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Abstract 

Time-dependent reliability analysis requires the use of the extreme value of a 

response. The extreme value function is usually highly nonlinear, and traditional 

reliability methods, such as the First Order Reliability method, may produce large errors. 

The solution to this problem is using a surrogate model for the extreme response. The 

objective of this work is to improve the efficiency of building such a surrogate model. A 

mixed efficient global optimization (m-EGO) method is proposed. Different from the 

current EGO method which draws samples of random variables and time independently, 

the m-EGO method draws samples for the two types of samples simultaneously. The m-

EGO method employs the Adaptive Kriging - Monte Carlo Simulation (AK-MCS) so that 

high accuracy is also achieved. Then Monte Carlo simulation is applied to calculate the 

time-dependent reliability based on the surrogate model. Good accuracy and efficiency of 

the m-EGO method are demonstrated by three examples. 

Keywords: Kriging, Reliability analysis, Mixed EGO, Time-dependent 
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1 Introduction 

Reliability is defined within a period of time when a limit-state function involves time. 

For this case, time-independent reliability analysis methodologies [1, 2] are not 

applicable, and time-dependent reliability methods should be used. Even though other 

methods [3-5] exist for time-dependent reliability problems, the most widely used 

methods are first passage methods and extreme value methods. The former methods are 

easier to implement and are therefore more popular, but may not be as accurate as the 

latter methods. The two types of methods are briefly reviewed below. 

The first-passage methods calculate the probability that the response exceeds its 

failure threshold (limit state) for the first time in a predefined period of time. The event 

that the response reaches its limit state is called an upcrossing, and the upcrossing rate is 

the rate of change in the upcrossing probability with respect to time. If the first-time 

upcrossing rate is available, the time-dependent probability of failure can be easily 

computed. But it is difficult to obtain the first-time upcrossing rate. For this reason, 

approximation methods are widely used. The most commonly used method is the Rice’s 

formula [6], which uses upcrossing rates throughout the entire period of time with the 

assumption that all the upcrossings are independent.  

Many methods have been developed based on the Rice’s formula. For instance, an 

asymptotic outcrossing rate for stationary Gaussian processes was derived by Lindgren [7] 

and Breitung [8, 9]. The bounds of the upcrossing rate of a non-stationary Gaussian 

process were given by Ditlevsen [10]. To solve general time-dependent reliability 

problems, Hagen and Tvedt [11, 12] proposed a parallel system approach. A PHI2 

method was developed by Sudret [13]. Hu and Du also developed a time-dependent 
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reliability analysis method based on the Rice’s formula [14]. Even if some modifications 

have been made [15-18], the upcrossing methods may still produce large errors when 

upcrossings are strongly dependent. 

The extreme value methods approximate the time-dependent reliability from another 

aspect by using the extreme value of the response with respect to time. If the distribution 

of the extreme value can be accurately estimated, the accuracy of the reliability analysis 

will be higher than the upcrossing rate methods since the independent upcrossing 

assumption is eliminated. Accurately and efficiently estimating the distribution of the 

extreme value, however, is a challenge since global optimization with respect to time 

should be performed repeatedly.  

In general, the extreme value of the response is much more nonlinear than the 

response itself with respect to the input random variables. For some problems, the 

distribution of the extreme response is multimodal with different modes (peaks of 

probability density) even though the response itself follows a unimodal distribution [19]. 

For this reason, using Design of Experiments (DOE) to obtain a surrogate model of the 

extreme response becomes promising and practical. For example, Wang and Wang [20] 

proposed an extreme response method using the Efficient Global Optimization (EGO) 

approach [21]; Chen and Li [22] studied how to evaluate the distribution of the extreme 

response using the probability density evolution method [22]. 

The efficiency of the existing extreme value methods with DOE, such as the approach 

reported in [20], can be improved. To show the feasibility of the improvement, we first 

define the response function as ( , )=Y g tX , where 1 2[ , , , ]nX X X=X   is a vector of 

random variables, t is time, and Y  is a response. In many applications, the response 
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function may be a black box, such a CAE (computer-aided engineering) model. To obtain 

the extreme values of Y , current methods draw samples of X  first. Then at each sample 

point of X , samples of t are drawn through EGO [21], which produces the extreme 

response with respect to time at each sample point of X . Thus, the values of the extreme 

response are available at all the sample points of X , and a surrogate model of the 

extreme response is then built. Sampling on X  and t is performed at two nested and 

independent levels, and we therefore call the method the independent EGO method. The 

interaction effects of X  and t are not considered at the two separate sampling levels. The 

efficiency could be improved if X  and t are sampled simultaneously. This motivated us 

to develop a new method with higher efficiency.  

This work develops a new time-dependent reliability method based on EGO and the 

active learning strategy [23]. The new method is named the mixed-EGO method since X  

and t are sampled simultaneously. The significance of this work consists of the following 

elements:  

• A mixed EGO method: the new method generates samples of X  and t 

simultaneously so that the interaction effects of X  and t is considered. This 

requires fewer training points for building surrogate models and therefore 

increases the efficiency of the EGO method. 

• The integration of the mixed-EGO method with the Adaptive-Kriging Monte 

Carlo simulation (AK-MCS) [23]. The integration makes the surrogate model of 

the extreme response accurate near or at the limit state and hence improves both 

accuracy and efficiency of the time-dependent reliability analysis.  
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The remainder of this paper starts from Section 2 where EGO and time-dependent 

reliability are reviewed. The new method is discussed in Section 3. Three examples are 

presented in Section 4, and conclusions are given in Section 5.    

 

2 Background 

EGO is used in this work. We at first review EGO and discuss the definition of time-

dependent reliability. We then review the current independent EGO method for time-

dependent reliability analysis. 

2.1 Efficient Global Optimization (EGO) 

Since being proposed by Jones in 1998 [21], EGO has been widely used in various 

areas [26-29]. EGO is based on the DACE model [30] or the Kriging model. Both of the 

models are updated by adding training points gradually, but they use different criteria for 

model updating. The EGO model is updated with a new training point that maximizes the 

expected improvement function (EIF) while the DACE model is updated with a new 

training point that minimizes the mean square error. A maximum EIF helps find a point 

with the highest probability to produce a better extreme value of the response. Many 

studies have demonstrated that EGO can significantly reduce the number of training 

points for global optimization.  

EGO at first constructs a Kriging model using initial training points, and the expected 

improvement (EI) is calculated using the mean and covariance of the Kriging model. The 

model is then updated by adding a new point with the maximum EI. The procedure 

continues until convergence is achieved.   

The Kriging model ˆ ( )g x  is given by 
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 ˆ ˆ ( ) ( ) ( )Ty g Zx h x β x= = +   (1) 

in which ( )h ⋅  is called the trend of the model, β  is the vector of the trend coefficients, 

and ( )Z ⋅  is a stationary Gaussian process with a mean of zero and a covariance given by 

 2[ ( ), ( )] ( , )ZCov Z Z Ra b a bσ=   (2) 

where 2
Zσ  is the variance of the process, and ( , )R a b  is the correlation function. The 

commonly used correlation functions include the squared-exponential and Gaussian types 

[30].  

At a training point x , ŷ  is a Gaussian random variable denoted by 

 2ˆ ˆ ( ) ~ ( ( ), ( ))y g Nx x xµ σ=   (3) 

in which ( , )N ⋅ ⋅  stands for a normal distribution; ( )µ ⋅  and ( )σ ⋅  are the mean and 

standard deviation of ŷ , respectively.  At a training point x , ( ) ( )gx xµ =  and ( ) 0xσ = , 

and ˆ ( )g x  therefore passes all the points that have been sampled.  

For the global maximum of ( )g x , the improvement is defined by *max( , 0)I y y= − , 

where *y  is the current best solution (the maximum response) obtained from all the 

sampled training points. Its expectation or EI is then computed by [21] 

 
* *

* ( ) ( )EI( ) ( ( ) ) ( )
( ) ( )

y yy x xx x x
x x

µ µµ σ φ
σ σ

   − −
= − Φ +   

   
  (4) 

where ( )Φ ⋅  and ( )φ ⋅  are the cumulative distribution function (CDF) and probability 

density function (PDF) of a standard Gaussian variable, respectively, and *y  is 

 * ( )

1, 2, ,
max { ( )}i

i k
y g x

=
=



  (5) 

in which k is the number of current training points.  
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By maximizing EI, we find a new training point.  

 ( 1) arg max EI( )k)

Î
=

x X
x x   (6) 

Algorithm 1 below describes the procedure of EGO. More details can be found in 

Refs. [21]  and [30].  

------------------------------- 

Place Table 1 here  

------------------------------- 

In Step 3, EIe  (a small positive number) is used as a convergence criterion. The 

maximum EI  is scaled in Line 7 as suggested in [19].  

2.2 Time-dependent reliability 

For a general limit-state function ( , )Y g t= X , a failure occurs if 

 ( , )Y g t eX= ³   (7) 

in which e  is the failure threshold.  

For a time interval 0[ , ]st t , the time-dependent reliability is defined by [5] 

 { }0 0( , ) Pr ( , , [ , ])s sR t t Y g et t t tX <= = ∀ ∈   (8) 

where {}Pr ⋅  stands for a probability, and 0[ , ]st t t∀ ∈  means all time instants on 0[ , ]st t . 

The time-dependent probability of failure is defined by  

 { }0 0( , ) Pr ( , , [ ]) ,f s sp t t Y g e t tt t= = ∃ ∈≥X   (9) 

where ∃  stands for “there exists”. 

0( , )f sp t t  is a non-decreasing function of the length of 0[ , ]st t . The longer is the 

period of time, the higher is 0( , )f sp t t  in general.  
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2.3 Time-dependent reliability analysis with surrogate models 

The failure event in Eq. (7) is equivalent to maxY e> , where maxY  is the global 

maximum response on 0[ , ]st t  and is given by 

 
0

max
[ , ]

arg ma , )x{ ( }
st tt

Y g t
Î

= X   (10) 

Then 0( , )f sp t t  is rewritten as  

 { }0 max( , ) Pr ( )f sp t t Y eX= >   (11) 

For many problems, maxY  is highly nonlinear with respect to X  and may follow a 

multimodal distribution. Using existing reliability methods, such as the First and Second 

Order Reliability Methods (FORM and SORM), may result in large errors. Monte Carlo 

simulation becomes a choice if a surrogate model, max maxˆ ( )Y g X= , of maxY , can be built. 

As discussed previously, the direct EGO method is employed to solve time-dependent 

reliability problems by Wang and Wang [20]. The surrogate model of extreme response 

max maxˆ ( )Y g X=  was built with a nested procedure. The outer loop generates samples of X  

while the inner loop is executed to find the time maxt  when the response is maximum. 

Samples of t  are generated by EGO in the inner loop. A more direct and general 

independent EGO procedure similar to the aforementioned nested procedure [20] is 

summarized below. 

• Outer loop: Sampling on X  for building max maxˆ ( )Y g X= . 

• Inner loop: EGO for 
0[ ,ma ]x max { ( , })

st tt
y g tx

Î
=  at x , which is a sample of X . 

The associated algorithm or Algorithm 2 is shown as follows. 
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------------------------------- 

Place Table 2 here  

------------------------------- 

In Step 3, MSEe  is a small positive number used as the convergence criterion for the 

mean square error MSE .   

The independent EGO method may not be efficient for two reasons. First, the one-

dimensional EGO with respect to t is performed repeatedly at each sample point of X . 

As mentioned previously, X  and t  are treated independently at two separate levels, and 

the interaction of X  and t  is therefore ignored. Not considering the interaction effect of 

X  and t  may result in low computational efficiency. Second, a small MSE  is expected 

for an accurate surrogate model for reliability analysis. Constructing a surrogate model 

with a low MSE , however, is computationally expensive because maxY  is in general 

highly nonlinear and possibly multimodal.  

 

3 A mixed-EGO based method 

In this section, we discuss the mixed-EGO based method that overcomes the 

drawbacks of the independent EGO method. The new method builds a surrogate model 

max maxˆ ( )Y g X=  for the global extreme response through another surrogate model 

ˆ ( ),Y g tX= . It is efficient because of the following reasons: 

• Using ˆ( ),Y g tX=  can the effectively account for the joint effects of X  and t  and 

will reduce the number of samples of both X  and t . 
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• The mixed EGO along with the AK-MCS method [23] can efficiently and 

accurately approximate the extreme response at or near the limit state. High 

accuracy at or near the limit state will reduce the number of samples of X . 

3.1  Overview 

As discussed in [19], the accuracy of reliability analysis is determined by only the 

accuracy of the surrogate model at the limit state or max max ( )Y g e= =X . For this reason, 

we focus on achieving high accuracy of max maxˆ ( )Y g X=  at or near the limit state. By 

doing so, the number of samples can be reduced. Since the limit-state max max ( )Y g e= =X  

is of the greatest concern, the sample updating criterion needs to be modified. In this 

work, we integrate the AK-MCS method [23] with the proposed mixed-EGO method.  

The overall procedure of the mixed-EGO based method is provided in Table 3, and 

the detailed algorithm will be discussed in Subsections 3.3 and 3.4 and will be 

summarized in Section. 3.5. 

------------------------------- 

Place Table 3 here  

------------------------------- 

The major difference between the independent EGO method and the mixed-EGO 

method is that X  and t  are sampled at two separate levels in the former method while X  

and t  are sampled simultaneously in the latter method.  

3.2 Initial sampling 

The initial samples sx  and t are generated to create an initial surrogate model for maxY . 

The commonly used sampling approaches include the Random Sampling (RS), Latin 
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Hypercube Sampling (LHS), and Hammersley Sampling (HS) [31]. In this work, the HS 

method is used as it performs better in providing uniformity properties over a multi-

dimensional space [32]. Samples are generated by the HS method in the [0, 1] domain. 

They are then transformed into samples of X  and t according to their probability 

distributions using the inverse probability method. t is treated as if it was uniformly 

distributed.  

Suppose that the dimension of X  is n and that k initial samples are generated. The 

samples sx  are 

 

(1) (1) (1)
1 2
(2) (2) (2)

(1) (2) ( ) 1 2

( ) ( ) ( )
1 2

; ; ;

n

s k n

k k k
n

x x x
x x x

x x x

é ù
ê ú
ê ú
ê úé ù;; ê ú ê úë û
ê ú
ê ú
ê úë û

x x x x







   



  (12) 

in which ( ) ( ) ( ) ( )
1 2[ , , , ]i i i i

nx x x=x   is the i-th sample point. 

k initial samples of t are also generated along with those of X . We then have the 

following combined initial samples. 

 

(1) (1) (1) (1)
1 2
(2) (2) (2) (2)
1 2

( ) ( ) ( ) ( )
1 2

,
,

[ , ]

,

n

s s n

k k k k
n

x x x t
x x x t

x x x t

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

x t





   



  (13) 

We then call the limit-state function to obtain responses at the above sample points 

and build a mixed EGO model ˆ ( , )Y g tX=  with respect to X and t. ˆ ( , )Y g tX=  is called a 

mixed model because it is a function of X and t. Then, the extreme value responses max
sy  

at sx  are identified based on the mixed EGO model that will be discussed in the 

following section.  
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3.3 Construct initial max maxˆ ( )Y g X=  with the mixed EGO model 

This is Step 2 of the mixed-EGO method in Table 3. With t, the EI in Eq. (4) is 

rewritten as 

 
( ) * ( ) *

( ) ( ) * ( )
( ) ( )

( , ) ( , )( , ) ( ( , ) ) ( , )
( , ) ( , )

i i
i i ii i

i i i

t y t yEI t t y t
t t

x xx x x
x x

µ µµ σ φ
σ σ

   − −
= − Φ +   

   
  (14) 

where *
iy  is the current best solution (maximum response), and ( )( , )i txµ  and ( )( , )i txσ  

are the mean and standard deviation at ( )[ , ]i tx , respectively. 

The expressions of EI are the same as those for the independent EGO method and the 

mixed EGO model. The difference lies in the way of computing ( )( , )i txµ  and ( )( , )i txσ . 

For the independent EGO method, ( )( , )i txµ  and ( )( , )i txσ  are obtained from the one-

dimensional Kriging model ˆ ( )Y g t= , which is constructed in the inner loop for t when X   

is fixed. For the mixed EGO model, they are computed from the Kriging model 

ˆ ( ),Y g tX= , which is constructed when X  and t vary simultaneously.  

Once convergence is reached, the maximum responses with respect to sx  will be 

available. Then the initial model max maxˆ ( )Y g X=  can be built.  

The algorithm (Algorithm 3) for the initial max maxˆ ( )Y g X=  is given as follows. 

------------------------------- 

Place Table 4 here  

------------------------------- 

In Line 2, sx  contains initial samples used to construct mmax axˆ ( )Y g X= , and s
tx  

contains sx  and added samples of X  for model ˆ ( ),Y g tX= . In Line 3, EIe  is used as a 
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convergence criterion for the maximum EI. In Line 5, ( )EI( , )i tx  is computed by plugging 

max ( )sy i , ( )( , )i
Y txµ  and ( )( , )i

Y txµ , which are obtained from ˆ( ),Y g tX= , into Eq. (14). 

Note that in the mixed EGO model, all the sampled points of both X  and t are used to 

identify the new training points of t. But in the independent EGO model, only the 

sampled points of t are used to update training points of t.    

From the outputs of the mixed EGO model, we obtain the extreme values max
sy  

corresponding to the samples ( )ix , 1, 2, ,i k=  . In the following section, we discuss 

how to identify a new training point ( 1)kx +  and the associated ( 1)
max ( )kg x + . 

3.4 Update max maxˆ ( )Y g X=  with AK-MCS and the mixed EGO model 

The initial model of the extreme response max maxˆ ( )Y g X=  obtained above in general is 

not accurate. New training points of X  should be added. As discussed in Sec. 3.1, it is 

desirable to generate more training points near or at the limit state. Several approaches 

are proposed for this purpose. For instance, the efficient global reliability analysis 

(EGRA) method [33] generates more training points adaptively near the limit state. Based 

on EGRA, an active learning approach called the AK-MCS method [23] is developed to 

further use the joint probability density of random variables for generating training points 

without using global optimization. Using the principle of AK-MCS, Wang and Wang 

later proposed a confidence enhanced sequential sampling approach [34]. Dubourg and 

Sudret integrated the importance sampling approach with the AK-MCS method [35] and 

further improved the efficiency. All of the above approaches are based on the Kriging 

model. Approaches based on other surrogate model techniques are also available. For 

example, support vector machines are used to generate explicit limit-state boundaries [36], 
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and the same technique is also applied to identify disjoint failure domains and limit state 

boundaries for discontinuous responses [37]. The two methods are further improved by 

Basudhar and Missoum [38].  

In this work, the AK-MCS method is employed to identify new training point ( 1)kx +  

near the limit state of the extreme response max maxˆ ( )Y g X= . It has two advantages over 

the EGRA method: the joint probability density of random variables is considered during 

the sampling process, and it avoids global optimization in searching for new training 

points. A brief review of the AK-MCS method is given in Appendix A. Note that other 

sampling methods mentioned above can be used as well. 

With the new training point ( 1)kx +  identified from AK-MCS, we can find the extreme 

response ( 1)
max ( )kg x +  to update the surrogate model for maxY . Obtaining ( 1)

max ( )kg x +  is 

equivalent to solving the following one dimensional global optimization problem: 

 
0

( 1) ( 1)
max

[ , ]
arg max{ ( , )}

s

k k

t t t
t y g tx+ +

∈
= =   (15) 

To reduce the number of function calls, we still use the mixed EGO model presented 

in the last subsection, and we also use the data set of [ , ]s s
tx t  and sy  obtained in Sec. 3.3. 

Algorithm 4 below shows the details of finding ( 1)kx +  and ( 1)
max ( )kg x + . 

------------------------------- 

Place Table 5 here  

------------------------------- 
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In Line 13, EI( , )new tx  is computed by plugging max
newy , ( , )new

Y tµ x , and ( , )new
Y tσ x , 

which are obtained from ˆ( ),Y g tX= , into Eq. (14). When the convergence criterion is 

satisfied, we obtain the surrogate model max maxˆ ( )Y g X= .   

We then use MCS to calculate reliability. As max maxˆ ( )Y g X=  is accurate, so is the 

reliability calculated by MCS with a sufficiently large sample size. Note that MCS will 

no longer call the original limit-state state function.   

We now have all the algorithms for the new method. Next we put everything together 

and give the complete algorithm.   

3.5  Summary of the mixed EGO-based method 

Combining Algorithms 3 and 4 yields the complete algorithm of the mixed EGO 

based method, or Algorithm 5, given below.  

------------------------------- 

Place Table 6 here  

------------------------------- 

4 Numerical examples 

In this section, three numerical examples are used to demonstrate the effectiveness of 

the proposed approach. Each of the examples is solved using the following four methods.  

• Rice: The outcrossing rate method based on the Rice’s formula and First Order 

Reliability Method (FORM) [14, 39]. 

• Independent EGO: The independent EGO method or the nested EGO [20]  

• Mixed EGO: The proposed mixed EGO-based method  

• MCS: The direct MCS method using the original limit-state function  
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The other three methods are used to compare the accuracy and efficiency of the 

mixed EGO method. 

4.1 A nonlinear mathematical model 

A function of X  and t  is given in Eq. (16), where X  is a random variable following 

a normal distribution 2~ (10, 0.5 )X N .  

 2
2

1( , ) sin(2.5X)cos( 0.4)
4

y X t t
X

= )
)

  (16) 

The time-dependent probability of failure is given by  

 0( , ) Pr{ ( , ) 0.014, [1, 2.5]}f sp t t y X r r= > $ Î   (17) 

According to Eq. (8), 0( , )f sp t t  is equivalent to the following probability: 

 0 max( , ) Pr{ 0.014}f sp t t Y= >   (18) 

Before calculating reliability, we at first evaluate the mixed EGO model (or 

Algorithm 3) because it is the core component of the mixed EGO based method. We 

generate different numbers of initial samples of X  and t. We then identify max
sy  with 

respect to sx  using the existing independent EGO method and the mixed EGO method, 

respectively. The convergence criterion of the two methods is 510EIe -= .  The numbers 

of samples of X  are set to 10, 15, 18, and 20. The numbers of function evaluations (NOF) 

required for identifying max
sy  for different numbers of initial samples of X  are given in 

Table 7. The results show that the independent EGO calls the limit-state function 127 

times to identify the extreme values when the sample size is 15 while the mixed EGO 

method only needs 59 function evaluations. The results for sample sizes of 10, 18, and 20 
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are similar.  Fig. 1 shows the values of maxY  (i.e. max
sy ) obtained from the two methods, as 

well as the true maxY , for the sample size of ten.  

------------------------------- 

Place Table 7 here  

------------------------------- 

------------------------------- 

Place Figure 1 here  

------------------------------- 

The results show that both models are accurate to extract the extreme responses. The 

number of function evaluations by the mixed EGO model is less than that by the 

independent EGO method. The former is therefore more efficient. This becomes more 

apparent when the number of samples of X becomes larger.  

We now examine the performance of the mixed EGO based method for the time-

dependent reliability analysis. We use the MCS solution as a benchmark for accuracy 

comparison. The percentage of error is computed by 

 % 100%
MCS
f f

MCS
f

p p
p

e
-

= ´   (19) 

where MCS
fp  is from MCS that calls the original limit-state function, and fp  is from a 

non-MCS method. The results of reliability analysis are shown in Table 8.  

------------------------------- 

Place Table 8 here  

------------------------------- 
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The results show that the accuracy and efficiency of the mixed EGO based method 

are much better than the outcrossing rate method (Rice’s formula) and the independent 

EGO method.  

4.2 A vibration problem 

A vibration problem as shown in Fig. 2 is modified from Ref. [40] by treating the 

stiffness of spring 2k , damping coefficient 2c , mass 2m , the stiffness of spring 1k , and 

mass 1m  as random variables. There are totally five random variables. The random 

variables are given in Table 9.  

------------------------------- 

Place Table 9 here  

------------------------------- 

------------------------------- 

Place Figure 2 here  

------------------------------- 

The amplitude of the vibration of mass 1m  subjected to force 0 sin( )f tW  is given by 

 
1/22 2 2 2

2 2 2
1max 0 2 2 2 2 2 2 2 2 2

2 1 1 2 2 2 1 1 2 2

( )
( ) ( ( )( ))

c k mq f
c k m m k m k m k m

æ öW ) - W ÷ç ÷= ç ÷ç ÷ç W - W - W ) W - - W - Wè ø
 (20) 

where W  is the excitation frequency, which is considered as time, or t =W . 

Eq. (20) can be nondimensionalized using a “static” deflection of the main system. 

The non-dimensional displacement of 1m  is given by [40] 

 ( )( )1/22
1 1 2 3( , ) /Y g k K K K= W = )X   (21) 
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where 1 1[ , ]k m=X , and iK , 1, 2, 3i = , are given by 

 ( )2 2 2 2
1 2 2 2( )K c k m= W ) - W   (22) 

 2 2 2 2 2
2 2 1 1 2( )K c k m m= W - W - W   (23) 

 ( )2 2 2
3 2 2 1 1 2 2( )( )K k m k m k m= W - - W - W   (24) 

Y is considered over a wide excitation frequency band, 8 28£W£  (rad/s). Since W  is 

treated as t , the period of time is [8, 28]  rad/s. A failure is defined as the event when Y is 

larger than 35. The probability of failure on [8, 28]  rad/s is given by 

 (8, 28) Pr{ ( , ) 35, [8, 28]}= W > $WÎfp g X   (25) 

Fig. 3 shows one response of Y  at the means of random variables. It is highly 

nonlinear.  

------------------------------- 

Place Figure 3 here  

------------------------------- 

We use the independent EGO and the mixed EGO based methods to calculate the 

time-dependent probability of failure. Table 10 shows the results from different methods. 

Note that the Rice’s formula based method is not applicable for this example as the 

response is highly nonlinear. The results show that the proposed mixed-EGO method is 

much more efficient than the independent EGO method.  It should be noted that the 

vibration problem is employed as an example to verify the ability of the proposed method 

in solving highly nonlinear problem. Since the limit-state function is treated as a black 

box, the proposed method can be applied to other vibratory problems as well.   
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------------------------------- 

Place Table 10 here  

------------------------------- 

4.3 A beam subjected to time-variant loading 

A corroded beam subjected to stochastic load as shown in Fig. 4 is used as the third 

example. This example is modified from [41].  

------------------------------- 

Place Figure 4 here  

------------------------------- 

A failure occurs when the stress of the beam is larger than the ultimate strength of the 

material. The time-dependent probability of failure is given by 

 Pr{ ( , ( ), ) 0, [0, 35]}fp g Y t t tX= > $ Î   (26) 

in which  

 ( ) ( )( )22
0 0 0 0( , ( ), ) ( ) / 4 / 8 2 2 / 4st ug Y t t F t L a b L a kt b ktX r s= ) - - -   (27) 

where  0 0[ , , ]s= u a bX , ( ) [ ( )]=Y t F t , 47.85 10r = ´st N , 55 10 m / year-= ´k , and 

5 m=L . Here, ( )F t  is a stochastic loading presented by the spectral representation 

method [42] as follows: 

 
7 7

1 1

( ) 6500 ( sin( ))i ij ij ij
i j

F t a b t cx
= =

æ ö÷ç ÷= ) )ç ÷ç ÷çè ø
å å   (28) 

where  
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0.13 0.36 0.14 3.07 0.17 0.13 0.12
0.02 0.18 0.09 0.13 0.69 0.04 0.27
0.08 0.29 0.14 3.09 0.05 0.37 0.13
0.03 0.06 0.01 0.04 0.63 0.30 0.06
0.03 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.00

é

=

ë

a

ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úû

 

0.06 0.31 0.15 0.28 0.24 0.44 0.48
0.38 0.15 0.40 0.06 0.42 0.09 0.01
0.10 0.33 0.03 0.29 0.11 0.26 0.38
0.28 0.07 0.59 0.55 0.42 0.23 0.29
0.52 0.00 0.00 0.00 0.00 0.00 0.00
0.77 0.00 0.00 0.00 0.00 0.00 0.00
0.91 0.00 0.00 0.00 0.00 0.00 0.00

é

=

ë

b

ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úû

 

2.91 2.34 2.43 2.82 2.15 0.47 2.90
2.91 2.21 0.97 0.98 1.03 3.81 0.35

1.25 0.52 2.62 0.23 0.91 1.39 2.45
0.73 0.00 0.45 0.50 1.93 3.64 3.00
0.18 0.00 0.00 0.00 0.00 0.00 0.00
1.71 0.00 0.00 0.00 0.00 0.00 0.00
2.46 0.00 0.00 0

- - - -
- - - - -

- -
= - - - -

-
-

c

.00 0.00 0.00 0.00

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 

There are totally ten random variables, which are defined in Table 11.  

------------------------------- 

Place Table 11 here  

------------------------------- 

The time-dependent probability of failure over [0, 35] years is calculated by 

aforementioned four methods, and the results are given in Table 12.  

 

 



24 

 

------------------------------- 

Place Table 12 here  

------------------------------- 

  

The results show that the mixed EGO-based method is much more efficient and 

accurate than the independent EGO method and the Rice’s formula based method.  

 

5 Conclusion 

The distribution of the extreme value of a time-dependent limit-state function is 

required to evaluate the reliability defined within a period of time. The extreme value 

may be highly nonlinear with a multimodal distribution with respect to random input 

variables. For this reason, existing approximation methods, such as FORM, SORM, and 

the upcrossing method, may produce large errors. Using Monte Carlo simulation based 

on the surrogate model of the extreme response becomes more practical.   

This work develops a new reliability method that can efficiently and accurately 

construct surrogate models of extreme responses. The Efficient Global Optimization 

(EGO) is employed, and the sample points of input random variables and time are 

simultaneously generated. With this treatment, the new method is much more efficient 

than the existing method where the two sets of samples are generated independently in 

two nested loops. The surrogate model from the new method is accurate near or at the 

limit state, and its accuracy in other area is not important for the reliability assessment. 

This is another reason for the high efficiency. After the surrogate model is available, the 
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reliability can then be easily estimated by Monte Carlo simulation, which will not call the 

original limit-state function any more.   

As indicated in Sec. 4.2, where t  is the frequency, instead of a time factor, the 

proposed method can be used for limit-state functions with random input variables X and 

a general interval variable t. The latter may not necessarily be a time factor. The 

reliability produced by the proposed method becomes the worst-case reliability with 

respect to the interval variable. 

The new method is based on the Kriging model, and during the sampling and model 

updating process, the Kriging model is called repeatedly. The computational cost of 

calling the Kriging model is minor or moderate compared to that of calling a limit-state 

function whose evaluation may be computationally expensive.  
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Appendix A. Review of the AK-MCS method 

The AK-MCS method [23] is developed based on the EGRA method [33]. In the AK-

MCS method, the Kriging model is combined with MCS to adaptively update training 

points near or at the limit state. A Kriging model ˆ ( )G f= x  is constructed with initial 
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training points { , }x G . In order to identify a potential “dangerous” point (i.e. the new 

training point), which may cause the change of the sign of the response variable, one can 

use a learning function defined by [23] 

 
( )

( )
( )

MCS
GMCS

MCS
G

U
µ

σ
=

x
x

x
  (A1) 

where MCSx  is a group of samples drawn from the distributions of random input variables, 

( )MCS
Gµ x  is the prediction form the Kriging model ˆ ( )G f= x , and 2 ( )MCS

Gσ x  is the 

variance of the prediction. Note that the population of MCS samples is used to consider 

the joint probability density information of random variables and avoid the complicated 

global optimization used in the EGRA method.  

Then, a new training point is identified by minimizing ( )MCSU x . A stopping criterion 

Uε  is defined as min{ ( )} UU ε≥x  [23]. After the convergence is achieved, the probability 

of failure fp  is estimated by plugging current available samples totalx  into the surrogate 

model, where [ ; ]total total MCS=x x x  is used to store total samples for the current iteration. 

Then the coefficient of variation of probability of failure pfCov  is checked by  

 (1 ) ( )fp f MCSfCov p p N= −   (A2) 

where MCSN  is the total number of samples in totalx . 

If 0.05pfCov > , continue above procedure. Otherwise, stop and obtain the 

approximated fp .  The general algorithm of the AK-MIS summarized below. 

------------------------------- 

Place Table 13 here  

------------------------------- 
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Table 1 Detailed procedure of algorithm 1 

Algorithm 1 Efficient Global Optimization (EGO) 
1 Generate initial samples (1) (2) ( )[ ; ; ; ]s k;x x x x  
2 Compute (1) (2) ( )[ ( ), ( ), , ( )]s kg g g=y x x x ; set 1m =  

3 While { 1m = } or { max EI( ) EIe
Î

<
x X

x } do 

4 Construct a Kriging model ˆ ˆ ( )Xy g=  using { , }s sx y  

5 Find * ( )

1, 2, , 1
max { ( )}i

i k m
y g x

= + −
=



 

6 Search for ( ) arg max EI( )k m)

Î
=

x X
x x , where EI( )x  is computed by Eq. (4) 

7 Scale max EI( )= max EI( ) / (1)b
Î Îx X x X

x x , where (1)β  is the first element of the 

trend coefficients β  given in Eq. (1)  

8 Compute ( )( )k mg x + ; update ( )[ , ( )]s s k mg )=y y x  and ( )[ ; ]s s k m);x x x  
9 1m m= +  
10 End While 
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Table 2 Detailed procedure of algorithm 2 

Algorithm 2 Independent EGO method 
1 Generate initial samples (1) (2) ( )[ ; ; ; ]s k;x x x x  
2 Solve for (1) (2) ( )

max max max max[ ( ), ( ), , ( )]s kg g gy x x x=  , where 

0

( ) ( )
max [ , ]

( ) max { ( , )}
s

i i

t t t
g g tx x

∈
= , using EGO; set 1m =   

3 While { 1m = } or { max MSE( ) MSEe
Î

<
x X

x  } do 

4 Construct a Kriging model max maxˆ ( )Y g X=  using  max{ , }s sx y  

5 Find ( ) arg max{MSE( )}k m)

Î
=

x X
x x  

6 Search for 
0

( ) ( )
max [ , ]

( ) max { ( , )}
s

k m k m

t t t
g g tx x+ +

∈
=  using EGO 

7 Update ( )[ ; ]s s k m);x x x  and ( )
max max max[ , ( )]s s k mgy y x +=  

8 1m m= +  
9 End While 
10 Reliability analysis using max maxˆ ( )Y g X=  
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Table 3 Major Procedure of the mixed-EGO based method 

Step 1: Initial sampling 
1. Generate initial samples sx  and st  
Step 2: Build initial extreme response model (Algorithm 3) 
2. Build time-dependent surrogate model ˆ ( , )Y g tX=    
3. Solve for the maximum responses maxY  at sx  based on ˆ ( , )Y g tX=  using the mixed 

EGO method 
4. Build initial extreme response model max maxˆ ( )Y g X=  
Step 3: Update extreme response model (Algorithm 4) 
5. Adding new training points of X  by the AK-MCS method [23]  
6. Identify extreme values associated with the new training points using the mixed EGO 

method 
7. Obtain final model max maxˆ ( )Y g X=  
Step 4: Reliability analysis 
8. Monte Carlo simulation based on max maxˆ ( )Y g X= . 
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Table 4 Detailed procedure of algorithm 3 

Algorithm 3 Mixed EGO model for initial max maxˆ ( )XY g=  

1 At initial samples points, compute ( ) ( )
, ,

( )
1, 1,[ ] [ ( , ])y x i

k
s i i

i kiy tg= =… …= =  

2 Set s s
tx x= , 1m = , and the initial current best solution vector maxy ys s=  

3 While { 1m = } or { max EII e< } do 
4 Construct Kriging model ˆ ( ),XY g t=  using {[ , ], }s s s

tx t y  

5 Find a point with maximum EI: EI

0

( ) EI ( )

[ , ]1, 2, ,
[ , ] arg max{ max {EI( , )}}x x

s

i i

t t ti k
t t

∈=
=



, where 

EI [1, , ]ki ∈ …  and ( )EI( , )i tx  is computed based on ˆ ( ),Y g tX= ; calculate 
EI( ) EI

max ( , t)EI( , ) / (1)iI t xx β= .   

 

 

6 Compute EI( )EI EI( , )x iy g t=  

7 Update current best solution 
EI EI

max
max

ma

EI
EI

x EI

( )
( )

( ) otherwise
if s

s
s

y y y i
y i

y i
 >

= 


 

8 Update data points EI( )[ ; ];x x x is s
t t , EI[ ; ];t ts s t , and EI[ , ]=y ys s y  

9 1m m= +  
10 End While 
11 Record maxy s , [ , ]s s

tx t , and sy  
12 Construct max maxˆ ( )XY g=  using max{ , }s sx y  
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Table 5  Detailed procedure of algorithm 4 

Algorithm 4  Sampling update 
1: Set 1r =  and []total =x  
2: While { 1}r =  or { 0.05}pfCov >  do 
 

3: Set 1p =  
4: Generate MCSn  samples of  X , , 1, 2, ,MCS

i MCSi nx =  ; let [ ; ]total total MCS=x x x   
5: While { 1p = } or { min UU ε< }, where Uε  is the convergence criterion, do 
6: Construct a Kriging model max maxˆ ( )Y g X=  using max{ , }s sx y  and predict 

responses and their variances at MCS
ix  using max maxˆ ( )Y g X=   

7: Compute ( )MCS
iU x  using Eq. (A1); identify a new training point by 

arg min {U( )}
MCS

new

x x
x x

Î
= and min U( )newU x=  

8: Generate a new time instant rt  from uniform distribution on 0[ , ]st t  
9: Compute ( , )MCS new

ry g tx= ; update [ ; ]s s new
t tx x x; , [ ; ]s s

rt;t t , and 
[ , ]s s MCSyy y=   

10: Set max
new MCSy y=  and 1q =  

11: While { 1q = } or {
0[ , ]

max EI( , )
s

new
EIt t t

tx e
Î

> } do 

12: Construct 1n +  dimensional Kriging model ˆ ( ),Y g tX=  using {[ , ], }s s s
tx t y   

13: Find EIt  such that 
0

EI

[ , ]
max {EI( , )}

s

new

t t t
t t

∈
= x , where EI( , )new tx  is computed 

based on ˆ ( ),Y g tX=   

14: Scale EI EI
( , t)EI( , ) EI( , ) / (1)new newt t β= xx x , where ( , t) (1)xβ  is the first 

element of the trend coefficients of ˆ ( ),Y g tX=  model  

15: Compute EI EI( , )newy g t= x  
16: 

Update current best solution 
EI EI

max
max

max

, if 

, otherwise

new
new

new

y y y
y

y

 >= 


 
 

17: Update data points [ ; ]s s new
t tx x x; , EI[ ; ]s s t;t t , EI[ , ]s s y=y y  

18: 1q q= +  
19: End While 
20: Record max max max[ ; ]s s newyy y; , [ ; ]s s newx x x; , s

tx , st , and sy  

21: 1p p= +  
22: End While 
23: Construct Kriging model of max maxˆ ( )Y g X=  using max{ , }s sx y  and compute ˆ fp  

 



36 

 

by plugging totalx  into max maxˆ ( )Y g= X  

24: Compute  ˆ ˆ(1 ) ( )fp f MCf SCov p p rn= −  
25: 1r r= +  
26: End While 
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Table 6  Detailed procedure of algorithm 5 

Algorithm 5  Complete algorithm 
1) Step 1: Initialization 

 Generate initial samples (1) (2) ( )[ ; ; ; ]s k;x x x x  and (1) (2) ( )[ ; ; ; ]s kt t t;t    using the 
Harmmersley sampling method. 

2) Step 2: Build initial model max maxˆ ( )Y g X=  (Algorithm 3) 

 
a) Compute ( ) (1) (1)

1, , 1, ,[ ] [ ( , )]s i
i k i ky g t= == =y x

 

 

b) Set s s
tx x= , 1m = , and the initial current best solution vector max

s s=y y  
 c) While { 1m = } or { max EII e< } do 
 i) Construct an 1n +  dimensional Kriging model ˆ ( ),Y g tX=  using{[ , ], }s s s

tx t y  

 
ii) Find a point with maximum EI: EI

0

( ) EI ( )

[ , ]1, 2, ,
[ , ] arg max{ max { ( , )}}

s

i i

t t ti k
t EI tx x

∈=
=



, 

where EI [1, , ]i k∈  ; calculate EI( ) EI
max ( , t)( , ) / (1)iI EI t xx β= . 

 iii) Compute EI( )EI EI( , )iy g tx=  

 iv) Update current best solution 
EI EI

max EI
max EI

max EI

( )
( )

( ), oth

, if

erw s

 

i e

s
s

s

y y y i
y i

y i

 >= 


 

 v) Update data points max( )[ ; ]is s
t t;x x x , EI[ ; ]s s t;t t , EI[ , ]s s y=y y  

 vi) 1m m= +  
      End While 
 d) Record max

sy , [ , ]s s
tx t  and sy ; Set 1p = . 

3) Step 3: Update max maxˆ ( )Y g X=  with AK-MCS and mixed EGO (Algorithm 4) 
Algorithm 4 

4) Step 4: Reliability Analysis 
    Reliability analysis using max maxˆ ( )Y g X=  
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Table 7 NOF required for different number of samples of X  

Number of 
samples of X  

NOF 
Independent EGO Mixed EGO 

10 85 49 
15 127 59 
18 153 66 
20 170 69 
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Table 8 Results of example 1 

Method NOF 0( , )f sp t t  (×10-4) Error (%) 
Rice 1017 0 100 

Independent EGO 212 1.31 20.18 
Mixed-EGO based 69 1.09 0 

MCS 5×108 1.09 N/A 
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Table 9 Variables and parameters of Example 2 

Variable Mean Standard deviation Distribution 

1k  (N/m) ´ 63 10  49 10´  Normal 

1m (kg) ´ 41.6 10  ´ 22 10  Normal 

2k (N/m) ´ 48.5 10  32 10´  Normal 

2m (kg) 480  5 Normal 

2c  (Ns/m) 300  5 Normal 
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Table 10 Variables and parameters of Example 2 

Method NOF 0( , )f sp t t  (×10-2) Error (%) 
Rice N/A N/A 

Independent EGO 3366 4.07 22.22 
Mixed-EGO based 1378 3.43 3.00 

MCS 2×108 3.33 N/A 
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Table 11 Random variables of Example 3 

Variable Mean Standard deviation Distribution 

su  (Pa) 82.4 10´  72.4 10´  Normal 

0a (m) 0.2 0.01 Normal 

0b (m) 0.04 34 10-´  Normal 

1x  0 100 Normal 

2x  0 50 Normal 

3x  0 98 Normal 

4x  0 121 Normal 

5x  0 227 Normal 

6x  0 98 Normal 

7x  0 121 Normal 
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Table 12 Results of Example 3 

Method NOF 0( , )f sp t t  (×10-2) Error (%) 
Rice 6501 2.85 5.94 

Independent EGO 496 3.27 7.92 
Mixed-EGO based 283 2.99 1.32 

MCS 3×108 3.03 N/A 
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Table 13 Detailed procedure of algorithm 6 

Algorithm 6 Algorithm of AK-MCS 
1: Set 1q =  and []total =x  
2: While { 1}q =  or { 0.05}pfCov > do 
 

3: Set 1p =  
4: Generate MCSn  samples of X , , 1, 2, ,MCS

i MCSi nx =  ; let [ ; ]total total MCS=x x x  
 

5: While { 1p = } or { min UU ε< } do 
6: Construct a Kriging model of ˆ ( )G f= X  using initial training points{ , }x G  

and obtain the predictions and variances by plugging MCS
ix  into ˆ ( )G f= X   

7: Identify new training point by arg min {U( )}
MCS

new

x x
x x

Î
= and min U( )newU x=  

 
8: Compute ( )new newy f x= ; Update [ ; ]newx x x;  and [ , ]newyg g=  
9: End While 
10: Compute ˆ fp  by plugging totalx  into ˆ ( )G f= X  

11: Compute _ fCov p  with _ (1 ) ( )f f f MCSCov p p p qn= −  

12: 1q q= +  
13: End While 
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Fig. 1 maxY  from independent EGO and mixed EGO and the true values  
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Fig. 2 A vibration problem 
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Fig. 3 One response Y  at the mean value point of random variables 
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Fig. 4 Corroded beam subjected to stochastic loading 
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