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Abstract 

In robust design, uncertainty is commonly modeled with precise probability 
distributions. In reality, the distribution types and distribution parameters may not 
always be available due to limited data. This research develops a robust design 
methodology to accommodate the mixture of both precise and imprecise random 
variables. By incorporating the Taguchi quality loss function and the minimax regret 
criterion, the methodology mitigates the effects of not only uncertain parameters but 
also uncertainties in the models of the uncertain parameters. Hydrokinetic turbine 
systems are a relatively new alternative energy technology, and both precise and 
imprecise random variables exist in the design of such systems. The developed 
methodology is applied to the robust design optimization of a hydrokinetic turbine 
system. The results demonstrate the effectiveness of the proposed methodology.  
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1. Introduction 

Robust design (Taguchi 1993, Taguchi et al. 2000) is a design methodology that 
determines optimal design variables so that the effects of noises (uncertainties) are 
minimized. If robustness is achieved, the performances of a product will not be 
sensitive to variations within the product or in its operating environment. As a result, a 
robust product can perform its intended function properly in the presence of 
uncertainties.  

The key to robust design is the management of uncertainty. Uncertainty exists in 
any engineering systems. Uncertainty may come from stochastic physical nature; for 
example, the ultimate stress of composite materials, the temperature of an engine, and 
the river flow velocity of a hydrokinetic turbine, are all random. Uncertainty may also 
come from the lack of knowledge or scarcity of data. The ignorance and mistreatment 
of uncertainty may lead to quality losses (Dubey and Yadava 2008) or even 
catastrophe (Radaev 2000). As a major approach to uncertainty initiated by Taguchi 
(Taguchi 1993, Taguchi et al. 2000), robust design has been widely investigated and 
applied (Youn et al. 2007, Choi et al. 2008, Lu and Li 2009, Lu et al. 2010, Ruderman 
et al. 2010, Saha and Ray 2011). For instance, Ramakrishnan (Ramakrishnan and Rao 
1996) proposed a quality loss function for the robust design of general design 
situations. Karpel (Karpel et al. 2003) applied the robust design method to the 
optimization of aeroservoelastic design. Du (Du and Chen 2000, Du and Chen 2002) 
developed an efficient robust design method for multidisciplinary design optimization 
problems, which are subjected to uncertain parameters and uncertain models. By 
using the computationally expensive finite element simulations, Wiebenga (Wiebenga 
et al. 2012) developed a generally applicable strategy for modeling and efficiently 
solving robust optimization problems. Similarly, Papadimitriou (Papadimitriou and 
Giannakoglou 2012) applied the third-order sensitivity derivatives for robust 
aerodynamic design to account for environmental uncertainties.  

In the above robust design methods, uncertain variables are usually treated as 
random variables, whose distributions are assumed precisely known. This kind of 
uncertainty is usually referred to as aleatory uncertainty (Dolšek 2012, Du 2012). 
Aleatory uncertainty is also called objective uncertainty, which arises from natural 
variability and is irreducible. Representative examples include variations in material 
properties and variation of product dimensions due to manufacturing imprecision. In 
many engineering applications, however, precise probability distributions may not 
always be available due to the lack of sufficient data (Utkin 2004). As a result, there is 
also uncertainty in the models of the above mentioned aleatory uncertainties. This 
additional or secondary uncertainty is called epistemic uncertainty (Baillie et al. 2008, 
Du 2008, Huang and Zhang 2009, Veneziano et al. 2009). For instance, the river 
velocity of the hydrokinetic turbine is associate with aleatory uncertainty because the 
natural variability is inherent in the river flow climate (Hu and Du 2012). But most of 
the time, the recorded historical river velocity data are too limited to precisely 
describe the river velocity with a specified probabilistic model. Instead, several 
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hypothetical probabilistic models may be applicable for modeling the river velocity. 
In this situation, the model of the river velocity is also associated with epistemic 
uncertainty in the design of a hydrokinetic turbine system. The widely used 
approaches to epistemic uncertainty or imprecise random variables include (1) 
interval arithmetic, (2) fuzzy sets, (3) imprecise probability theory, and (4) modeling 
the imprecise random variables with several candidate distributions. However, in most 
traditional robust design methodologies, only the precise probability theory is 
employed.  

In the past decades, many progresses were made in the related areas. For instance, 
for uncertainty analysis with imprecise random variables, Han and Jiang proposed a 
hybrid reliability analysis approach for problems with limited information (Jiang et al. 
2012). Du (Du 2008) developed a unified uncertainty analysis method based on the 
evidence theory. In the area of reliability-based design (RBD) with imprecise random 
variables (Walley 1991, Weichselberger 2000), Aughenbaugh (Aughenbaugh and 
Paredis 2006) discussed the significance of using imprecise probabilities in 
engineering design. Based on the imprecise probability theory, Utkin (Ahmad and 
Kamaruddin 2012) developed a method for estimating the bounds for the structural 
reliability. Nikolaidis and Mourelatos (Nikolaidis and Mourelatos 2011) applied the 
polynomial chaos expansion (PCE) method to the approximation of reliability upper 
and lower bounds for systems with imprecise random variables. Herrmann (Herrmann 
2009) presented an approach for solving imprecise probability design optimization 
problems.  

The imprecise probability for RBD could be extended to robust design. When the 
imprecise probability is applied to the robust design, however, it is difficult for 
decision makers to determine which probability level or hypothetical model should be 
employed for the optimization even if probability bounds can be provided by the 
P-box (Aughenbaugh and Paredis 2006). Moreover, no matter which bound or model 
is used for optimization, it always brings regrets to the decision maker. The reason is 
that another bound or model may be better than the one used (Li and Huang 2006, 
Conde and Candia 2007). It is therefore worthwhile to quantify the regret and 
ultimately minimize it during the robust optimization process. Using the 
minimax-regret (MMR) criterion (Zhang 2011, Stoye 2012) can be a solution to the 
aforementioned problem.  

The MMR criterion has been widely applied in policy management, optimization, 
and decision making under uncertainty (Renou and Schlag 2010, Renou and Schlag 
2011, Stoye 2011). It is known as an effective method to identify the strategy, which 
minimizes the maximum regret or loss when the information of system variables is 
insufficient. For example, a method was proposed for a linear programming problem 
with interval objective function using the MMR criterion (Inuiguchi and Kume 1991, 
Inuiguchi and Sakawa 1995). After incorporating the MMR analysis framework into 
the interval-parameter programming, Li and Huang (Li and Huang 2009, Li et al. 
2009) developed an interval MMR programming method. Chang and Davila (Chang 
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and Davila 2007) applied the MRR analysis method to address uncertainties in waste 
streams in major cities and improve solid waste management strategies. From the 
literature reviews it can be found that most of the applications of the MMR decision 
criterion are limited to the policy management. The purpose of this work is to 
integrate the MMR criterion and robust design so that the optimal design variables 
can be determined with both precise and imprecise random variables in engineering 
applications. The Taguchi quality loss function is employed to evaluate the robustness 
of product performance, and the MMR criterion is used to minimize the effect of 
uncertainty or maximize the robustness.  

As a new technology for alternative energy, hydrokinetic turbines have attracted 
much attention recently. During the development of a new hydrokinetic turbine 
system (Hu et al. 2012), many challenges exist, including the treatment of imprecise 
random river flow velocity. The proposed method was then applied to the robust 
design optimization of the hydrokinetic turbine system. Promising results have been 
obtained.  

The remainder of this paper is organized as follows. Section 2 reviews the 
traditional robust design methodology for random variables with precise probability 
distributions. Section 3 discusses the types of imprecise random variables. The effects 
of random variables are then investigated in Section 4. Section 5 presents the robust 
design method with precise and imprecise random variables. The developed method is 
then applied to the design optimization of a hydrokinetic turbine in Section 6. 
Conclusions are drawn in Section 7.  

 

2. Robust design with aleatory uncertainty 

In this section, the traditional robust design method is reviewed. The method is 
based on the Taguchi quality loss function (QLF) for problems with precisely known 
random variables. 

2.1 Taguchi quality loss function (QLF) 

The Taguchi QLF is widely used as a robustness metric in robust design 
optimization (Chen et al. 1999). There are three types of performance variables, 
which are referred to as quality characteristics (QCs), in a QLF. They are 
nominal-the-best QCs, smaller-the-better QCs, and larger-the-better QCs. The QLF 
can explicitly represent the effect of a deviation from the target on the quality loss. 
Minimizing the expected quality loss can bring the mean value of a nominal-the-best 
QC to its target and reduce the variability of the QC simultaneously.  

Define Z  as a QC. The QLF of a nominal-the-best QC is given by (Tsui 1992) 
 2( , ) ( )L Z T k Z T= −  (1) 
where k is the quality loss coefficient, and T is the target or desired value of Z . 

The QLFs for a smaller-the-better and a larger-the-better QC are given by 
 2( )L Z kZ=  (2) 



 

6 
 

and 
 2( ) /L Z k Z=  (3) 
respectively.  

In this work, the nominal-the-best QC is employed. The expected quality loss is   
 2 2( , ) [ ( , )] [ ( ) ]Z Z Z ZC E L Z T k Tµ σ σ µ= = + −  (4) 

and Zµ  and Zσ  are the mean and standard deviation of Z, respectively.   

2.2 Robust design based on the Taguchi quality loss function 

Let Z  be given by 
 ( , )Z f= d X  (5) 
where 1 2( , , , )nd d d=d   is the vector of design variables, ( )f ⋅  is the response 
function, and 1 2( , , , )mX X X=X   is a vector of random variables whose 
distributions are precisely known.  

With the Taguchi QLF, a robust design model for problems with precisely known 
random variables is given as follows:   

 

, 2, ,

min ( ( , ), ( , ))

subject to
( , ) 0, 1, 2, ,
( , ) 0, 1, 2, ,

Pr{ ( , ) 0} , 1

Z Z

i i

j e

k k u
L U

n

C

g i n
h j n

m P k

d

X

X

d X d X

d μ
d μ

d X
d d d

µ σ


 ≤ =


= =
 < ≥ =
 ≤ ≤







 (6) 

where  
 Xμ  are the mean values of X ; 

 ( , ) 0, 1, 2, ,i ig i nXd μ ≤ =   are deterministic inequality constraint functions; 

 ( , ) 0, 1, 2, ,j eh j nXd μ = =   are deterministic equality constraint functions; 

 , 2, ,Pr{ ( , ) 0} , 1k k unm P kd X < ≥ =   are the probabilistic constraint functions; 

 Ld and Ud  are lower and upper bounds of d , respectively; 
 ( , )Zµ d X and ( , )Zσ d X are the mean and standard deviation of Z , 

respectively.  
( , )Zµ d X and ( , )Zσ d X  can be calculated either by analytical methods or by 

Monte Carlo simulation (MCS). 
With analytical methods, 

 ( , ) ( , ) ( )Z f p dµ
∞

−∞
= ∫ Xd X d X X X  (7) 

 2( , ) [ ( , ) ( , )] ( )Z ff p dσ µ
∞

−∞
= −∫ Xd X d X d X X X  (8) 

where ( )pX X
 
is the joint probability density function (PDF) of X . 

With MCS,  
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1

1( , ) ( , )
N

Z i
i

f
N

µ
=

= ∑d X d x  (9) 

 2

1

1( , ) [ ( , ) ( , )]
1

N

Z i Z
i

f
N

σ µ
=

≅ −
− ∑d X d x d X  (10) 

where N  is the number of samples, and ix  is the i-th sample of X .  
MCS generally requires hundreds of calls of function ( , )Z f= d X . If the 

function is computationally cheap, MCS can be employed. Otherwise, an analytical 
method should be used. However, when the dimension of X  is large, Eqs. (9) and 
(10) for the analytical method may also be computationally expensive because of the 
high-dimensional integrals. In this case, other approximation methods may be used 
(Madsen 1986, Du et al. 2005, Huang and Du 2008, Zhang and Du 2010, Banerjee 
and Smith 2011, Kim et al. 2011, Millwater and Feng 2011).  

 

3. Imprecise random variables 
Probability distributions are usually obtained from statistical data. When the data 

are limited, obtaining a precise distribution is difficult, and the following types of 
imprecise random variables may be encountered: 

• Type I – Random variables with multiple candidate distributions 
• Type II – Probability distributions whose parameters, such as means and 

standard deviations, are also uncertain  
In this paper, an imprecise random variable is denoted by Y . 

3.1 Random variables with multiple candidate distributions 
When statistical data are not sufficient to produce a precise distribution, several 

candidate distributions, which can fit the data well, may be obtained. Without any 
prior knowledge about the distribution of a random variable, a standard procedure of 
hypothesis testing (McGill et al. 2006) can be followed by making a hypothesis that 
the random variable follows distribution A. The hypothesis test can be performed for 
distributions B, C, D, and so on. If the sample size of the data is not large enough, it is 
common that several distributions, such as distributions A, B, C, and D, can pass the 
hypothesis test. When this happens, multiple candidate distributions can be used to 
describe a single random variable, and the distribution is therefore not precisely 
known. Fig. 1 shows the cumulative probability density function (CDF) of an 
imprecise random variable with three possible distributions. 

 
------------------------------- 

Place Fig. 1 here  

------------------------------- 

This situation is commonly encountered in practical applications. For example, the 
wind speed of a wind turbine at different locations may be described by a Weibull, 
Generalized Rayleigh, Lognormal, or Kappa distribution (He 2009, Morgan et al. 
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2011). The initial crack size of materials is suggested to be a Lognormal or Weibull 
distribution (Zhang and Mahadevan 2000). Similarly, the equivalent initial flaw size 
may be modeled as a Lognormal, Weibull, or three-parameter Weibull distribution 
(Maymon 2005, Cross et al. 2007, Makeev et al. 2007). When data are too limited, all 
these empirical models can be used as candidate distributions for the imprecise 
random variable. 
 

3.2 Random variables with imprecise distribution parameters 
For this case, the distribution type of a random variable may be known, but the 

distribution parameters may not be precise. A distribution parameter such as the mean 
is typically estimated from data available. The confidence of the estimation largely 
depends on the sample size. The larger is the sample size, the higher is the confidence. 
The estimate may be given within an interval, which is usually called the confidence 
interval. At a certain confidence level, the width of the confidence interval depends on 
the sample size. When the sample size is large, the width of the confidence interval is 
small, and the midpoint of the interval can then be used as the associated distribution 
parameter. If the sample size is too small, however, the interval will be wide. In this 
case, the midpoint cannot be simply used, and then the random variable has imprecise 
distribution parameters. 

Let Y  be a random variable with imprecise distribution parameters and 
( , )p YYp f y= r



  be its probability density function (PDF). Suppose the distribution 

parameters are 
 [ , ]YY Yr r r∈  (11) 

in which Yr  is the vector of distribution parameters, and Yr  and Yr  are the lower 
and upper bounds, respectively.      

As an example, Fig. 2 shows the CDF curves of an imprecise random variable Y  
with a known normal distribution, known standard deviation, but an imprecise mean. 
Figs. 3 and 4 present the CDF curves of a normal random variable with an imprecise 
standard deviation and with both imprecise mean and standard deviation, respectively. 

 

------------------------------- 

Place Figs. 2-4 here  

------------------------------- 

 

To account for the random variables with imprecise distribution parameters, the 
p-box method (Aughenbaugh and Paredis 2006) can be used, where a p-box expresses 
the CDF of imprecise random variable by interval bounds as indicated in Figs. 2 
through 4. However, no matter which bounds are used, they may always result in 
regrets. A new method is needed to accommodate imprecise random variables for 
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robust design. In the next section, the effects of imprecise random variables on the 
robustness of a product are further explained, and a new robust design method is then 
developed using the MMR criterion to minimize the regrets due to the impreciseness.  
 
4. General effects of random variables 

Robust design optimization is used to minimize the effects of uncertainties during 
the design process. The effects of both aleatory and epistemic uncertainties are 
explained below.   

 

4.1. Effects of aleatory uncertainty (precise random variables) 
Due to the involvement of aleatory uncertainty, the performance variable Z  is 

also a random variable. To make the performance insensitive to aleatory uncertainty, 
robust design optimization presented in Sec. 2 brings the mean of Z  to its target and 
at the same time reduces the standard deviation of Z . Fig. 5 illustrates the PDF of Z  
before and after robust design optimization. After the optimization, the distribution of 
Z  is shifted to the target, and the distribution is also shrunk. 

 
------------------------------- 

Place Fig. 5 here  

------------------------------- 

 

4.2. Effects of epistemic uncertainties 

When there are also imprecise random variables Y , the performance function 
given in Eq. (5) becomes 
 ( , , )Z f= d X Y  (12) 

As discussed in Sec.3, there may be several models for the distribution of an 
imprecise random variable. If only one of them is used in the robust design 
optimization described in Sec. 2, the obtained solution may not be optimal for other 
models.  

 In fact, the performance variable Z  is a random variable because it is a function 
of random variables X , and it is also an imprecise random variable because it is also 
a function of imprecise random variables Y . As a result, the mean and standard 
deviation of Z  will not be singled-valued quantities. The task of this work is to 
develop a new robust design optimization approach to deal with the combined 
aleatory and epistemic uncertainty.  
 

5. Robust design with the mixture of aleatory and epistemic uncertainties 
The new robust design optimization method is built upon the Taguchi QLF and the 
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MMR criterion, which will be reviewed first. Then the new robust design 
optimization method is discussed.  

 

5.1 The MMR criterion 
  The MMR criterion has been adopted for decision making when the information of 
input variables are incomplete (Manski 2007, Tetenov 2012). Let 

(1) (2) ( )[ , , , ]n=U u u u  be a vector of the candidate models for the imprecise random 

variables U  and *
is  be the optimal strategy for the design obtained from the 

assumption that only the i-th model ( )iu  is correct.  
The regret of strategy s  with respect to i-th model ( )iu

 
is given by 

 ( ) ( ) * ( )( , ) ( , ) ( , )i i i
iR V V= −s u s u s u  (13) 

where ( )( , )iV s u  is the quality loss of strategy s  if the QLF is used. Eq. (13) 

indicates that ( )( , )iR s u  is always positive.  
The maximum regret of strategy s  is then computed by  

 ( )
max ( , ) max{ ( , ), 1, 2, , }jR R j n= =s U s u   (14) 

According to the MMR criterion, the optimal strategy for the vector of imprecise 
information U  is defined as 

 *
maxarg min ( , )R=

d
s s U  (15) 

The minimax analysis is formulated as an optimization problem as follows:  

 

{ }( )Min Max[ ( , )]

subject to
( ) 0, 1, 2, ,
( ) 0, 1, 2, ,

i

i i

j e

MMR R

g i n
h j n

s u
s u

s
s

 =




≤ =
 = =





 (16) 

where 1 2[ , , , ]ns s s=s   is the space of strategies.  
 

5.2 Robust design based on the MMR criterion 
As discussed in Sec. 5.1, the MMR criterion can minimize the regret for decision 

making under uncertainty. In this section, robust design methods with precise and 
imprecise random variables are introduced based on the MMR criterion. For different 
types of imprecise random variables, three models are proposed.   

5.2.1. Model 1 — Robust design with Type I imprecise random variables  
Let Y  be the vector of imprecise random variables. For Type I imprecise 

random variables, Y  is given by 
 (1) (2) ( )[ , , , ]n=Y Y Y Y

  (17) 

where ( )iY  stands for the i-th hypothetical distributions for Y .  
With the MMR criterion, the following robust design optimization model is 
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proposed: 

 

( )

max

( )(1) (2)
max

( ) ( ) ( )

( ) ( ) ( ) ( )

min ( )

subject to
( ) max{ ( , , ), ( , , ), , ( , , )}
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µ σ
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− =

≤ = =
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ik e h

i
l l u h

L U

n

k n i n

m P l i n
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d d d











 = = =

 < ≥ = =


≤ ≤



 



 (18) 

where hn  is the number of hypothetical distributions, ( )( , , )ir d X Y  is the regret of 

the design obtained from the i-th hypothetical distribution, max ( )R d  is the maximum 

regret, and ( ) , 1, 2,i
opt hi nd =   is the optimal design by using the i-th hypothetical 

distribution from the following optimization model: 

 
( )

( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

, 2, ,

min ( ( , , ), ( , , ))

subject to
( , ) 0, 1, 2, ,

( , ) 0, 1, 2, ,

Pr{ ( , , ) 0} , 1

i

i

i i i i
Z opt Z opt

i
j opt j

i
k opt e

i
l l u

L i U
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n
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g j n

h k n

m P l

d
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X Y

d X Y d X Y

d μ , μ

d μ , μ

d X Y
d d d

µ σ




≤ =


= =
 < ≥ =
 ≤ ≤







 (19) 

( ) ( )( , , )i i
Z optµ d X Y  and ( ) ( )( , , )i i

Z optσ d X Y  are solved using Eqs. (7) and (8) or (9) 

and (10). 

5.2.2. Model 2 — Robust design with Type II imprecise random variables  
Let Y  be the vector of imprecise random variables. For Type II imprecise 

random variables, Y  is presented by 
 ( ), [ , ]YY Y YY Y r r r r= ∈

   (20) 

in which ( )YY r  are the vectors of random variables Y  given the imprecise 

distribution parameters Yr .   
Then the robust design optimization model is given by 
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 (21) 

The robust design optimization model involves a triple loop procedure.   

5.2.3. Model 3— Robust design with both Type I and II imprecise random variables  
When both Type I and II imprecise random variables are involved, Y  is given by  

 (1) (2) ( )[ ( ), , , , ], [ , ]n
YY Y YY Y r Y Y Y r r r= ∈

 
  (22) 

After combining Models 1 and 2, the new robust design optimization model is 
developed as follows: 
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 (23) 

It is a quadruple loop problem.  
 

5.3 Numerical procedure 
The numerical procedure includes three steps. 
Step 1: Perform robust design optimization for every hypothetical distribution and 
obtain the minimum quality loss.  
Step 2: Compute the regrets for design strategies.  
Step 3: Identify the maximum regret for design strategies and obtain the optimal 
design by minimizing the maximum regret.  
In the subsequent subsections, the numerical procedures are summarized for 

models 1, 2, and 3 in details. 

5.3.1. Numerical procedure of Model 1 
The flowchart for the first robust design optimization model is given in Fig. 6. 
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------------------------------- 

Place Fig. 6 here  

------------------------------- 

 

The main steps are summarized below. 
Step 1: Perform robust design optimization for ( )( , , )iZ f= d X Y  using Eq. (19). 
After the optimization, the minimum quality loss 

min min min[ (1), (2), , ( )]hC C C nminC =   corresponding to each hypothetical 
distribution is obtained.  
Step 2: Use Eq. (18) to calculate the regret ( )( , , )ir d X Y  for each hypothetical 
distribution.  

Step 3: Identify max ( )R d  and minimize it by changing the design variables. 

5.3.2. Numerical procedure of Model 2 
Fig. 7 shows the flowchart of the numerical procedure. 
 
------------------------------- 

Place Fig. 7 here  

------------------------------- 

 
The main steps are described below. 
Step 1: Initialize d  and Yr . 

Step 2: Perform the inner loop optimization for the response ( , , ( ))t YZ f d X Y r=   

under distribution parameters Yr .  

Step 3: Compute regret ( , )Yr d r  of design d  with distribution parameters Yr . 

Step 4: Check the convergence. If the regret ( , )Yr d r  is the maximum, go to next 

step; otherwise, generate new point for Yr  and go to step 2. 

Step 5: Check convergence. If the maximum regret maxR  reaches the minimum, 
stop; otherwise, generate a new point for d  and go to step 1. 

5.3.3. Numerical procedure of Model 3 
Fig. 8 depicts the flowchart of the numerical procedure. 
 
------------------------------- 

Place Fig. 8 here  

------------------------------- 
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Similar to Model 2, there are five steps as follows: 
Step 1: Initialize d  and Yr . 

Step 2: Solve sub-models i, 1, 2, , hi n=  , and obtain the regrets ( )( , , )i
temp Yr d r Y  

with parameters of d  and Yr .  

Step 3: Identify the maximal regret ( , )Yr d r  from regrets ( )( , , )i
t Yr d r Y  , 

1, 2, ,i n=  .  
Step 4: Check convergence. If the regret ( , )Yr d r  reaches the maximum, go to 

the next step; otherwise, generate a new point for Yr  and go to step 2. 

Step 5: Check convergence. If the maximum regret maxR  is obtained, stop; 
otherwise, generate a new point for d  and go to step 1. 
It is more computationally expensive to perform robust design with imprecise 

random variables than the design with only precise random variables. Since there are 
multiple loops involved in the proposed models, solving the models efficiently is a 
challenging task. For practical applications, the solution is to create meta-models to 
replace the expensive models that are needed to obtain the objective and constraint 
functions. The drawback of doing so is the sacrifice of accuracy. Hence there is a 
tradeoff between efficiency and accuracy. For problems with costly simulation models, 
constructing meta-models takes most of the time for the robust design. Carefully 
constructing meta-models is the key to maintaining satisfactory efficiency with 
acceptable accuracy. Developing more efficient algorithms for robustness assessment 
will also help improve the efficiency.     

 
6. Robust design optimization of hydrokinetic turbine 

In this section, the application of the proposed method in the design of a 
hydrokinetic turbine system is discussed.  

6.1 Problem statement  
As one of the most sustainable, clean, and carbon-free energy sources, 

hydropower has drawn attention of many engineers and researchers (Nitin et al. 2011).  
The most conventional and commonly used way is to construct water dams, which 
extract energy from running water flow. The construction of water dams, however, has 
many disadvantages, including the expensive initial construction cost, special 
requirements for natural sites, and hazards brought to the environment. Hydrokinetic 
turbine systems and tidal turbine systems have many advantages over water dams 
(Anyi et al. 2010, Lago et al. 2010, Hu and Du 2012). Hydrokinetic turbines have the 
same working principle as that of wind turbines. They are portable; they have a cheap 
initial construction cost and no special requirements for application sites. Even if 
many progresses have been made in the area of the design of hydrokinetic turbines, 
the commercialization of hydrokinetic turbines is still limited by its power efficiency.    

One factor that affects the robustness of the power output is the natural variability 
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of river velocity, which is inherent in the water climate. For instance, a hydrokinetic 
turbine with a constant rotational speed may have the maximum power efficiency 
under a certain river velocity. But when the river velocity varies to another level, the 
efficiency may become low. To maximize the power productivity of a hydrokinetic 
turbine, the probabilistic characteristics of river velocity should be considered during 
the design process. One approach to this purpose is the robust design optimization. 

The uncertainties involved in the design of hydrokinetic turbines can be classified 
into two groups – the uncertainty of geometric dimensions due to manufacturing 
imprecision and the uncertainty in the river velocity. The uncertainty in dimensions is 
commonly modeled by normal distributions. The distribution parameters can be easily 
obtained from the nominal dimension variables for the mean values and from the 
tolerances for standard deviations. It is, however, difficult to obtain the distribution of 
the river velocity. The data available are not sufficient enough to determine a precise 
distribution. For the reasons mentioned previously, several candidate distributions for 
the river velocity may be obtained. There are therefore both precise and imprecise 
random variables in the design optimization. The proposed new robust design 
optimization methods can be applied to the optimization of hydrokinetic turbines.  

The blades of a hydrokinetic turbine with a constant chord length are shown in 
Fig. 9. The three-blade system was developed for the potential operation in the 
Missouri river. The diameter of the hydrokinetic turbine rotor is 1 m. The task of the 
robust design is to optimize the chord length and rotational speed, which in turn 
maximize the energy productivity of the turbine.  

 
------------------------------- 

Place Fig. 9 here  

------------------------------- 

 
The design variables are therefore the rotational speed ω  and the mean of the 

chord length cµ . The dimension variables c  and rootr , which are the chord length 
and radius of turbine blades, are precise random variables. The imprecise random 
variable is the river flow velocity v . 
 

6.2 Robust design optimization model for hydrokinetic turbines 

6.2.1 Robust design optimization model 
Since the river velocity v  is an imprecise random variable with multiple 

hypothetical distributions, Model 1 is applicable to this design problem. The 
optimization model is given by  
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where  
— n  is the number of hypothetical distributions of the river velocity; 
— rootr  is the radius of the hydrokinetic turbine blade; 

— ( )iv  is the i-th hypothetical distribution of the river velocity; 

— pk  is the quality loss function coefficient of the power output; 

— pT  is the target of the power output; 

— ( )( , , , )i
Po rootc r vµ ω  and ( )( , , , )i

Po rootc r vσ ω  are the mean and standard deviation of 
the power output, respectively, for the i-th hypothetical distribution of the river 
velocity; 
— ( ) ( )andi i

opt optc ω  are the optimal chord length and rotational speed, respectively, with 

respect to the i-th hypothetical distribution, which can be obtained by solving the 
following optimization model: 
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The power output is given by  

 3 20.5 ( , )root pPo v r C cr p λ=  (26) 

where r  is the river water density (kg/m3), v  is the river velocity (m/s), ( , )pC cλ  

is the power coefficient, and λ  is the tip speed ratio of the turbine.  
The tip speed ratio λ  is given by  

 rootr
v
ωλ =  (27) 

Substituting Eq. (27) into Eq. (26) yields 

 3 2( , , , ) 0.5 ( , )root root p rootPo c r v v r C r v cω r p ω=  (28) 
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Eqs. (26)-(28) show that the key to the design is to compute the power coefficient 
( , )pC cλ .  

6.2.2 Construction of surrogate model for ( , )pC cλ  

The computational fluid dynamics (CFD) simulation is needed to compute the 
power coefficient. The CFD simulation, however, is very computationally expensive. 
It cannot be directly applied to the robust design. Based on the CFD simulations at 
specified points from design of experiment (DOE), surrogate models were constructed 
by using the polynomial chaos expansion (PCE) (Xiu and Karniadakis 2003, Xiu and 
Shen 2009) method for ( , )pC cλ .   

(a) CFD simulation 
A CFD analysis was performed to study the effect of operating parameters on the 

performance of the hydrokinetic turbine. The turbine model used for this study was a 
1m radius-constant chord-no twist turbine made from single airfoil SG6043. ANSYS 
FLUENT was used on an 8 core, 25GB RAM computer. A multiple reference frame 
technique was employed to model the flow over the turbine, wherein, the turbine was 
placed within an inner domain, which rotates inside the outer stationary domain 
(Fig.10 (a)). The fluid flow governing equations were solved in the rotating domain 
for the inner domain and stationary frame for the outer domain. The transformation of 
the flow variables took place at the interface between the two domains. Fig. 10 (a) 
shows various boundary conditions imposed on the CFD model. The velocity inlet 
boundary condition was specified at the inlet of the outer flow domain while pressure 
outlet boundary condition was specified at the exit. The outer cylinder surface was 
modeled as a symmetry boundary so that there is no flux and flow across the 
boundary. The turbine was treated as a solid wall, and the common region between the 
two domains was defined as interior through which flow transfer takes place. 

 
------------------------------- 

Place Fig. 10 here  

------------------------------- 

 
The flow domain consists of about 2.8 million tetrahedral/hybrid elements. The 

mesh for boundary layer near the turbine blade surface was locally refined to 
accurately simulate the near wall boundary layer flow field (Fig. 10b).  

A second order discretization scheme was used to solve the convective terms in 
the fluid flow governing equations. The pressure velocity coupling was solved using 
the SIMPLE (Semi-implicit method for pressure linked equation) algorithm. The 
PRESTO (pressure staggering options) scheme was adopted due to its superiority for 
flows with steep pressure gradient such as the present case (Ansys). A k-ω SST 
turbulence model of Menter (Menter 1994) was used to characterize the turbulent 
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flow around the turbine. The convergence criteria for residuals of continuity, 
momentum, turbulent kinetic energy (k) and specific dissipation (ω) equations were 
set to 10-4 RMS. The fluid domain mesh (Fig. 10) was generated using ANSYS 
meshing tool, and the grid resolution requirements were well established by keeping 
y+ ~ 120, so that the wall boundary layer was adequately resolved with good  
accurate. The procedure and results of the CFD analysis are discussed in details in 
(Subhra Mukherji et al. 2011).  

Table 1 presents various parameters chosen for the CFD analysis while Table 2 
summarizes the results of the CFD analysis for the constant chord turbines used for 
the robust design study. Various parameters, such as the tip speed ratio (TSR) and 
chord length (c), were tested to quantify their effect on the performance of the 
hydrokinetic turbine. The CFD simulations were carried out for turbines with chord 
length varying from 0.167 to 0.3m and TSR varying from 1.5 to 4. 

 
------------------------------- 

Place Tables 1-2 here  

------------------------------- 

 

 (b) Polynomial Chaos Expansion method 
The expansion order for the PCE is three, the expansion interval of the tip speed 

ratio is [1.5, 4.0], and the interval of the chord length is [0.167, 0.25] m. The 
constructed surrogate model is given by 
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where 

 1
2 L U

U L
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λ − −
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−
ξ  (30) 

 2
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c c

c L U
U L
− −

=
−

ξ  (31) 

in which Uλ  and Lλ  are the upper and lower bounds of the tip speed ratio 

expansion interval, respectively; cU  and cL  are the upper and lower bounds of the 

chord length expansion interval, respectively; ( )iL ⋅  is the i-th  order Legendre 

polynomial basis. For 1i = , 1( )L x x= ; for 2i = , 2
2

1( ) (3 1)
2

L x x= − ; and for 3i = , 
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3
3

1( ) (5 3 )
2

L x x x= − . The Legendre polynomial bases were selected to perform the 

chaos expansion because the design variables can be treated as generalized variables 
with uniform distributions and they have equal weights over the expansion intervals.  

To compute coefficients , 0,1, 2, ,9k kχ =  , or the PCE, the point collocation 
method was employed (Wei et al. 2008, Eldred and Burkardt 2009, Hu and Youn 
2011). Three-dimensional CFD simulations were performed first at the sample points 
generated from design of experiments (DOE). Based on the results of the CFD 
simulations, the power coefficients of the turbine blades were obtained. With pN  

CFD simulations, the coefficients kχ  were solved with the following equation: 
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 (32) 

where 1 2[ , ], 1, ,i i i
pi Nξ ξ ξ= =  , is the i-th  group of sample points, and ( )i

pC ξ  is 

the power coefficient with the i-th group of sample points obtained from the CFD 
simulations. The coefficients are given by 

 0 1 2 3 4 5
4

6 7 8 9

,0.1048, 0.0091, 0 0.0171, 0.0262, 0.0035,

0.0059, 2.659 10 , 0.0019, 0.0090

χ χ χ χ χ χ

χ χ χ χ−

= = = = − = − = −

= = × = − = −
 (33) 

  After the construction of surrogate model, the goodness-of-fit was evaluated by 
calculating the coefficients of determination. The coefficients of determination 2R  
are given by  
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where pC  is the data obtained from the CFD simulations, pC  is the mean of all data 

from the CFD simulations, and ˆ ( )pC ξ  is the data computed from the surrogate 

model. 2R  is 0.9370, which indicates that the fitted model is accurate. (A coefficient 
of determination of 0.9 or higher is considered as a good fitting).  

Fig. 11 plots the scatter diagram of the results obtained from the CFD simulations 
and the surrogate model. The diagram shows that the points are evenly distributed at 
the two sides of ˆ

p pC C= . It indicates that the surrogate model obtained in Eq. (29) 

can accurately describe the relationship between power coefficient, TSR, and chord 
length. 

 
------------------------------- 

Place Fig. 11 here  

------------------------------- 
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Fig. 12 presents the surrogate model of the power coefficient and data points 
obtained from the CFD simulations. The shaded surface is the surrogate model, while 
the star points represent the data from the CFD simulations.  

 
------------------------------- 

Place Fig. 12 here  

------------------------------- 

 
All the equations for calculating the power output ( , , , )rootPo c r vω  are now 

available. With the surrogate model for the power coefficient pC , it is 

computaionally cheap to compute ( , , , )rootPo c r vω . The MCS method can therefore 

be applied to the computation of the mean and standard deviation of ( , , , )rootPo c r vω , 
which are needed by Eqs. (24) and (25). With MCS, the mean and standard deviation 
are computed by 
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where ic , ,root ir , and ( )j
iv  are i-th sample of c , rootr , and ( )jv , respectively.   

 

6.3 Data   
Table 3 presents the precise parameters and random variables for the design 

optimization of the hydrokinetic turbine. Amongst these parameters, rootr  and c  are 
truncated at three sigma level due to the manufacturing tolerance, and the river 
velocity v  is truncated at 0.8 m/s and 4.5 m/s because of the cut-in and cut-out river 
velocities.  

 
------------------------------- 

Place Table 3 here  

------------------------------- 

 

The river velocity v  can be obtained from the historical river velocity data (as 
shown in Fig. 13) of Missouri river from year of 1898 to 1989.  
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------------------------------- 

Place Fig. 13 here  

------------------------------- 

 

Before fitting distributions for the historical data, the Lilliefors test is performed, 
which is a special case of the Kolmogorov-Smirnov goodness-of-fit test. The 
Lilliefors test tests raw data against normal, lognormal, extreme value, Weibull, and 
exponential distributions without specifying the distribution parameters. Under the 
95% confidence, the normal, lognormal, and Weibull distributions were not rejected, 
and the extreme value distribution was rejected. The normal, lognormal, and Weibull 
distributions were then fitted with the data. Fig. 14 shows the velocity data and the 
three distributions. The associated distribution parameters are given in Table 4. 

 
------------------------------- 

Place Fig. 14 here  

------------------------------- 

 
------------------------------- 

Place Table 4 here  

------------------------------- 

 

To verify the three distributions, after their fittings, the Kolmogorov–Smirnov 
tests were performed using the raw data in Fig. 13. All the distribution passed the 
testing under 95% confidence. This means that the three disrtibutions could serve as 
cadidate distribution for the river velocity. 

 

6.4 Numerical procedure for the robust design optimization of hydrokinetic 
turbines 

Fig. 15 shows the main steps for the robust design of hydrokinetic turbines.  

 
------------------------------- 

Place Fig. 15 here  

------------------------------- 
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6.5 Results and discussions 
Table 5 shows the results from both the robust design optimization with only 

precise random variables (the traditional method) and the robust design optimization 
based on the minimax regret criterion (the new method). In this table, Design i, where 
i = 1, 2, 3, means the optimal design considering only the i-th candidate distribution. 
The three designs are from the traditional robust design method. The “Optimal 
Design” in the table stands for the design obtained from the new method with the 
MMR criterion.    

 
------------------------------- 

Place Table 5 here  

----------------------------------- 

   

Table 6 gives the means and standard deviations of power outputs of the four 
designs, and Table 7 provides the quality losses of the four designs.  

 

--------------------------------- 

Place Tables 6-7 here  

----------------------------------- 

 

The two tables clearly show that Design i is the optimal for the i-th candidate 
distribution because of the least quality loss, but is not optimal for the other two 
candidate distributions. For example, when Design 1 is adopted, for the Weibull 
distribution, the loss is $4.72×107, which is the minimum amongst the four designs. If 
the distribution is indeed Weibull, Design 1 is then the true optimal design. However, 
if the true distribution is Lognormal, the quality loss will be $2.93×107, and the 
minimal loss will be $2.6685×107 from Design 2; if the true distribution is Normal, 
the quality loss will be $4.5891×107, and the minimal loss will be $4.5875×107 from 
Design 3. Then Design 1 will no longer be optimal for these two situations, for which 
nonzero regret values will be generated. The regret values for Design 1 are calculated 
as follows: 

For the Weibull distribution,  

7 7

Quality loss of Design 1 Minimal quality loss under this distribution
$4.72 10 $4.72 10 $0

−

= × − × =
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Similarly, for the Lognormal distribution, 

$2.93×107−$2.67×107=$2.59×106 

For the normal distribution, 

$4.59×107−$4.58×107=$0.016×106 

Thus, Design 1 has a maximum regret of $2.59×106. Similarly, the regret values 
for Design 2, 3, and the optimal design can be calculated. All the regret values of the 
four designs are shown in Table 9 and plotted in Fig. 16. In Table 8, the maximum 
regrets of the four designs are summarized. The maximum regrets for Design 1, 2, 3, 
and the optimal design are $2.5904×106, $3.1243×106, $2.2281×106, and $0.6948×106, 
respectively.  

The results show that the maximum regrets of the three designs obtained from the 
traditional robust design method is about three times of that of the optimal design. It 
indicates that the robust design method based on the MMR criterion has improved the 
robustness of the design with respect to the uncertainties in the random variables.  

 
--------------------------------- 

Place Table 8 here  

----------------------------------- 
 

------------------------------- 

Place Fig. 16 here  

------------------------------- 

 

 

7. Conclusions 
In many engineering applications, some random variables are precisely known 

and others may be imprecisely known. There are uncertainties in both of the 
probabilistic models and probabilistic parameters of random variable due to the 
incomplete information or limited data for the modeling of random variable. The 
results of design optimizations would be affected by the model used for the imprecise 
random variable. To make the design more robust against the uncertainties in random 
variables, a robust design method based on the MMR criterion is developed. The 
method is able to minimize the maximum regret of the design with respect to the 
quality loss. The robust design method with only precise random variable, the 



 

25 
 

Taguchi quality loss function, and the MMR criterion are considered together to get 
an optimal design. 

The new method has been applied to the robust design optimization of a 
hydrokinetic turbine. The result demonstrates that the traditional robust design can 
introduce large regrets in the quality loss if imprecise random variables exist. The 
result also shows that the new method can reduce the regret significantly.  

The application was based on the Monte Carlo simulation, which needs to call the 
objective and constraint functions many times. For applications with expensive 
functions, solving the robust design optimization will be less efficient. Improving the 
efficiency will be one of the future research directions. 
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Table 1. Parameters for CFD analysis 

Hydrofoil SG-6043 

Density (r) 998.2 kg/m3 

Pressure (p) 101.3 kPa 

Rotor radius (R) 1 m 

Chord length (c) 0.167-0.3 

Number of blades (N) 2-4 

Blade pitch (θP) 10° 

Rotor speed (Ω) 3-8 rad/s 

Fluid speed (U∞) 2 m/s 

Turbulence model k-ω SST 

Interpolating scheme 2nd order upwind 

Pressure scheme PRESTO 

Residual error 1×10-4 
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Table 2. Results of CFD simulations 

c(m) 0.167 0.2 0.25 
TSR Cp Cp Cp 
1.5 0.06 0.06 0.08 
2 0.09 0.10 0.10 

2.5 0.12 0.12 0.11 
3 0.13 0.16 0.10 

3.5 0.14 0.12 0.08 
4 0.10 0.08 0.07 
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Table 3. Precise parameters and random variables 

Variable r  rootr  c  pk  pT  

Type Constant Truncated normal Truncated normal Constant Constant 
Mean 1×103 kg/m3 1 m cµ  2 6000 

Standard 
deviation 

N/A 1×10-2 m 1×10-3 m N/A N/A 
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Table 4. Hypothetical distributions for river velocity 

Distribution Type 
Weibull 

(Distribution 1) 
Lognormal 

(Distribution 2) 
Normal 

(Distribution 3) 
Distribution 
Parameters 

1.85 (Scale) 1.77 m/s (Mean) 1.82 m/s (Mean) 
14.17 (Shape) 0.13 m/s (Std) 0.14 m/s (Std) 

where Std stands for a standard deviation.   
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Table 5. Optimized results of design variables 

 Design 1 Design 2 Design 3 Optimal Design 
Rotational speed (r/min) 48.56 61.91 49.55 54.95 

Chord (m) 0.2223 0.2218 0.2222 0.2230 
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Table 6. Means and standard deviations of power output (×103 W) 

Candidate 
distributions 

 
Design 1 Design 2 Design 3 

Optimal 
Design 

Weibull 
Mean 1.1488 0.9961 1.1483 1.1157 
Std 0.2879 0.3749 0.2943 0.3298 

Lognormal 
Mean 2.1789 2.3502 2.1997 2.3024 
Std 0.1169 0.1446 0.1191 0.1309 

Normal 
Mean 1.2177 1.0863 1.2189 1.1950 
Std 0.2742 0.3579 0.2805 0.3147 
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Table 7. Quality losses of different designs under candidate distributions (×107 $) 

Hypothetical distributions Design 1 Design 2 Design 3 Optimal Design 
Weibull 4.7235 5.0389 4.7250 4.7930 

Lognormal 2.9275 2.6685 2.8913 2.7379 
Normal 4.5891 4.8545 4.5875 4.6375 
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Table 8. Regret values of the four designs under hypothetical distributions (×106 $) 

Hypothetical distributions Design 1 Design 2 Design 3 Optimal Design 
Weibull 0 3.1243 0.0156 0.6948 

Lognormal 2.5904 0 2.2281 0.6948 
Normal 0.0155 2.6701 0 0.4995 

Maximum regret 2.5904 3.1243 2.2281 0.6948 
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Fig. 1. CDF of a random variable with three possible distributions 
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Fig. 2. CDFs of Y  with imprecise mean 
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Fig. 3. CDFs of Y  with imprecise standard deviation 
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Fig. 4. CDFs of Y  with imprecise mean and standard deviation 
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Fig. 5. PDFs of Z  before and after robust design optimization 
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Fig. 6. Flowchart of the first robust design optimization model 
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Fig. 7. Flowchart of the second robust design optimization model 
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Fig. 8. Flowchart of the third robust design optimization model 
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Fig. 9. Prototype of a Hydrokinetic turbine 
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Fig.10 (a) Boundary conditions for 3D CFD model   (b) CFD mesh-Local 
refinement  

(b) (a)
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Fig. 11. Scatter diagram of the results obtained from CFD simulations and 

response surface model 
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Fig. 12. Surrogate model of the power coefficient and data points from simulations 
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Fig. 13. Historical river velocity data of Missouri river at Hermann, Missouri station  
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Fig. 14. Fitted distributions for the river velocity  



 

53 
 

 
Fig. 15. Flowchart of robust design of hydrokinetic turbine 
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Fig. 16. Regret values of four different designs under different candidate distributions  
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