006° 

ρ  0.6604 0.6889 0.6992 
( )E L∑  $1009.7 $609.9 $611.2 

max{ }E L  $862.1 $461.3 $459.2 

max{ }E L  (MCS) $858.6 $459.6 $457.6 
 

  



39 
 

Table 4 Design variables and parameters 
Variable Distribution Mean  STD 

1( )d SL  Deterministic (mm) - 

2 ( )d SP  Deterministic / - 

3 ( )d SO  Deterministic / - 

4 ( )d PO  Deterministic (mm) - 

1( )P CL  Normal 50 mm 3 mm 

2 ( )P LP  Normal 14.5° 1° 
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Table 5 Optimal results 
 Model 1 Model 2 Model 3 (proposed) 

1f
µ  55.1133 dB 54.8231 dB 52.5863 dB 

2f
µ  2.9269 N 2.9812 N 4.81 N 

1f
σ  0.1628 dB 0.1304 dB 0.2320 dB 

2f
σ  0.2232 N 0.1879 N 0.0634 N 
ρ  -0.6974 -0.7496 0.6051 

( )E L∑  $853.57 $850.81 $1023.6 

max{ }E L  $718.94 $711.38 $654.53 

max{ }E L  (MCS) $719.53 $712.0 $655.23 
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Figure 1 Four-bar linkage 
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