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Abstract 

Interval variables are commonly encountered in design, especially in the early design 

stages when data are limited. Thus, the reliability analysis should deal with both interval 

and random variables and then predicts the lower and upper bounds of reliability. The 

analysis is computationally intensive because the global extreme values of a limit-state 

function with respect to interval variables must be obtained during the reliability analysis. 

In this work a random field approach is proposed to reduce the computational cost with 

two major developments. The first development is the treatment of a response variable as 

a random field, which is spatially correlated at different locations of interval variables. 

Equivalent reliability bounds are defined from a random field perspective. The definitions 

can avoid the direct use of the extreme values of the response. The second development is 

the employment of the First Order Reliability Method (FORM) to verify the feasibility of 

the random field modeling. This development results in a new random field method based 

on FORM. The new method converts a general response variable into a Gaussian field at 

its limit state and then builds surrogate models for the auto-correlation function and 

reliability index function with respect to interval variables. Then Monte Carlo simulation 

is employed to estimate the reliability bounds without calling the original limit-state 

function. Good efficiency and accuracy are demonstrated through three examples. 

Keywords: Random field, Interval Variable, Epistemic uncertainty, Reliability analysis 
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1. Introduction 

The major task of reliability analysis is to predict reliability in a design stage. 

Because of this advantage, reliability analysis has been used in many applications, such 

as those of automobile vehicles [1], wind/hydrokinetic turbines [2], and airplanes [3]. The 

reliability analysis requires a known limit-state function, which specifies the functional 

relationship between input variables and output variables (responses), and the joint 

probability distribution of the input variables.  

In many applications, especially in the early design stages, the data of some input 

variables are too limited to fit probability distributions. For this situation, the fuzzy set [4], 

evidence theory [5], random matrix theory [6-8], and intervals  [9, 10] are employed to 

model the uncertainty of input variables. Interval variables are used for the highest degree 

of uncertainty – only the lower and upper bonds of an input variable are available. For 

instance, the contact resistance in the vehicle crash [11] and the tolerances of the 

dimension of a new product [12] are examples of interval variables. As a result, the input 

variables of a limit-state function may contain both random and interval variables, and 

the reliability is therefore also bounded within its minimum and maximum values.  

 Many methods are available for the reliability analysis with the mixture of random 

and interval variables. For example, Jiang et al. [13] developed a reliability analysis 

method based on a hybrid uncertain model. In their model, parameters such as means and 

standard deviations of some random variables are described as interval variables. Adduri 

and Penmetsa [14] investigated the method of approximating the bounds of structural 

system reliability in the presence of interval variables. Luo et al. [15, 16] developed an 

iterative procedure to obtain the worst-case points of interval variables and the Most 
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Probable Point (MPP) using a probability and convex set model. Penmetsa and Grandhi 

[17] used function approximation methods to improve the efficiency of reliability 

analysis with random and interval variables. By combining simulation process with 

interval analysis, Zhang et al. [18] proposed an interval Monte Carlo method to estimate 

the interval probability of failure. In order to perform reliability-based design 

optimization for problems with interval variables, Du et al. developed a sequential single 

loop (SSL) procedure [19, 20]. To improve the stability of SSL, Jiang et al. designed a 

new algorithm [12].  

Although many reliability methods can accommodate interval variables as reviewed 

above, there are still some challenges that need to be resolved. First, the reliability 

analysis requires global extreme values of a response with respect to interval variables. 

As a result, the reliability analysis usually involves two loops. In the inner loop, global 

optimization is used to find the extreme values of the response with respect to interval 

variables while the outer loop is responsible for reliability analysis with respect to 

random variables. Even though single loop procedures have been proposed [12, 19, 20], 

efficient global optimization is still indispensable. Second, the extreme values of the 

response may be highly nonlinear with respect to interval variables and may have 

multiple MPPs, which may lead to large errors if the First Order and Second Order 

Reliability Methods (FORM and SORM) are used based on the extreme values of the 

response. Third, most of the current methods only focus on the worst case reliability, or 

the lower bound of the reliability. To understand the uncertainty in the reliability, one 

may also want to know the upper bound of the reliability.   
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The objective of this work is to deal with the above challenges by developing a new 

random field approach for reliability analysis with both random and interval variables. 

The contributions and significance of the new method are as follows: (1) This work 

develops a new way to model the reliability with random and interval variables. A 

response variable is viewed as a random field that is spatially correlated at different 

locations of interval variables. This allows for using random field methodologies to 

calculate the lower and upper bounds of reliability. 

 (2) A new FORM-based random field approach is developed for the reliability 

analysis with random and interval variables. The method transforms the general random 

field of the response into a Gaussian field, which is then expanded as a function of a 

number of Gaussian variables. The use of global optimization is thus avoided, and the use 

of Monte Carlo simulation then becomes possible to obtain both the maximum and 

minimum values of the reliability simultaneously. (3) An efficient algorithm of the 

Kriging model method is developed to build the mean and autocorrelation functions of 

the transformed Gaussian field. The transformed Gaussian field is therefore fully defined 

with good accuracy and efficiency. 

The reminder of this paper is organized as follows. Sec. 2 reviews the methods of 

reliability analysis with both random and interval variables. Sec. 3 discusses the idea of 

reliability analysis with a random field approach, followed by the numerical 

implementation in Sec. 4. Three examples are presented Sec. 5. Conclusions and future 

work are given in Sec. 6.  
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2. Review of Reliability Analysis with Random and Interval Variables 

A response variable G  may be a function of random variables 1,[ ]i i nXX ==  and 

interval variables 1,[ ]j j mYY == .  If only Y  exists, the response is given by 

 ( )G g Y=   (1) 

where [ , ]Y Y YÎ ; 1,[ ]j j mYY ==  and  1,[ ]j j mYY ==  are the lower and upper bounds, 

respectively.   

G  is also an interval, whose lower and upper bounds are defined by 

 
[ , ]

min { ( )}G g
Y Y Y

Y
Î

=   (2) 

and 

 
[ , ]

max { ( )}G g
Y Y Y

Y
Î

=   (3) 

respectively. Fig. 1 shows an interval response for a two-dimensional case. 
 

------------------------------- 

Place Fig. 1 here  

------------------------------- 

If both X   and Y   exist, the response is given by  

 ( ),G g X Y=   (4) 

The extreme responses G   and G   are now random variables. If a failure occurs when 

G e< , where e   is a limit state, the probability of failure is defined by 

 Pr{ ( , ) }fp g eX Y= <   (5) 

Eq. (5) indicates that ( )G X  and ( )G X  are the best-case response and worst-case 

response, respectively.  

The corresponding best-case and worst-case probabilities are then given by 
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[ , ]

Pr{ } Pr{ max { ( , )}( ) }f e gp G e
Y Y Y

X X Y
Î

= < = <   (6) 

and 

 
[ , ]

Pr{ } Pr{ min { ( , )}( ) }f e gp G e
Y Y Y

XX Y
Î

= < = <   (7) 

As obtaining the extreme responses G  and G  requires the global optimization on 

[ , ]Y Y , calculating fp  and fp  is extremely costly in computation. Next we briefly 

review two common types of reliability analysis methods for problems with both random 

and interval variables. 

The first type includes methodologies that combine reliability analysis (RA), such as 

FORM, and interval analysis (IA). If FORM is used for RA, X  is transformed into 

standard normal variables U  [21], and the transformation is denoted by [ ]T=X U  . Then 

the reliability indexes (b  and b ) are obtained by 

 
min

s. t. max{ ( [ ], )}

T

g T e

bìï =ïïíï =ïïî

U

Y

UU

U Y
  (8) 

and 

 
min

s. t. min{ ( [ ], )}

T

g T e

bìï =ïïíï =ïïî

U

Y

UU

U Y
  (9) 

Then the probabilities of failure are given by 

 ( )fp b=F -   (10) 

and 

 ( )fp b=F -   (11) 
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The optimal point from Eq. (8) or (9) is called a Most Probable Point (MPP), denoted 

by *u  for Eq. (8) and *u  for Eq. (9).   

Evaluating the equality constraint functions in Eqs. (8) and (9) requires global 

optimization on [ , ]Y Y YÎ , and the entire analysis needs a double-loop optimization 

process, thereby computationally expensive. The following are some examples of the first 

type methodologies. An iterative procedure [15] using a probability and convex mixed 

model was reported in [16]. By applying the performance measure approach, the method 

transforms the nested double-loop optimization problem into an approximate single-loop 

minimization problem. With a similar principle, a SSL method, as mentioned in Section 

one, decouples the double loop procedure into a sequential single loop [19, 20].  

After the SSL method, Jiang et al. [12] proposed an equivalent model method to 

improve the robustness of the single loop algorithm. The method demonstrates that 

solving Eq. (9) is equivalent to solving a general MPP problem after treating the interval 

variables as uniformly distributed random variables [12]. The method is efficient 

compared with other single loop methods, but similar to other methods that uses FORM, 

its accuracy may not be good. When G  is highly nonlinear with respect to Y , the 

linearization of the limit-state function at the MPP with respect to Y  will result in large 

errors. The above methods also need to be performed twice to obtain the lower and upper 

bounds of fp , thereby increasing the computational cost. 

The second type of methodologies uses design of experiments. A surrogate model of 

( ),G g X Y=  is built first, and then the extreme probabilities of failure are estimated by 

MCS. In this group of methods, interval variables are usually treated as variables 

following uniform distributions. For instance, Zhuang and Pan approximated limit-state 
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functions with interval variables using the Kriging method [22]. Li et al. [23] also used 

the Kriging method to build a surrogate model for a bi-level limit-state function with only 

random variables. The model is constructed by applying the probability theory for 

random variables and a non-probabilistic reliability method for interval variables. Yoo 

and Lee [24] performed the sensitivity analysis with respect to interval variables, and 

surrogate models are employed to approximate the reliability. Zhang and Hosder [25] 

expanded the random and interval variables using the stochastic expansion methods.  

Although all the aforementioned methods can deal with both random and interval 

variables, their accuracy and efficiency may still need to be improved. From a different 

perspective, this work views limit-state functions with interval variables as general 

random fields, and this leads to a new modeling and analysis method that can potentially 

improve the efficiency and accuracy of the reliability analysis.   

 

3. Reliability Modeling from a Random Field Perspective 

We now show that the reliability analysis problem can be approached from a random 

field perspective. We also discuss the advantages of doing so. A random field is 

essentially a spatial-variant random variable [26]. In other words, its distribution changes 

at different locations, and the random variable at one location is usually dependent on 

that at another location. Random fields have been used to describe spatially varying and 

dependent quantities, such as mechanical properties of materials, including Young’s 

modulus, Poisson’s ratio, and yield stress [27], as well as temperature, deformation, and 

surface forces. 
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For example, the thickness, D , of a metal sheet shown in Fig. 2, is a random field.   

At a specific location 2( , )1y y , D  is a random variable with a specific distribution. The 

distribution of D  is different at another location 1 2( ,y y′ ′ ), and 2( , )1D y y  is dependent on 

1 2( , )D y y′ ′ . In this case, the spatial variables are the 1Y - and 2Y -coordinates. 

------------------------------- 

Place Fig. 2 here  

------------------------------- 

We can consider the response ( , )G g= X Y   as a random field. The reasons are below. 

• G   is a random variable. If Y  is fixed at y  , ( , )G g= X y   is random, and its 

distribution is determined by ( )·g  and the joint probability density function (PDF) 

of X .   

• The distribution of G  changes with respect to Y . The distribution at y  may be 

different from that at ′y  because ( , )G g= X y  may be different from ( , )G g′ ′= X y  

as shown in the metal sheet example in Fig. 2 and another two-dimensional 

example in Fig. 3.  

• ( , )G g= X y  and ( , )G g′ ′= X y  may be dependent because they share common 

random variables X . 

• For any given =X x , ( , )G g x Y=  is a realization of the field; 

------------------------------- 

Place Fig. 3 here  

------------------------------- 

For the above reasons, G  is indeed a random field whose spatial variables are 

intervals Y . G  is a general non-stationary random field since its distributions are not 
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constant (varying with respect to Y ) and the dimensions of the spatial variable Y  is m , 

maybe greater than two or three. 

The random field perspective allows us to use random field methodologies to 

calculate the probability of failure. To do so, we redefine the bounds of the probability of 

failure as follows. 

 Pr{ ( , ) , [ , ]}fp G g e= = < " ÎX y y Y Y   (12) 

where "  stands for “for all”. The minimum probability of failure is the probability that all 

the interval bounds are completely in the failure region.   

 Pr{ ( , ) , [ , ]}fp G g e= = < $ ÎX y y Y Y   (13) 

where $  stands for “there exists at least one”. The maximum probability is the probability 

that the interval bounds intersect the failure region.   

Let us examine why the new definitions are equivalent to the original definitions 

given in Eqs. (6) and (7). Recall that the original maximum probability of failure  fp  is 

defined as 
[ , ]

Pr{ min { ( , )} }fp G g e
Î

= = <
Y Y Y

X Y  in Eq. (7). The definition is equivalent to 

the definition given in Eq. (13). The reason is that the two events  { }( )A G eX= <  in Eq. 

(7) and { }( , ) , [ , ]B G g e= = < $ ÎX y y Y Y  in Eq. (13) are equivalent.  For event B, at 

least at one point of Y , G e< . There are two cases. 

Case 1: There is only one point y′  where G e< , and event B becomes 

{ }( , )B g e¢= <X y . This mean that at other points on [ , ]Y Y , except at y′ , G e³ . Then 

y′  is the point where G  is minimum, or (( )) ,G g X yX = ¢ . Thus event A becomes 

{ }( , )A gG e= <= ¢X y . Event A is therefore equivalent to event B. 
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Case 2: There are multiple points 1,[ ]ii hy =′  where G e< . Event B is then an 

intersection expressed by { }1
( , )i

h
ii

B g e
=

¢= <X y


. At all the other points on [ , ]Y Y , 

G e³ . Let 1,[ ]ii i hyy =′ ∈ ′′  be the point where G  is minimum, or ( , )gG ¢¢= X y . Event B 

can be rewritten as { } { }( , )m n , )i (
i

iB g e G g e
y

X yXy
¢

¢ ¢= ¢= < <= , which is equivalent to 

event A. 

Similarly, the original minimum probability of failure fp , defined as 

[ , ]
Pr{ max { ( , )} }fp G g e

Î
= = <

Y Y Y
X Y  in Eq. (6), is equivalent to the definition given in Eq. 

(12) because event { }C G e= <  in Eq. (8) is equivalent to event 

{ }( , ) , [ , ]D g e= < " ÎX y y Y Y  in Eq. (12). The equivalence holds because  

( , )g G£X y  for all [ , ]Îy Y Y , and thus 

{ } { }( , ) , [ , ]C G e g G e D= < = £ < " Î =X y y Y Y . 

The advantages of the new definitions are multifold. First, it avoids the direct use of 

the global responses with respect to interval variables. The elimination of global 

optimization can improve the computational efficiency significantly for responses that are 

highly nonlinear with respect to interval variables. Second, defining the probability of 

failure with a random field approach enables us to use existing random field 

methodologies to estimate the bounds of the probability of failure differently, and the 

methodologies are potentially more accurate and efficient than the traditional methods. 

Third, as discussed in the next section, the definitions also make it easy to integrate the 
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traditional reliability methods and a random field approach to solve the problems with 

both random and interval variables. 

As the second task of this work, we demonstrate the feasibility of the proposed 

random approach by developing a new numerical procedure that employs FORM and a 

random field expansion method. The details are given in the next section.  

 

4. First Order Reliability Method Using Random Field Approach 

As indicated in Eqs. (12) and (13), the lower and upper bounds of fp  can be 

calculated by considering G  as a random field. Directly using random field G , however, 

is difficult because it is in general a non-Gaussian and non-stationary random field and no 

analytical solutions exist.  

In this work, we use FORM to transform G  into a Gaussian random field G . A 

similar strategy has been applied to the time-dependent reliability analysis involving 

stochastic processes [28], which can be considered as one interval variable. Herein, we 

extend the strategy to the problem with more interval variables. Although G  is a 

Gaussian field, its extreme value is not analytically available since it is in general a non-

stationary random field. For this reason, we use a simulation method, which is feasible 

because the original limit-state function is no longer needed once G  is available.  

The simulation of G  usually involves discretizing the random field with respect to 

the spatial variables, or interval variables particularly in this study. In the following 

subsections, we first introduce the discretization methods of a Gaussian field and then 

discuss the details of the implementation procedure.  
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4.1 Discretization methods of a Gaussian random field 

The discretization of a Gaussian field has been extensively studied. There are three 

groups of discretization methods, including the point discretization method, the average 

discretization method, and the series expansion method [27]. The review of the 

discretization methods is available in [29]. A simulation method only uses a finite set of 

random variables with a sufficiently large size of the set. In this work, we use the 

expansion optimal linear estimation method (EOLE) because it is more efficient than the 

other approximation methods for general problems when exact solutions of the 

eigenvalue problem are not available [29].  Note that the simulation methods are not 

limited to EOLE, other methods can also be used. 

Theoretically, a Gaussian field consists of an infinite set of correlated Gaussian 

random variables, and a simulation method only uses a finite set of random variables. For 

this reason, EOLE expands a Gaussian field G  into a series of finite random variables. 

Let G  have its mean function ( )ym , standard deviation function ( )ys , and 

autocorrelation function ( , )y yr ¢ . After discretizing [ , ]Y Y  into p points 1,[ ]i i py = ,  G  is 

expanded as 

 
1

( ) ( ) ( ), [ , ]
r

Ti
i G

i i

G y y φ ρ y y Y Yx
m s

h=

» ) " Îå   (14) 

where ih  and T
iφ   are the eigenvalues and eigenvectors of the correlation matrix ρ  with 

element ( , )ij i jr r= y y , , 1, 2, ,i j p=  , 1 2( ) [ ( , ), ( , ), , ( , )]T
G pr r r=ρ y y y y y y y , and 

r p£  is the number of terms of expansion. Note that the eigenvalues ih  are sorted in 

decreasing order.  
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As discussed above, a Gaussian field can be completely characterized and discretized 

once we know its mean value function ( )m y , standard deviation function ( )s y , and 

autocorrelation function ( , )y yr ¢ . Next we discuss how to obtain G  and its associated 

functions.  

4.2 Construction of an equivalent Gaussian field G  

To use EOLE in Eq. (14), we need to transform the general random field G  into an 

equivalent Gaussian field G . We do so by using FORM.  

4.2.1. Transformation by FORM 

FORM has been widely used in reliability analysis with only random variables [30-

32]. It can also be used for problems with both random and interval variables. It requires 

searching for the MPP. For a given [ , ]Îy Y Y , the MPP of ( , )g X y  is obtained by  

 
min

s. t. ( ( ), )

T

G g T e
u

UU

U y

ìïïïíïï = £ïî
  (15) 

where  ( )T U  is an operator that transforms standard normal variables U  to X  [21]. 

After the MPP search, ( ( ), )g T U y  is linearized at the MPP point *( )u y  using 

Taylor’s series expansion as follows: 

 * * *ˆ( ( ), ) ( , ) ( ( ), ) ( ( ), )( ( ))Tg T g g gU y U y u y y u y y U u y» = )Ñ -   (16) 

where  

 
* * *

*

1 2( ) ( ) ( )

( , ) ( , ) ( , )( ( ), ) , , ,
n

g g gg
U U U

 ∂ ∂ ∂ ∇ =
 ∂ ∂ ∂ u y u y u y

U y U y U yu y y    (17) 

The accuracy loss of the Taylor expansion is minimal at the MPP, where 

*( ( ), )g eu y y = , for [ , ]Îy Y Y . We then have  



17 
 

 * *Pr{ ( , ) } Pr{ ( ( ), )( ( )) 0}TG g e gX y u y y U u y< » Ñ - <=   (18) 

Eq. (18) is rewritten as 

 
* *

*
* *

( ( ), ) ( ( ), )Pr{ ( , ) } Pr{ ( ) }
( ( ), ) ( ( ), )

T Tg gg e
g

G
g

u y y u y yX y U u y
u y y u y y

Ñ
< »

Ñ Ñ
=

Ñ
<   (19) 

At the MPP point, we also have 
* *

* *

( ( ), ) ( )
( ( ), ) ( )

g
g

u y y u y
u y y u y

Ñ
=-

Ñ
; Eq. (19) then becomes 

 
* *

*
* *

( ) ( )Pr{ ( , ) } Pr{ ( ) }
( ) ( )

T TG g e u y u yX y U u y
u y u y

<-= < » -   (20) 

Define 
*

*

( )( )
( )

u yα y
u y

=-  and *( ) ( )y u yb = , we have 

 Pr{ ( , ) } Pr{ ( ) ( )}TeG g X y α y U yb< » <-=   (21) 

Thus the probability if failure is 

 Pr{ ( ( ), ) } Pr{ ( , ) ( ) ( ) 0}TG g T e G g b= £ » = = ) <U y U y α y U y

   (22) 

The mean and standard deviation functions of G  are then given by 

 ( ) { ( ) } ( ) ( )T
G Ey α y U y ym b b= ) =


  (23) 

  ( ) ( ) 1G y α ys = =


  (24) 

where  {}E ×  stands for expectation.  

Eqs. (23) and (24) indicate that for any [ , ]Îy Y Y , the equivalent response G  is a 

Gaussian random variable with mean ( ) ( )G y ym b=


 and standard deviation ( ) 1G ys =


.  

4.2.2. Properties of G  

If the MPP search is performed at two points, , [ , ]y y Y Y¢ Î , we have 

 Pr{ ( ( ), ) } Pr{ ( ) ( ) ( ) 0}TG g T e GU y y α y U yb= £ » = ) <   (25) 
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 Pr{ ( ( ), ) } Pr{ ( ) ( ) ( ) 0}TG g T e GU y y α y U yb¢ ¢ ¢= £ » = ) <   (26) 

Since ( )G y  and ( )G y¢  share common random variables U , they are generally 

correlated. The correlation coefficient between ( )G y  and ( )G y¢  is given by 

 
( ) ( )

{ ( ) ( )} { ( )} { ( )}( , )
G G

E G G E G E G

y y

y y y yy yr
s s ¢

¢ ¢-¢ =
 

   

  (27) 

The above expression can be simplified as  

 ( , ) ( ) ( ) , , [ , ]Ty y α y α y y y Y Yr ¢ ¢ ¢= Î   (28) 

From the above discussions, we know that G  has he following properties: 

• G   is a Gaussian random variable for any given [ , ]y Y YÎ . 

• The distribution of G  changes with respect to y  as its mean ( ) ( )G y ym b=


 is 

a function of y . 

• For any two points , [ , ]¢ Îy y Y Y , ( )G y  and ( )G y¢  are in general correlated 

with correlation coefficient given in Eq. (28). 

 The properties of  G  show that G  is indeed a Gaussian field with mean 

( ) ( )G y ym b=


, standard deviation ( ) 1G ys =


, and autocorrelation function ( , )y yr ¢ . By 

performing FORM at every point [ , ]Îy Y Y , we can map the random field G  into an 

equivalent Gaussian field G .  

Based on the equivalence given in Eq. (22), the minimum and maximum probabilities 

of failure are then computed with G  as follows: 

  
Pr{ ( , ) , [ , ]}

Pr{ ( , ) 0, [ , ]}
f e

G g

p G g= < " Î

» = < " Î

= X y y Y Y

U y y Y Y



  (29) 
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Pr{ ( , ) , [ , ]}

Pr{ ( , ) 0, [ , ]}
fp e

G g

G g= < $ Î

» = < $ Î

= X y y Y Y

U y y Y Y



  (30) 

There are no close forms available for the probabilities given in Eqs. (29) and (30). 

To estimate these probabilities, a sampling based method is presented based on the 

discretization of the equivalent Gaussian field. 

 

4.3 Discretization of the equivalent random field 

4.3.1  Discretization of G  

Assume that the functions of ( )yb  and ( , )y yr ¢  are exactly known, the equivalent 

Gaussian field G  is then fully defined. The original limit-state function is no longer 

needed for the reliability analysis. G  is usually a non-stationary Gaussian field, and there 

is no analytical solution available to find whether there exists a particular point of y  on 

[ , ]Y Y  when a failure occurs. For this reason, we need to approximate or discretize G  

with respect to Y  so that the sample points of Y , where failure occurs, can be captured. 

As discussed in Sec. 4.1, there are many discretization methods available. Here, we use 

the EOLE [33] method.  

We first generate s  points for the interval variables on [ , ]Y Y  using the Hammersley 

sampling (HS) HS sampling method. Let the s  points be 1,[ ]i i s=y , using the Kriging 

model of ( , )y yr ¢ , we have the correlation matrix of these points as follows:  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

, , ,
, , ,

, , ,

s

s

s s s s s s

y y y y y y
y y y y y y

Σ

y y y y y y

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ
×

 
 
 =  
  
 





   



  (31) 
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where ( ),i jy yρ  , , 1,i j s= , are correlation coefficients of ( )iG y  and ( )jG y , which are 

obtained by plugging iy  and jy  into surrogate model ( , )y yr ¢ . 

Based on the correlation matrix and Eq. (14), G  is then discretized as 

 
1

( ) ( ), [ , ]
s

Ti
i G

i i

ZG y φ ρ y y Y Y�b
h=

» ) " Îå 

   (32) 

where iZ , 1,i s= , are independent standard normal variables, ih  and iφ  are eigenvalues 

and eigenvectors of correlation matrix Σ , and 1 2( ) [ ( , ), ( , ), , ( , )]T
sG r r r=ρ y y y y y y y



 .  

Upon the discretization of G , MCS can be performed by plugging random samples 

of iZ , 1,i s= , and samples of Y  into Eq. (32). Suppose MCSn  samples are generated for 

each random variable iZ  and yn  samples are generated for Y  on [ , ]Y Y  using the HS 

method, we then have the following sampling matrix of G . 
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Based on the sampling matrix, the bounds of probability of failure are estimated, 

which will be discussed in Sec. 4.4. From above presented discretization of the equivalent 

Gaussian random field, it can be found that ( )yb  and ( , )y yr ¢  are required at each of the 

discretization point.  If MPP searches are performed at each of the discretization point to 

obtain ( )yb  and ( , )y yr ¢ , it will be computationally expensive. To further improve the 

efficiency, we use surrogate models to reduce the number of MPP searches.  
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4.3.2. Surrogate models of ( )yb  and ( , )y yr ¢  

As discussed in Sec. 4.2.2, if we perform the MPP search at y , we obtain ( )yb . If we 

also perform the MPP search at y¢ , we obtain ( )yb ¢  and ( , )y yr ¢ . After the two MPP 

searches at y  and y¢ , we obtain ( )yb , ( )yb ¢ , and ( , )y yr ¢ . In this work, we use the 

Kriging model method [34], which determines the locations of y  and y¢  iteratively 

without using uniformly distributed points of y  and y¢ . In this way the number of MPP 

searches can be reduced.  

The output of a Kriging model is assumed to be a stochastic process [34-39]. The 

Kriging model of a function ( )f y  is given by [38] 

 ˆ ( ) ( ) ( )Tf y h y υ ye= )   (34) 

where 1 2[ , , , ]T
pu u u=υ   is a vector of unknown coefficients, 

1 2( ) [ ( ), ( ), , ( )]T
ph h h=h y y y y   is a vector of regression functions, ( )Th y υ  is the 

polynomial parts and the trend of prediction, and ( )e y  is usually assumed to be a 

Gaussian process with zero mean and covariance [ ( ), ( )]i jCov e ey y .  

The covariance between two points iy  and jy  is given by 

 2[ ( ), ( )] ( , )i j i jCov Ry y y yee e s=   (35) 

in which 2
es  is the process variance and ( , )R × ×  is the correlation function. There exists a 

variety of correlation functions, such as the exponential function, Gaussian function, 

cubic function, and spline function. The most commonly used correlation function is the 

Gaussian correlation function, which is given by [34-39] 
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k

R ay y y y
=
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å   (36) 

where dn  is the number of design variables, ka  are the unknown correlation parameters, 

and k
iy  is the k-th component of the sample iy .  

With sn  training points, [ ] 1, 2, ,
, ( )

s
i i i n

fy y
= 

, a correlation matrix R  with element, 

( , )i jR y y , , 1, 2, , si j n=   will be obtained. Let 1 2[ ( ) , ( ) , , ( ) ]
s

T T T T
nH h y h y h y=   and 

1 2[ ( ), ( ), , ( )]
s

T
nf f fF y y y=  , the coefficients υ  is solved by 

 1 1 1( )T Tυ H R H H R F- - -=   (37) 

For a new point y , the expected value of the prediction is given by 

 1ˆ ( ) ( ) ( ) ( )T Tf y h y υ r y R F Hυ-= ) -   (38) 

where   

 1 2( ) [ ( , ), ( , ), , ( , )]
snR R Rr y y y y y y y=    (39) 

The mean square error (MSE) of the prediction is given by [40] 

 { }2 2 1

1 1 1 1

ˆMSE( ) [ ( ) ( )] {1 ( ) ( )

[ ( ) ( )] ( ) [ ( ) ( )]

T

T T T T

E f fy y y r y R r y

H R r y h y H R H H R r y h y

es
-

- - - -

= - = -

) - -
  (40) 

in which  

 
1

2 ( ) ( )T

sn
F Hυ R F Hυ

es
-- -

=   (41) 

The unknown parameters ka , 1, 2, ,k n=   are solved by maximizing the Maximum 

Likelihood Estimator (MLE), which is given as follows. 

 ( )
2 lnlnln

2 2
sn εs  = − − 

R
F R   (42) 
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where  R  is the determinant of R .  

Detailed derivations of above equations are available in [38, 39, 41, 42], and a 

Kriging toolbox DACE is also available [40]. Herein we focus on the application of the 

Kriging model for ( )yb  and ( , )y yr ¢ .  

Even if ( )yb  and ( , )y yr ¢  are two different functions, they share common input 

variables on [ , ]Y Y .  The result of the MPP search for ( )yb  can also be used for 

( , )y yr ¢ . We therefore construct surrogate models for ( )yb  and ( , )y yr ¢  simultaneously.  

In addition, Eq. (28) gives ( , ) 1y yr ¢ =  for any y y¢= . Taking advantage of these 

features of ( )yb  and ( , )y yr ¢ , we can design an efficient algorithm to create the 

surrogate models. Fig. 4 shows such a procedure. The detailed steps are explained below.  

Step 1 through Step 3: Create initial Kriging models 

Step 1: Generate evenly distributed initial samples 1,[ ]s s
i i k==y y  on [ , ]Y Y  using the 

HS sampling approach. 

Step 2:  Obtain initial samples of β  and ρ  for surrogate models 

(1) Perform MPP searches at s
iy , 1,i k= , using the optimization model given in 

Eq. (15); obtain ( )s
iα y  and ( )s

ib y . 

(2) Obtain 1,[ ]i i kβ ==β , , 1,[ , ]s s s
i j i j k==yy y y , and , 1,[ ( , )]s s

i j i j kρ ==ρ y y  using Eq. 

(30). 

Step 3: Construct the initial Kriging models of ( )yb  and ( , )y yr ¢  using { , }sy β  and 

{ , }syy ρ , respectively.  

Step 4 through Step 8: Update models and create final models 



24 
 

Step 4: Identify the maximum mean square error and the associated new sample point  

(1) Find the maximum mean square errors of ( )yb  and ( , )y yr ¢  using 

max

[ , ]
[ , ] arg max MSE ( )

L Uy Y Y
y yβ

β βε
∈

=  and 
1 2

max
1 2 1 2

, [ , ]
[( , ), ] arg max MSE ( , )

L Uy y Y Y
y y y yρ ρ

ρ ρε
∈

= , 

respectively.  

MSE ( )β y  and 1 2MSE ( , )ρ y y  are obtained from the outputs of Kriging model 

based on Eq. (40) [40].   

(2) If max max
ρ βε ε> , let max max

ρε ε= , new
1 2[ , ]y y yρ ρ= ; otherwise, let max max

βε ε= , 

newy yβ= . 

Step 5: Check convergence: If max
MSEε ε> , go to next step; otherwise, obtain 

surrogate models of ( )yb  and ( , )y yr ¢ . 

Step 6: Perform MPP searches at newy  using the optimization model given in Eq. (15), 

and obtain new( )α y  and new( )b y  

Step 7: Update sy , β , syy , and ρ : new[ , ]s sy y y= , new[ , ( )]β β yβ= , 

, 1,[ , ]s s s
i j i j h==yy y y , and , 1,[ ( , )]s s

i j i j hρ ==ρ y y , where h  is the number of samples of sy .  

Step 8: Construct new Kriging models ( )yb  and ( , )y yr ¢  using { , }sy β  and { , }syy ρ , 

and then go to Step 4.  

In Step 1, many sampling generation methods can be used, such as the Random 

sampling method (RS) [43], the Latin hypercube sampling (LHS) method [44], and the 

HS method [45]. In this work, we use the HS method as it is capable of generating more 

evenly distributed samples than other methods. In Step 2, MPP searches are performed. 

To reduce the number of function calls, we should carefully select a good starting point 
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for the MPP search. We pick the MPP that has been already obtained as the starting point. 

The MPP of the sample point, which is the closest to the current sample point s
iy  , is 

selected as the starting point of s
iy . In Step 4, the maximum mean square errors are used 

as the stopping criteria. Since they are calculated by the Kriging models, there is no need 

to call the original limit-state function in this step. Any optimization methods can be used 

to determine the maximum mean square errors, for example, the DIRECT algorithm [46].  

------------------------------- 

Place Fig. 4 here  

------------------------------- 

The numerical procedure shows that MPP searches are performed in Steps 2 and 6.  

At each training point of y , the MPP search is performed. As a result, the total number of 

MPP searches is equal to the total number of training points of y , including both the 

initial training points and the updated training points. If we consider creating the Kriging 

models as one loop and the MPP search as the other loop, the proposed method involves 

a double-loop procedure, but it is in general more efficient than the traditional double-

loop method where the global optimization with respect to the interval variables is 

required. The new method eliminates the need of global optimization, thereby increasing 

computational efficiency. Note that we use the Kriging method to create the surrogate 

models of the mean and auto-correlation functions of the approximated Gaussian field, 

but other regression methods can also be used. 
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4.4 Reliability analysis 

To approximate the lower and upper bounds of the probability of failure, we first 

define the following indicator function: 

 
1, if ( , ) 0, 1, , , 1, ,

( , )
0, otherwise

j MCS YG i i n j n
F i j

 < = == 


y  

 (43) 

According to Eqs. (29) and (30), fp  and fp  are then estimated by 

 
1

1 ( )
MCSn

L
f

iMCS

F ip
n =

≈ ∑  (44) 

 
1

1 ( )
MCSn

U
f

iMCS
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where 

 1
1, if ( , )

( )
0, otherwise

Yn

YL
j

F i j n
F i =


== 




∑   (46) 

 1
1, if ( , ) 0

( )
0, otherwise

Yn

U
j

F i j
F i =


>= 




∑   (47) 

As indicated above, with the new approach, fp  and fp  can be estimated 

simultaneously, and no global optimization with respect to interval variables is required.  

 

5. Examples 

In this section, three examples are used to demonstrate the accuracy and efficiency of 

the proposed method. Each example is solved using the following four methods: 

• The proposed random field approach, denoted by Random Field.  
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• The direct Kriging model method, denoted by Direct Kriging, which constructs a 

surrogate model of the response with respect to both random and interval variables 

and then uses MCS to calculate the extreme probabilities of failure.  

• The equivalent model method proposed by Jiang et al. [12], denoted by 

Equivalent MPP.  

• The direct Monte Carlo simulation (MCS).  

The solution from MCS with a sufficiently large sample size is used as a benchmark 

for the accuracy comparison, and the efficiency is measured by the number of the limit-

state function calls for the response variable. 

 

5.1 A mathematical example 

The model is given in Eq. (48) with four random variables and one interval variable 

defined in Table 1. The response function is nonlinear with respect to the interval 

variable.  

 2 2 2
1 2 1 3 1 1 4 1( , ) 10.5 2.1 sin ( 0.3) 2 ( 0.3) ( )( 0.7)g X X Y X Y X X Y=- ) ) - ) ) ) -X Y  (48) 

The limit state is 10e = − , and thus the probability of failure is given by 

 Pr{ ( , ) 10}fp g= <-X Y   (49) 

where 1, 4[ ]i iXX == . 

------------------------------- 

Place Table 1 here  

------------------------------- 
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In Table 1, parameters 1 and 2 are the mean and standard deviation of a random 

variable, respectively. For an interval variable, the two parameters are the lower and 

upper bounds, respectively.  

Building the surrogate models for ( )yb  and ( , )y yr ¢  is critical for the proposed 

random field approach, and we now show the results of the two models in Figs. 5 and 6. 

The initial training points and added training points of Y  are also plotted in the figures. 

For surrogate models of ( )yb  and ( , )y yr ¢ , the regression function is chosen to be 

constant ( ( )h y 1= ) and the Gaussian correlation function is used as the correlation 

function. The initial point, lower bound, and upper bound for the optimization of 

unknown coefficients ka  are 0 10ka = , 0.1l
ka = , and 500u

ka = , respectively. The 

convergence criterion of the two surrogate models is 41 10MSEε −= × . 13 training points in 

total, were used, and thus the MPP search was performed 13 times. The results show that 

both  ( )yb  and ( , )y yr ¢  are nonlinear with respect to the interval variable.  

------------------------------- 

Place Figs. 5 and 6 here  

------------------------------- 

Recall that the probability of failure fp  can be evaluated with the equivalent 

Gaussian random field G  through Eqs. (29) and (30). With  ( )yb  and ( , )y yr ¢  available, 

G  is fully defined. Then G  could be expanded, followed by MCS. The final results are 

given in Table 2, where NOF is the number of function calls. The random field approach 

called the limit-state function 335 times.  
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------------------------------- 

Place Table 2 here  

------------------------------- 

For a fair comparison, we used 500 training points for the direct Kiging method to 

generate a direct Kiging model for the response with respect to  X  and Y. The number of 

the training points was much higher than that used by the random field approach. The 

range of a random variable X was set to [ 5 , 5 ]m s m s- )X X X X , and the training points 

were generated by the HS method. The equivalent MPP method and MCS were also 

executed.  

All the results are given in Table 2. e  and e  are the percentage errors of the lower 

and upper probabilities of failure with respect to the MCS solutions, respectively. The 

results show that the proposed random field approach is more efficient and accurate than 

the direct Kriging method. Note that the equivalent MPP method used the fewest number 

of function calls, but this does not mean it is more efficient than the random field 

approach because it calculated only the upper probability of failure, and its accuracy is 

much worse. 

 

5.2 A cantilever tube 

The cantilever tube example shown in Fig. 7 is modified from [19]. The component is 

subjected to three forces 1F , 2F , and P , as well as a torque T . A failure occurs when the 

maximum von Mises stress maxs  is larger than the yield strength yS . The limit-state 

function is given by 

 max( , ) yG g S s= = -X Y   (50) 
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where 1 2[ , , , , , , ]yS t d F F P T=X , 1 2[ , ]q q=Y , and maxs  is given by 

 2 2
max 3x zxs s t= )   (51) 

in which 

 x
P M
A I

s = )   (52) 

 1 1 2 2[2 sin( ) sin( )]
8xz

T F d F d d
I

q q
t

) -
=   (53) 

 4 4[ ( 2 ) ]
64

I d d tp
= - -   (54) 

 2 2[ ( 2 ) ]
4

A d d tp
= - -   (55) 

and 

 1 1 1 2 2 2cos( ) cos( )M F L F Lq q= -   (56) 

where 1 120L =  mm and 2 60L =  mm. 

------------------------------- 

Place Fig. 7 here  

------------------------------- 

All the input variables are given in Table 3. Parameters 1 and 2 have the same 

meanings as those in Example 1. The probability of failure is defined by 

Pr{ ( , ) 0}fp G g= = <X Y  , and the limit state is 0e = . This problem involves seven 

independent random variables and two interval variables. 

------------------------------- 

Place Table 3 here  

------------------------------- 
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Fig. 8 shows the maximum von Mises stress with respect to interval variables 1q  and 

2q  while all the random variables are fixed at their mean values. The surface is quite 

nonlinear. Given that the maximum von Mises stress is part of the response, the response 

is therefore also highly nonlinear with respect to the interval variables.  

------------------------------- 

Place Fig. 8 here  

------------------------------- 

The parameters of the Kriging model for constructing surrogate models of ( )yb  and 

( , )y yr ¢  are the same as those of Example 1. The reliability analysis results of all the 

methods are provided in Table 4. For the direct Kriging model method, we used 400 

training points, which are more than the training points used by the random field 

approach.  

------------------------------- 

Place Table 4 here  

------------------------------- 

The results also show the high accuracy and efficiency of the random field method.  

5.3 A ten-bar aluminum truss 

This example is modified from Refs. [12, 16, 47]. As shown in Fig. 9, a ten-bar 

aluminum truss is subject to forces 1F , 2F , and 3F . The vertical displacement of joint 2 is 

of interest. Its allowable value is max 0.046d =  m. The Young’s modulus of the material 

is 68.948E =  GPa. The lengths of the horizontal and vertical bars are all 9.144L =  m.  
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------------------------------- 

Place Fig. 9 here  

------------------------------- 

The probability of failure is given by 

 maxPr{ ( , ) 0}fp G g d d= = = - <X Y   (57) 

in which d  is computed by [47] 
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1 7

2i i i i
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å å   (58) 
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  (59) 
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  (60) 

and 0
iN , 1, 2, ,10i =  , are obtained by plugging 1 3 0F F= =  and 2 1F =  into Eqs. (59) 

and (60). 

There are 10 independent random variables and 3 interval variables as shown in Table 

5. The parameters for constructing the Kriging models of ( )yb  and ( , )y yr ¢  are also the 

same as those in Example 1. The reliability analysis results are provided in Table 6. For 

the direct Kriging model method, we used the HS method to generate 1000 training 

points, which were more than the training points used by the random field approach. This 

example again shows the high accuracy and efficiency of the random field approach.    

------------------------------- 

Place Tables 5 and 6 here  

------------------------------- 

 

6. Conclusions 

Interval variables are usually used to model uncertainty with limited information. As 

a result, the probability of failure is also an interval variable. Most of reliability analysis 
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methods for both random and interval variables rely on the global extreme values of a 

response with respect to interval variables. When the response is a nonlinear function of 

interval variables, the accuracy and efficiency of reliability analysis are not good. This 

work shows that the response is a random field with respect to interval variables. From 

this perspective, the reliability or probability of failure can be redefined using a random 

field approach. The new definition allows for a new reliability analysis method that maps 

the random field response into a Gaussian field through the First Order Reliability 

Method (FORM). The Kriging model method is employed to determine the mean and 

autocorrelation functions of the Gaussian field, which is then expanded with a number of 

Gaussian variables. Then the bounds of the probability of failure are estimated by Monte 

Carlo simulation. 

The proposed method avoids global optimization with respect to interval variables 

and therefore avoids performing FORM on the extreme values of the response. In 

addition, the proposed method obtains the lower and upper bounds of the probability of 

failure simultaneously. As the three examples demonstrated, the proposed method is 

accurate and efficient.  

It is critical to construct the models of the mean and autocorrelation functions of the 

Gaussian field. The Kriging method is used in this work for this task. Other surrogate 

model methods can also be employed. When the dimension of interval variables is high, 

the proposed method may not perform well because the Kriging method may not be 

efficient for large scale problems. Large number of interval variables, however, should be 

avoided because this situation will cause too conservative reliability analysis results. 

More information should be collected to reduce the number of interval variables. The 
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future work in this area is the sensitivity analysis that identifies the most important 

interval variables, for which more information needs to be collected. 

Although the FORM-based random field approach does not approximate the limit-

state function with respect to interval variables, it linearizes the limit-state function with 

respect to the transformed random variables. Even though the accuracy of FORM is 

acceptable for many engineering problems, its error will be large if the limit-state 

function is highly nonlinear with respect to the transformed random variables. The future 

work is to use more accurate reliability method, such as the Second Order Reliability 

method (SORM), to replace FORM.  
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Table 1 Variables and parameters of Example 1 

Variable Parameter 1 Parameter 2 Distribution 

1X  2 0.2 Normal 

2X  3 0.3 Normal 

3X  3.5 0.35 Normal 

4X  2 0.4 Normal 

1Y  0 1.5 Interval 
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Table 2 Results of Example 1 

Method [ , ]f fp p  [ , ] (%)e e  NOF 
Random field 4 2[4.21 10 ,1.25 10 ]- -´ ´  [0.94, 2.8]  335 
Direct Kriging 4 2[3.50 10 ,1.08 10 ]- -´ ´  [17.65,16.18]  500 

Equivalent MPP [N/A, 1.0 210-´ ] [N/A, 22.48] 242 
MCS 4 2[4.25 10 ,1.29 10 ]- -´ ´  N/A 84 10´  
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Table 3 Variables of Example 2 

Variable Parameter 1 Parameter 2 Distribution 
t (mm) 6 0.2 Normal 
d (mm) 43 0.2 Normal 

1F (N) 1000 50 Normal 

2F (N) 1700 80 Normal 
P (N) 1000 50 Normal 

T (Nm) 350 20 Normal 
yS (MPa) 360 0 Normal 

1q (o) -5 10 Interval 

2q (o) -10 6 Interval 
 



43 
 

Table 4 Results of Example 2 

Method [ , ]f fp p  [ , ] (%)e e  NOF 
Random field 4 4[2.07 10 , 9.86 10 ]- -´ ´  [1.90,1.89] 371 
Direct Kriging 4 3[1.2 10 , 7.10 10 ]- -´ ´  [43.13, 576.19] 400 

Equivalent MPP 4[N/A, 5.64 10 ]-´  [N/A, 43.62] 257 
MCS 4 3[2.11 10 ,1.0 10 ]- -´ ´  N/A 93 10´  
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Table 5 Variables of Example 3 

Variable Parameter 1 Parameter 2 Distribution 
1A   (mm2) 4000 50 Normal 

2A   (mm2) 4000 50 Normal 

3A   (mm2) 4000 50 Normal 

4A   (mm2) 4000 80 Normal 

5A   (mm2) 4000 80 Normal 

6A   (mm2) 4000 80 Normal 

7A   (mm2) 4000 100 Lognormal 

8A   (mm2) 4000 100 Lognormal 

9A   (mm2) 4000 100 Lognormal 

10A   (mm2) 4000 100 Lognormal 

1F   (N) 442800 446800 Interval 

2F   (N) 442800 446800 Interval 

3F   (N) 1709200 1849200 Interval 
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Table 6 Results of Example 3 

Method [ , ]f fp p  [ , ] (%)e e  NOF 
Random field 3[0, 4.153 10 ]-´  [0,1.49]  401 
Direct Kriging 3[0, 3.88 10 ]-´  [0, 5.18] 1000 

Equivalent MPP 2[N/A, 4.82 10 ]-´  [N/A,1077.91]  605 
MCS 3[0, 4.092 10 ]-´  N/A 93 10´  
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Fig. 1. Limit-state function with interval variables 
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Fig. 2. Random field thickness of a metal sheet 
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Fig. 3. Responses with both random and interval variables 
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Fig. 4. Flowchart of constructing surrogate models of ( )yb  and ( , )y yr ¢  
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Fig. 7 A cantilever tube 
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Fig. 8 Maximum von Mises stress of the tube for a given 1q  and 2q  
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Fig. 9 A ten-bar aluminum truss 
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