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Abstract 

Time-dependent reliability method for mechanisms predicts the probability of satisfying 

the motion requirement in a predefined period of time. The current reliability methods do 

not consider the random clearances in mechanism joints. This work extends the current 

methods into function generation mechanisms on which the effect of random joint 

clearances is significant. The motion output is approximated in the first order with respect 

to random dimension variables and in a higher order with respect to random joint 

clearances by the Hybrid Dimension Reduction Method. This treatment achieves an 

optimal balance between accuracy and efficiency. Then an envelope method is used to 

calculate the time-dependent reliability. The method is demonstrated by the analysis of 

three four-bar function generation mechanisms.  
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Nomenclature 

CC Revolute joint 
ee Distance between centers of a bearing and a journal 
g Motion error function 
L  Vector of random dimension variables 
LL  A component of  
mm Size of  
pf (µ)pf (µ) Point probability of failure at  
pf (µ0; µf )pf (µ0; µf ) Interval probability of failure on [µ0; µf ][µ0; µf ] 
pp Number of expansion points 
qq Number of random clearance variables 
R(µ)R(µ)

 
Point reliability at  

R(µ0; µf )R(µ0; µf ) Interval reliability on [µ0; µf ][µ0; µf ] 
rr  Rank of covariance matrix §§  

 Radius of the clearance circle 
S Random variables 
X  Vector of the xx-coordinates of random clearance variables 
X  Component of X  
Y  Vector of the yy-coordinates of random clearance variables  
Y  Component of Y  
""  Allowable motion error 
µµ Input angle 
¹ g Mean of the motion error 
¹ L¹ L   Mean of the dimension variable LL  
¹ z¹ z  Vector of the means of the motion error at expansion points 
§§  Covariance matrix of the motion errors at expansion points 
¾g Standard deviation of the motion error 
¾L¾L   Standard deviation of the dimension variable LL  
©© Cumulative distribution function of a standard normal distribution  
ÃÃ Actual motion output 
ÃdÃd Desired motion output 
 

1. INTRODUCTION 

Appropriate joint clearances are chosen for ensuring mechanisms work properly. 

On the other hand, they may be somewhat uncontrollable due to manufacturing 

imprecision and wearing [1]. They are in fact stochastic [2], and the uncertainty in 

clearances can be propagated to the motion output, thereby affecting adversely the 
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kinematic and dynamic performances of mechanisms [1-5]. The effects might be the 

motion accuracy loss, unreliability, and reduced service life. They become more severe 

on high-speed and micro-mechanical systems, such as those in aerospace applications, 

intelligent robots, and numerically controlled machine tools.  

Studies on joint clearances include the investigations on their effects on 

mechanisms performance and dynamic characteristics [6]. For the latter, the effects of 

revolute joint clearances on dynamic characteristics are modeled with three major 

strategies – the massless link approach, the spring-damper approach, and the momentum 

exchange approach [7]. Among the three approaches, the third approach is more realistic 

and is widely employed to study the mechanism dynamic with joint clearances.  For 

examples, Erkaya [8] presented a modeling and optimization approach to reduce the 

undesired effects of joint clearances on a walking mechanism. Another study of Erkaya 

[9] established a contact model in a revolute joint with clearance by using the nonlinear 

spring-damper characteristic and then investigated the kinematic and dynamic 

characteristics of the welding robot manipulator with joint clearance. Flores et al. [10-13] 

investigated the effects of joint clearances on kinematics and dynamics of planar and 

spatial mechanisms with rigid and elastic links. Another study of Flores [14] proposed a 

general and comprehensive approach to automatically adjust the time step with variable 

time-step integration algorithms, in the vicinity of contact of multi-body systems. Varedi  

et al.[15] proposed an optimization method to alleviate the undesirable effect of joint 

clearance. Zhang et al. [16] established a simulation model of joint clearance with the 

Hertzian normal contact force model and a Coulomb-type friction force model, and then 

established a polynomial function Kriging meta-model for optimizing the performance of 
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a mechanical system with the revolute joint clearance. Zhang et al. [17] established the 

dynamic equations for a 3-RRR parallel mechanism by using Newton-Euler equations 

with Lankarani-Nikravesh contact force model and improved Coulomb friction force 

model, and then investigated the dynamic performances of the 3-dof mechanism with 

multi-clearance joints. 

For kinematic characteristics, the focus is the quantification of the effect of joint 

clearances on the ability of achieving desired positions or orientations precisely [6]. 

There are two types of methods in this area. The first type includes deterministic methods, 

and they are used to specify the mechanism motion error resulted from joint clearances 

without considering the randomness in the joint clearances. In the deterministic 

approaches, many researchers used a massless virtual link to model the joint clearance 

and investigated the motion accuracy for the planar mechanisms [1, 18, 19]. In the error 

analysis of the spatial mechanisms and manipulators, the virtual work method [6, 20], the 

screw theory method [21-23], and the interval method [24] have been proposed to study 

the effects of joint clearance on position and orientation deviation of  the manipulators. 

Based on the theory of envelope, Chen [25] presented a geometric method to uniformly 

construct the indeterminate influences of the input uncertainties and the joint clearance on 

the pose (position and orientation) deviation of the manipulators.  The other type contains 

probabilistic methods [2, 26-31], which rely on probability and statistics for creating 

stochastic models of joint clearances and the uncertainty propagation. In general, the 

probability density function (PDF) is used to describe the random behavior of a joint 

clearance variable in a clearance circle [2]. The uniform distribution and normal 

distribution are commonly used for the probabilistic model of the joint clearance [2, 26]. 



5 
 

Although the stochastic approach does not explore the contact kinematic models of the 

pairing elements of a joint, it is more desirable for important applications where 

reliability is of great interest. 

A reliability method is the major method among the probabilistic methods. The 

mechanism reliability is the probability of the output member’s position and/or 

orientation falling within a specified range from the desired position and/or orientation 

[32]. Higher kinematic reliability means a higher chance to achieve the required motion. 

It is the reason that reliability methods have been extensively applied in mechanism 

analysis and synthesis [26-39]. 

There are two types of kinematic reliability, including point kinematic reliability 

and time-dependent (interval) kinematic reliability [38]. The former reliability is defined 

at a specific instance of time and can provide instantaneous information at a specific 

point in the motion interval of a mechanism. Most of the methods in the literature of 

mechanism reliability analysis and synthesis are for point kinematic reliability, which is 

usually calculated by the First Order Second Moment (FOSM) method and Monte Carlo 

Simulation (MCS) [26, 28, 30-36].  

Recently, the methods for the time-dependent (interval) kinematic reliability have 

also been proposed [38]. This kind of reliability is defined in a period of time (a time 

interval), which indicates the range of the motion input where the desired motion output 

is defined. The first passage method with the Poisson approximation [38] has been 

recently used, and the envelope method [39] has also been proposed to estimate the interval 

kinematic reliability. The former method is based on the upcrossing probability, which is 

the probability that the motion error exceeds the failure threshold at a time instant. The 
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method assumes that all the upcrossings during the period of time under consideration are 

independent. If multiple dependent upcrossings occur, the calculated probability of 

failure will be much larger than the true value. The envelope method improves the 

accuracy by using an envelope that covers all the extreme values of the motion error 

during the period of time. The envelope function is at first identified by FOSM and is 

approximated at a limited number of time instants where the possible extreme values of 

the motion error might occur. Then the probability of failure is estimated at these time 

instants through an integration with respect to a multivariate normal distribution.  

None of the above methods handles random joint clearances. The current reliability 

methods that can deal with random joint clearances are for only point reliability. The 

commonly used FOSM and the First Order Reliability Method (FORM) are inaccurate 

[26] when random joint clearances are involved. The reason is that the coordinates of a 

pin center are confined within its clearance circle and are therefore statistically dependent. 

As a result, the first order approximation of the motion output with respect to the 

clearance variables will lose the dependency and produce poor accuracy. For a good 

balance between the accuracy and efficiency, the Hybrid Dimension Reduction Method 

(HDRM) [26] is proposed. It employs the first order approximation for independent 

dimension variables and bivariate (or trivariate) dimension reduction for dependent joint 

clearance variables. HDRM can produce more accurate solutions than FOSM or FORM 

while maintaining higher efficiency than MCS. 

To fill the gap in dealing with joint clearances for interval kinematic reliability, this 

work develops a new reliability method for such an analysis. The new method combines 

the envelope method (originally for interval reliability without clearances) and HDRM 
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(originally for point reliability with clearances) and extend the integrated method to 

interval reliability analysis with clearances.  

In Section 2, we review the kinematic analysis of four-bar planar function 

generation mechanisms and then discuss the probabilistic model for joint clearances 

using HDRM. In Section 3, we discuss how to combine HDRM with the envelope 

method to calculate the interval kinematic reliability. Three numerical examples are 

presented in Section 4 followed by conclusions in Section 5. 

 

2. MOTION ERROR MODELING 

In this section, we use the planar four-bar linkage to show how to establish the 

probabilistic model of the motion error with joint clearances by HDRM. 

2.1. Kinematic analysis 

A planar four-bar linkage with joint clearances is shown in Fig.1. The crank AB is 

the input member with the input angle µµ, and the rocker CD is the output member with 

the output angle ÃÃ.  

 

Figure 1 Four-bar mechanism with joint clearances 
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The dimension variables are the lengths L = (L1; L2; L3; L4)T . They are assumed to 

be statistically independent. As commonly reported in the mechanism literature, the 

elements of L  follow normal distributions, L i » N (¹ L i ; ¾2
L i )L i » N (¹ L i ; ¾2
L i ) (i = 1; : : : ; mi = 1; : : : ; m), where ¹ L i¹ L i  and 

¾L i¾L i  are the mean and the standard deviations of L iL i , respectively; ¾L i¾L i  can be determined 

by the tolerance of L iL i  with the 3-sigma rule. For the linkage in Fig. 1, m = 4m = 4. 

C1, C2, C3 and C4 are the four revolute joints. The existence of clearances in these 

joints is inevitable due to machining tolerances, wear, material deformation, and 

imperfections. A general joint between links ii  and jj  is shown in Fig. 2. The clearance 

circle [2, 26] is the circle with a radius of r c = rB ¡ r J , where rB  and r J  are radii of the 

bearing and journal, respectively. Let the distance between the center of a bearing and the 

origin be ejej ; namely 

 ej =
q

X 2
j + Y 2

j  (1) 
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Figure 2  Joint clearance 

Three types of motion between the journal and bearing are defined in [8, 9] as 

 ±j =

8
><

>:

ej ¡ rCj < 0 free-° ight mode
ej ¡ rCj = 0 contact with impact mode
ej ¡ rCj > 0 cont inuous contact mode (relat ive penetrat ion)

 (2) 

The three types are shown as Cases (a), (b), and (c), respectively, in Fig. 2. 

In case of small clearances, the free-flight mode and impact mode dominate [9]. 

For large clearances, all the three types of motion are possible. Large clearances are 

relatively rare for function generation mechanisms. To this end, we consider only small 

rB  

r J  

Bearing 

Journal 

Link i 

Link j 

Yj  

X j  

ej  

(c) 

rB  
r J  

Bearing 

Journal 

Link i 

Link j 

Yj  

X j  

ej  

(b) 



10 
 

clearances and therefore assume that the center of a bearing varies randomly within the 

associated clearance circle. For planar mechanisms, the coordinates of the bearing centers 

are (X ; Y ) = ((X 1; Y1); : : : ; (X q; Yq))T . For the four-bar linkage in Fig.1, q = 4q = 4. X j  and 

Yj  are statistically dependent because they are confined within their clearance circle Cj  

(j = 1; : : : ; q) . 

The center of the journal varies randomly inside the clearance circle. In literature, 

the joint PDF of the coordinates X j  and Yj  of the center is assumed either uniform or 

normal [2, 26]. Herein we use the more conservative uniform distribution, and the results 

can be easily extended to the normal distribution or any other distributions. With this 

assumption, X j  and X j  follow a uniform distribution defined within the clearance circle 

of radius r cj  as follows [2, 26]: 

 f X j ;Yj (x; y) =

(
1

¼r 2
cj

if x2 + y2 · r 2
cj

0 otherwise  
(3) 

The loop-closure equations of crank-rocker mechanism are given by (see Fig. 1) 

 
½

L1 cosµ+ L2 cos¯ ¡ L3 cosÃ + X 1 + X 2 ¡ X 3 ¡ X 4 = 0
L1 sin µ+ L2 sin ¯ ¡ L3 sin Ã + Y1 + Y2 ¡ Y3 ¡ Y4 = 0  (4) 

Eliminating ¯, we obtain the motion output Ã as 

 Ã = 2arctan
µ

¡ B §
p

A2 + B 2 ¡ C2

C ¡ A

¶

 (5) 

where  A = 2EL3 , B = 2F L3, C = E 2 + F 2 + L2
3 ¡ L2

2,  

E = ¡ L1 cosµ+ L4 + X 1 + X 2 ¡ X 3 ¡ X 4 

F = L1 sin µ ¡ Y1 ¡ Y2 + Y3 + Y4 
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2.2.  Motion error 

A function generation mechanism is designed so that the relative motion between 

links connected to the ground satisfies a functional relationship y = f (x)y = f (x) . Let xx  be 

defined on interval [x0; xe][x0; xe], the initial angle of crank be  µ0µ0, the range of motion input be 

[µ0; µe][µ0; µe], the corresponding initial angle of rocker be Ã0Ã0, and the range of motion output be 

[Ã0; Ãe][Ã0; Ãe]. Then the desired motion output ÃdÃd at µµ is given by 

 Ãd(µ) = Ã0 +
¢ Ã
¢ f

f
µ

¢ x
¢ µ

(µ ¡ µ0)
¶

¡ f (x0)
¸
 (6) 

where ¢ f = f (xe) ¡ f (x0)¢ f = f (xe) ¡ f (x0) , ¢ x = xe ¡ x0¢ x = xe ¡ x0, ¢ µ = µe ¡ µ0¢ µ = µe ¡ µ0, and ¢ Ã = Ãe ¡ Ã0¢ Ã = Ãe ¡ Ã0. 

The motion error is the difference between the actual motion output ÃÃ and the 

desired motion output ÃdÃd and is given by 

 g(S; µ) = Ã(S; µ) ¡ Ãd(µ) (7) 

where S = (L ; (X ; Y )). 

In Eq. (7), the random variables S = (L ; (X ; Y ))  are time independent. g(S; µ) 

varies, however, with respect to the input angle µ. In other words, the motion error g(S; µ) 

is a function of the time factor µ and is therefore a stochastic process. Its statistical 

moment functions are also time dependent because the actual motion output Ã(S; µ) and 

the desired motion output Ãd(µ)  are generally nonlinear functions of µ. As a result, 

g(S; µ) is in general a non-stationary stochastic process. The nonstationality makes the 

reliability analysis difficult. Other challenges also exist [26]. For example, the 

dependence between clearance variables X  and Y , the nonlinearity of g(S; µ)  with 

respect to random variables, and high dimensionality of random variables for a 
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mechanism with a large number of members. Next, we use HDRM to simplify the motion 

error and then derive the probabilistic model of the motion error. 

2.3. Probabilistic motion error model 

We use HDRM [26] to build a probabilistic model of the motion error. HDRM is 

originally proposed to analyze the point kinematic reliability of mechanisms with joint 

clearances [26]. It can effectively and accurately handle the statistically dependent 

clearance variables. As shown in what follows, it can also be extended to interval 

kinematic reliability analysis. We at first briefly review HDRM and then use it to derive 

the moment and standard deviation functions of the motion error with respect to time. 

Since the dimension variables are independent, the motion error can be 

approximated by the sum of univariate functions of dimension variables. Since the x- and 

y-coordinates of  clearances are strongly dependent, the motion error is approximated by 

the sum of bivariate functions of the x-y clearance coordinates [26]. Adding the time 

factor µµ to the original equation in [26], we have the approximation given by 

 

g(S; µ) = g(L ; (X ; Y ); µ) ¼

g0 +
mX

i = 1

gL i (L i ; µ)

+
qX

j = 1

£
gX j (X j ; µ) + gYj (Yj ; µ) + gX j Yj ((X j ; Yj ); µ)

¤
 (8) 

The terms on the right-hand side of Eq. (8) are explained below. 

 g0 = g(¹ S; µ) = g(¹ L ; (¹ X ; ¹ Y ); µ) (9) 

where ¹ L = (¹ L 1 ; ¢¢¢; ¹ L m ), ¹ X =
¡
¹ X 1 ; ¢¢¢; ¹ X q

¢
, and ¹ Y =

¡
¹ Y1 ; ¢¢¢; ¹ Yq

¢
. 

 gL i (L i ; ; µ) = g((L i ; ¹ » L i
S ); µ) ¡ g0 (10) 

where (L i ; ¹ » L i
S ) = (¹ L 1 ; : : : ; ¹ L i ¡ 1 ; L i ; ¹ L i + 1 ; : : : ; ¹ L m ; (¹ X ; ¹ Y )). 
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 gX j (X j ; µ) = g((X j ; ¹ » X j
S ); µ) ¡ g0 (11) 

where (X j ; ¹ » X j
S ) = (¹ L ; (¹ X 1 ; : : : ; ¹ X j ¡ 1 ; X j ; ¹ X j + 1 ; : : : ; ¹ X m ; ¹ Y )). 

 gYj (Yj ; µ) = g((Yj ; ¹ » Yj
S ); µ) ¡ g0 (12) 

where (Yj ; ¹ » Yj
S ) = (¹ L ; (¹ X ; ¹ Y1 ; : : : ; ¹ Yj ¡ 1 ; Yj ; ¹ Yj + 1 ; : : : ; ¹ Ym )). 

 gX j Yj ((X j ; Yj ); µ) = g((X j ; Yj ; ¹ » X j Yj
S ); µ) ¡ gX j (X j ; µ) ¡ gYj (Yj ; µ) ¡ g0 (13) 

where 
(X j ; Yj ; ¹ » X j Yj

S ) = (¹ L ; (¹ X 1 ; : : : ; ¹ X j ¡ 1 ; X j ; ¹ X j + 1 ; : : : ; ¹ X m ; ¹ Y1 ; : : : ; ¹ Yj ¡ 1 ; Yj ; ¹ Yj + 1 ; : : : ; ¹ Ym )). 

Simplifying Eq. (8), we have 

 

g(S; µ) ¼ĝ(L ; (X ; Y ); µ) =
mX

i= 1

g((L i ; ¹ » L i
S ); µ)

+
qX

j = 1

g((X j ; Yj ; ¹ » X j Yj
S ); µ) ¡ (m + q ¡ 1)g(¹ S; µ)

 (14) 

The first order Taylor series expansion is accurate with respect to dimension 

variables L  because the standard deviations of L  are small. We can then simplify the 

univariate functions g((L i ; ¹ » L i
S ); µ)  ( i = 1; : : : ; m ) by replacing 

g((L i ; ¹ » L i
S ); µ) ¡ g(¹ S; µ) with @g(S;µ)

@L i ¹̄ S

(L i ¡ ¹ L i ). Hence, ĝ(L ; (X ; Y ); µ) becomes 

 
ĝ(L ; (X ; Y ); µ) =

mX

i= 1

@g(S; µ)
@Li

¯̄

¹̄ S

(L i ¡ ¹ L i ) +
qX

j = 1

g((X j ; Yj ; ¹ » X j Yj
S ); µ)

¡ (q ¡ 1)g(¹ S; µ)
 (15) 

Let Rj = g((X j ; Yj ; ¹ » X j Yj
S ); µ) . Rj  is assumed to be approximately normally 

distributed, namely, Rj » N (¹ Rj ; ¾2
Rj

) . We then transform all random variables into 

those that follow standard normal distributions and rewrite Eq. (15) as  

 ĝ(L ; (X ; Y )) = a0 +
mX

i= 1

ai ¾L i Ui +
qX

j = 1

¾r cj Uj  (16) 
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where a0 =
qX

j = 1

¹ r cj ¡ (q ¡ 1)g(¹ S; µ) and ai = @g(S;µ)
@L i ¹̄ S

. Both a0 and ai  are functions 

of the time factor µµ . Ui  and Uj  follow standard normal distributions Ui » N (0; 12)Ui » N (0; 12) 

(i = 1; : : : ; mi = 1; : : : ; m) and Uj » N (0; 12)Uj » N (0; 12) (j = 1; : : : ; qj = 1; : : : ; q). ¹ r cj  and ¾r cj¾r cj  are the mean and standard 

deviation of Rj , respectively, and ¹ r cj  and ¾r cj¾r cj  are calculated by the Gaussian cubature 

method [40]. Using the 7-point rule given in [41], ¹ r cj  is evaluated by 

 ¹ r cj = E
n

g((X j ; Yj ; ¹ » X j Yj
S ); µ)

o
¼

7X

i= 1

wi g((xj ; yj ; ¹ » xj yj
S ); µ) (17) 

and ¾r cj¾r cj  is evaluated by 

 ¾2
r cj

= D
n

g((X j ; Yj ; ¹ » X j Yj
S ); µ)

o
¼

7X

i= 1

wi g((xj ; yj ; ¹ » xj yj
S ); µ) ¡ ¹ 2

r cj
   (18) 

where (x1; y1) = (0; 0) , (xi ; yi ) = (§ r
p

2=3; 0) , for i = 2; 3 ,  and 

(xi ; yi ) = (§ r
p

6; § r
p

2) for i = 4 through 77with w1 = 1
4  and wi = 1

8  for i = 1 through 

22.  

Recall that S = (L ; (X ; Y )) . From Eq. (16), the mean ¹ g(S; µ)  of g(S; µ)  is 

computed by 

 ¹ g(S; µ) ¼ a0 (19) 

and the variance  ¾2
g(S; µ) of g(S; µ) is 

 ¾2
g(S; µ) ¼

mX

i= 1

a2
i ¾2

L i
+

qX

j = 1

¾2
cj

 (20) 

We have obtained the mean and standard deviation functions of the motion error 

stochastic process. Since the motion error at any given instant of time is normally 

distributed, the motion error stochastic process is in general a non-stationary Gaussian 

process. To fully describe the Gaussian process, we also need to know its auto-correlation 
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function, which captures the dependence of the motion errors at any two time instances. 

We will discuss how to obtain the auto-correlation function in the next section when we 

present the envelope method. 

 

3. KINEMATIC RELIABILITY ANALYSIS 

In this section, we discuss the new interval reliability method with joint clearances. 

We also briefly review the point reliability because we also use it in the evaluation of the 

interval reliability. 

3.1. Point kinematic reliability 

The point reliability is defined at a specific instance of time. For a function 

generation mechanism, the point kinematic reliability at µµ is the probability that the 

motion error g(S; µ)  is less than the allowable motion error "" . The motion of the 

mechanism is considered satisfactory if the motion error is small enough such that 

g j(S; µ)j = jÃ(S; µ) ¡ Ãd(µ)j 6 "g j(S; µ)j = jÃ(S; µ) ¡ Ãd(µ)j 6 "                                     (21) 

Then the point reliability R(µ)R(µ) at µµ is defined by the following probability  

R(µ) = Pr f jg(S; µ)j 6 "g = Pr f ¡ " 6 g(S; µ) 6 "gR(µ) = Pr f jg(S; µ)j 6 "g = Pr f ¡ " 6 g(S; µ) 6 "g                 (22) 

where Prf ¢gPrf ¢g stands for a probability.  

The point probability of failure is then given by 

pf (µ) = Pr f jg(S; µ)j > "g = Pr f g(S; µ) > " [ g(S; µ) < ¡ "gpf (µ) = Pr f jg(S; µ)j > "g = Pr f g(S; µ) > " [ g(S; µ) < ¡ "g            (23) 

The mechanism is in a working condition if jg(S; µ)j 6 "jg(S; µ)j 6 "  and is in a failure 

condition otherwise. Then R(µ)R(µ)  represents the likelihood that the mechanism works 

properly at µµ regardless whether it has failed or not before that.  

FOSM calculates the point reliability by 
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R(µ) = ©
µ

" ¡ ¹ g(S; µ)
¾g(S; µ)

¶
¡ ©

µ
¡ " ¡ ¹ g(S; µ)

¾g(S; µ)

¶
R(µ) = ©

µ
" ¡ ¹ g(S; µ)

¾g(S; µ)

¶
¡ ©

µ
¡ " ¡ ¹ g(S; µ)

¾g(S; µ)

¶

 
                          (24) 

and the point probability of failure defined in Eq. (23) is then given by 

pf (µ) ¼ 1 ¡ ©
µ

" ¡ ¹ g(S; µ)
¾g(S; µ)

¶
+ ©

µ
¡ " ¡ ¹ g(S; µ)

¾g(S; µ)

¶
pf (µ) ¼ 1 ¡ ©

µ
" ¡ ¹ g(S; µ)

¾g(S; µ)

¶
+ ©

µ
¡ " ¡ ¹ g(S; µ)

¾g(S; µ)

¶

                      
(25) 

where ©(¢)©(¢) is the cumulative distribution function (CDF) of a standard normal variable. 

 

3.2. Interval kinematic reliability 

Time-dependent (interval) kinematic reliability is defined over a time interval and 

can provide complete reliability information over the entire motion range of interest. The 

time interval is the range of the motion input where the desired function is defined. 

Interval reliability is the probability that the motion error is always less than the specified 

allowance ""  over an interval of motion input [µ0; µe][µ0; µe] and is defined by [38] 

R(µ0; µe) = Pr f jg(S; µ)j 6 " ; 8µ 2 [µ0; µe]g
= Pr f ¡ " 6 g(S; µ) 6 "; 8µ 2 [µ0; µe]g

R(µ0; µe) = Pr f jg(S; µ)j 6 " ; 8µ 2 [µ0; µe]g
= Pr f ¡ " 6 g(S; µ) 6 "; 8µ 2 [µ0; µe]g                            (26) 

where 88  is a universal quantifier, meaning “for all”. The corresponding interval 

probability of failure is given by 

pf (µ0; µe) = Pr f jg(S; µ)j > " ; 9µ 2 [µ0; µe]g
= Pr f g(S; µ) > " [ g(S; µ) < ¡ " ; 9µ 2 [µ0; µe]g

pf (µ0; µe) = Pr f jg(S; µ)j > " ; 9µ 2 [µ0; µe]g
= Pr f g(S; µ) > " [ g(S; µ) < ¡ " ; 9µ 2 [µ0; µe]g                   (27) 

where 99 is a existential quantifier, meaning “there exists”. 

As indicated in Eqs. (19) and (20), both ¹ g(S; µ) and ¾g(S; µ)¾g(S; µ) are dependent on µµ 

and are hence time dependent. g(S; µ) is therefore a non-stationary Gaussian process. The 

mean value first-passage (MVFP) method [38] has been used to solve for the interval 

kinematic reliability. This method is based on FOSM and the first-passage method with 

the Poisson approximation [38]. Since the Poisson approximation neglects the statistical 

dependence between the events of upcrossing the failure threshold, MVFP may not be 
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accurate for some problems. For improving the accuracy of the time-dependent 

mechanism reliability analysis, an envelope approach [39] has been proposed. But it is 

only for problems without joint clearances. In the next two subsections, we discuss our 

new development that extends the envelope method into problems where joint clearances 

are accommodated.  

3.3.  Envelope method with joint clearances 

An envelope function of the motion error g(S; µ) on [µ0; µe][µ0; µe] [39] is a function of S 

and encloses all the motion errors on [µ0; µe][µ0; µe]. Once [µ0; µe][µ0; µe] is given, the envelope function 

is time independent. Denote the envelope functions by G+ (S) = 0G+ (S) = 0 and G¡ (S) = 0G¡ (S) = 0 for 

failure boundaries g(S; µ) = "g(S; µ) = "  and g(S; µ) = ¡ "g(S; µ) = ¡ " , respectively. 

G+ (S)G+ (S) is determined by [39] 

 
½

g(S; µ) = "
_g(S; µ) = 0

½
g(S; µ) = "
_g(S; µ) = 0 (28) 

and G¡ (X )G¡ (X ) is given by 

 
½

g(S; µ) = ¡ "
_g(S; µ) = 0

½
g(S; µ) = ¡ "
_g(S; µ) = 0  (29) 

Next, we explain how to use the envelope functions to estimate the interval 

reliability. As shown in Fig. 3, at the limit state, g(S; µ) = "g(S; µ) = "  represents a family of hyper-

surfaces of g(S; ² ) = "g(S; ² ) = " , where µµ changes within [µ0; µe][µ0; µe]. G+ (S)G+ (S) is a hyper-surface that is 

tangent to each member of the family of hyper-surfaces of g(S; ² ) = "g(S; ² ) = " . In the other case, 

some members of hyper-surfaces of g(S; ² ) = "g(S; ² ) = "   may not touch with G+ (S) = 0G+ (S) = 0. In both 

cases,  G+ (S)G+ (S) is the worst-case failure-safety boundary for limit state "" . For the same 

reason, G¡ (S)G¡ (S) is the worst-case failure-safety boundary for limit state ¡ "¡ " . 
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Figure 3 Envelope functions of the motion error 

The time-dependent reliability analysis requires the use of the worst-case motion 

errors. The interval reliability defined in Eq. (26) is equivalent to 

R(µ0; µe) = Pr
n

max
µ

g(S; µ) 6 " \ min
µ

g(S; µ) > ¡ " ; 8µ 2 [µ0; µe]
o

R(µ0; µe) = Pr
n

max
µ

g(S; µ) 6 " \ min
µ

g(S; µ) > ¡ " ; 8µ 2 [µ0; µe]
o

         (30) 

where max
µ

g(S; µ)max
µ

g(S; µ) and min
µ

g(S; µ)min
µ

g(S; µ) are the global maximum and minimum values of the 

motion error on [µ0; µe][µ0; µe]. Both of the extreme values are only functions of random 

variables S. This indicates that the interval reliability requires the extreme values of the 

motion error which are represented by G+ (S)G+ (S) and G¡ (S)G¡ (S). 

For the above reason, the interval reliability can be calculated by 

 R(µ0; µf ) = Pr
©

G+ (S) < 0 \ G¡ (S) > 0R(µ0; µf ) = Pr
©

G+ (S) < 0 \ G¡ (S) > 0  (31) 

The analysis is now converted to a time-independent problem. The equations for G+ (S)G+ (S) 

and  G¡ (S)G¡ (S) have been derived in [39] and are also given in the Appendix.  

 The two envelope functions are nonlinear functions and can be approximated at a 

number of expansion points. The reason of using multiple expansion points is to deal 

with the high nonlinearity of the extreme motion error (worst-case motion error). 

Failure region 

Failure region 

G+ (S) = 0G+ (S) = 0 

G¡ (S) = 0G¡ (S) = 0 

S1S1 

S2S2 

Family of 
g(S; ² ) = "g(S; ² ) = "  
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Selecting proper expansion points is critical for the accuracy of the reliability analysis. 

Theoretically, the probability of failure is the integral of the joint PDF of random 

variables over the failure region of the worst-case motion error. It is natural to select 

expansion points that have highest joint probability densities or highest values of the 

integrand because they have highest contribution to the integral. After expansion points µiµi  

(i = 1; 2; ¢¢¢; pi = 1; 2; ¢¢¢; p) are identified, the probability of failure becomes the probability of a 

union of events that are associated the motion errors at µiµi . Since the motion errors at µiµi  

are normally distributed and are correlated, the reliability can therefore be estimated by 

integrating the joint PDF of the motion errors at µiµi . The integral is given by 

 R(µ0; µf ) =
Z "

0

1
(2¼)r =2j§ j1=2 exp ¡

1
2

(Z ¡ ¹ z )§ ¡ 1(Z ¡ ¹ z )T
¸

dZR(µ0; µf ) =
Z "

0

1
(2¼)r =2j§ j1=2 exp ¡

1
2

(Z ¡ ¹ z )§ ¡ 1(Z ¡ ¹ z )T
¸

dZ (32) 

in which 

 ¹ z = (¹ g1; ¹ g2; ¢¢¢; ¹ gp)¹ z = (¹ g1; ¹ g2; ¢¢¢; ¹ gp) (33) 

and 

 § =

2

6664

D11 D12 ¢¢¢ D1p
D22 ¢¢¢ D2p

. . . ...
Dpp

3

7775
§ =

2

6664

D11 D12 ¢¢¢ D1p
D22 ¢¢¢ D2p

. . . ...
Dpp

3

7775
 (34) 

 ¹ gi¹ gi  (i = 1; 2; ¢¢¢; pi = 1; 2; ¢¢¢; p) is the mean of the motion error at the expansion point µiµi  and is 

given in Eq. (19); Di jDi j  is the covariance between g(S; µi )g(S; µi )  and g(S; µj )g(S; µj ) , where 

i ; j = 1; 2; ¢¢¢; pi ; j = 1; 2; ¢¢¢; p.  Di jDi j  is given by 

 Di j =

(
¾2

g(S; µi ) if i = j
b(¹ S; µi ) ¢b(¹ S; µj ) if i 6= j

Di j =

(
¾2

g(S; µi ) if i = j
b(¹ S; µi ) ¢b(¹ S; µj ) if i 6= j

 (35) 

where the dot means an inner product, ¾2
g(S; µi )¾2
g(S; µi ) is given in Eq. (20), and b(¹ S; µi )b(¹ S; µi ) is 

given in Eq. (37). 



20 
 

The covariance matrix §§  should be a positive-definite matrix. If the requirement is 

not met, some of the time instants are redundant and should be eliminated. If the rank of 

§§  is rr , then we eliminate p ¡ rp ¡ r  time instants, where the point probabilities of failure over 

[µ0; µe][µ0; µe] are smallest. Suppose after the elimination, the time instants are µ0
iµ0
i , i = 1; 2; ¢¢¢; ri = 1; 2; ¢¢¢; r . 

The corresponding mean vector and covariance matrix are denoted by ¹ 0
z¹ 0
z  and § 0§ 0, 

respectively. We then replace ¹ z¹ z  and §§  with ¹ 0
z¹ 0
z  and § 0§ 0, respectively, and then apply Eq. 

(32) to calculate the interval reliability. 

3.4. Numerical procedure 

The procedure of computing the interval kinematic reliability is summarized in 

Fig.4. The steps in the procedure are explained below. 

Step 1. Set initial parameters, such as the means and standard deviations of the 

dimension variables, the clearance radii, the allowable error limit, and the ranges of the 

motion input and motion output. 

Step 2. Perform the deterministic mechanism analysis to obtain the structural error 

g(¹ S; µ) and the coefficient @g(S;µ)
@L i ¹̄ S

. 

Step 3. Calculate  a0 =
qX

j = 1

¹ r cj ¡ (q ¡ 1)g(¹ S; µ) , ai = @g(S;µ)
@L i ¹̄ S

, ¹ r cj  , and ¾r cj  

using Eqs. (17) and (18), and then calculate the mean ¹ g(S; µ) and variance  ¾2
g(S; µ)  of 

g(S; µ) by Eq. (19) and (20), respectively. In this step, the deterministic mechanism 

kinematic analysis is called.  

Step 4. Calculate the point kinematic reliability R(µ)R(µ) using Eq. (24) or the point 

probability pf (µ)pf (µ) of failure using Eq. (25). 
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Step 5. Solve for µ+
iµ+
i  for G+ (U ) = 0G+ (U ) = 0 and µ¡

iµ¡
i  for G¡ (U ) = 0G¡ (U ) = 0 using Eqs. (41) and 

(41), respectively. This step calls the deterministic mechanism kinematic analysis to 

obtain   b0(¹ S; µ)b0(¹ S; µ), b0
0(¹ S; µ)b0
0(¹ S; µ), b(¹ S; µ)b(¹ S; µ) and b0(¹ S; µ)b0(¹ S; µ).  

 

Figure 4  Procedure of kinematic reliability analysis with clearances 

 
Step 6. Using the expansion points µiµi  (those are the solutions from Step 5), 

calculate the mean ¹ gi¹ gi  (i = 1; 2; ¢¢¢; pi = 1; 2; ¢¢¢; p) by Eq. (19) and the covariance Di jDi j  by Eq. (35), 

and then construct the mean vector ¹ z¹ z and covariance matrix §§  with Eqs. (43) and (44).  

HDRM method 

Deterministic kinematic analysis 

Solve for 
 a0a0 and aiai  

Solve for  
¹ r cj  and ¾r cj¾r cj  

Solve for ¹ g(S; µ) and ¾g(S; µ) 

 

FOSM method 

Envelope method 

Solve for the expansion points 
µiµi  , mean ¹ z¹ z and covariance §§  

Solve for the expansion points 
µ0

iµ0
i  , mean ¹ 0

z¹ 0
z  and covariance § 0§ 0 

Evaluate the integral of the joint 
probability density 

R(µ)R(µ) and/or pf (µ)pf (µ) R(µ0; µf )R(µ0; µf ) and/or pf (µ0; µf )pf (µ0; µf ) 
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Step 7. Calculate the rank rr  of §§ . If the rank rr  is less than pp, and eliminate p ¡ rp ¡ r  

time instants where the point probabilities of failure are the least. Then construct a new 

covariance matrix § 0§ 0 and a mean vector ¹ 0
z¹ 0
z . 

Step 8. Calculate the interval reliability with Eq. (32). In this step, a numerical 

integration method is applied to calculate the multivariate normal CDF.  

 

4. NUMERICAL EXAMPLES 

In this section, we use a four-bar linkage mechanism with three required functions as 

examples to demonstrate the proposed method. 

4.1.  Sine function generation mechanism 

The desired function is defined by y = sin xy = sin x with x = [x0; xe] = [0±; 90±]x = [x0; xe] = [0±; 90±] . The initial 

angle of the crank is µ0 = 95:1±µ0 = 95:1±, and the range of the input angle is ¢ µ = 120±¢ µ = 120±. The initial 

angle of the rocker is Ã0 = 90:6±Ã0 = 90:6±, and the range of the output angle is ¢ Ã = 60±¢ Ã = 60±. The 

distributions of the dimension variables are given in Table 1. As discussed in Sec. 2.1, the 

coordinates of the journal centers are assumed to follow uniform distributions defined 

within the clearance radii r cj  (j = 1; 2; 3; 4), and the associated distributions are shown in 

Table 2.   

A failure occurs when the absolute error of the motion output is greater than 

" = 0:27±, or when jg(S)j > 0:27± . 
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Table 1. Random dimensions of the sine mechanism 

Variable Mean (mm) Standard deviation (mm) Distribution 
L1 ¹ L 1 = 52:2 ¾L 1 = 0:03 Normal 

L2 ¹ L 2 = 104:9 ¾L 2 = 0:03 Normal 

L3 ¹ L 3 = 67:6 ¾L 3 = 0:03 Normal 

L4 ¹ L 4 = 100 ¾L 4 = 0:03 Normal 

 

Table 2. Random clearances of the sine mechanism 

Variable Clearance radius r c (mm) Distribution 
(X 1; Y1) 0.02 2D-uniform within a circle 
(X 2; Y2) 0.02 2D-uniform within a circle 
(X 3; Y3) 0.02 2D-uniform within a circle 
(X 4; Y4) 0.02 2D-uniform within a circle 

 

We used the proposed method to solve for the kinematic reliability of this 

mechanism. The results are given in Table 3 and are plotted in Fig. 5, where ¢ µ = µ¡ µ0¢ µ = µ¡ µ0. 

We also used the Monte Carlo Simulation (MCS) solution as a benchmark for the 

accuracy comparison. The sample size of MCS is 106, and the 95% confidence interval of 

the MCS solution is also provided in Table 3. The results indicate that the solutions of the 

new method are very close to those of MCS and are therefore accurate.  The error with 

respect to the MCS solution is defined by  

 er r or % =
pf ¡ M CSsolut i on

M CSsolut i on
£ 100%er r or % =

pf ¡ M CSsolut i on

M CSsolut i on
£ 100% (36) 

The numbers of function calls (deterministic mechanism analyses) and the 

computational time by the proposed method are also listed in Tables 3, which indicates 

that the proposed method is much more efficient than MCS. A regular personal computer 

was used for the reliability analysis. 
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Figure 5 pf (µ0; µe) of the sine mechanism 

Table 3.  pf (µ0; µe) of the sine mechanism 

 [µ0; µe](±) Proposed 
method MCS 

95% MCS 
confidence 

interval 

error 
(%) 

Number of 
function 

evaluations 

Computational 
time (seconds) 

Proposed 
method MCS 

[95.1,95.1] 5.75×10-3 5.75×10-3 [5.60, 5.90]×10-3 0.06 114 0.09 1.57 
[95.1,105.1] 5.75×10-3 5.75×10-3 [5.60, 5.90]×10-3 0.06 234 0.08 189 
[95.1,115.1] 5.75×10-3 5.75×10-3 [5.60, 5.90]×10-3 0.06 232 0.06 185 
[95.1,125.1] 5.81×10-3 5.79×10-3 [5.65, 5.94]×10-3 0.19 232 0.07 187 
[95.1,135.1] 6.38×10-3 6.38×10-3 [6.22, 6.53]×10-3 0.01 350 0.13 184 
[95.1,145.1] 6.34×10-3 6.38×10-3 [6.23, 6.54]×10-3 0.67 350 0.11 186 
[95.1,155.1] 6.34×10-3 6.38×10-3 [6.23, 6.54]×10-3 0.63 350 0.12 189 
[95.1,165.1] 6.34×10-3 6.38×10-3 [6.23, 6.54]×10-3 0.63 350 0.12 177 
[95.1,175.1] 6.34×10-3 6.38×10-3 [6.23, 6.54]×10-3 0.66 466 0.14 182 
[95.1,185.1] 6.34×10-3 6.38×10-3 [6.23, 6.54]×10-3 0.65 466 0.15 188 
[95.1,195.1] 6.45×10-3 6.49×10-3 [6.33, 6.64]×10-3 0.58 466 0.14 184 
[95.1,205.1] 6.97×10-3 6.97×10-3 [6.80, 7.13]×10-3 0.04 582 0.16 187 
[95.1,215.1] 6.97×10-3 6.97×10-3 [6.80, 7.13]×10-3 0.07 582 0.17 186 
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4.2.  Inverse tangent function generation mechanism 

The desired function is defined by y = arctan xy = arctan x  with t 2 [x0; xe] = [0; 1]t 2 [x0; xe] = [0; 1] . The 

initial angle of the crank is µ0 = 104:37±µ0 = 104:37±, and the range of the input angle is ¢ µ = 100±¢ µ = 100±. 

The initial angle of the rocker is Ã0 = 92:68±Ã0 = 92:68±, and the range of the output angle is 

¢ Ã = 45±¢ Ã = 45±. The distributions of the dimension variables are given in Table 4. The centers 

of the joints are assumed uniform within the clearance radii r cj  (j = 1; 2; 3; 4), and the 

associated distributions are shown in Table 6, where ¢ µ = µ¡ µ0¢ µ = µ¡ µ0. The failure is defined 

by the event when the absolute error of the output motion is greater than " = 0:20±, or by 

the event where jg(S; µ)j > 0:20± . 

The results for the inverse tangent function generator are given in Table 6 and are 

plotted in Fig. 6. The sample size of MCS is 106, and the 95% confidence interval of the 

MCS solution is also provided in Table 6. The results show that proposed method is 

accurate with respect to the MCS solution. The error of the proposed method is smaller 

than 2%2% for time intervals from µ 2 [104:37±; 104:37±]µ 2 [104:37±; 104:37±] to µ 2 [104:37±; 204:37±]µ 2 [104:37±; 204:37±] (or time 

intervals from ¢ µ 2 [0±; 0±]¢ µ 2 [0±; 0±]  to ¢ µ 2 [0±; 100±]¢ µ 2 [0±; 100±] ), except the longest time interval 

µ 2 [104:37±; 204:37±]µ 2 [104:37±; 204:37±], which responds to the interval of ¢ µ 2 [0±; 100±]¢ µ 2 [0±; 100±].  

Table 4. Random dimensions of the inverse tangent mechanism 

Variable Mean (mm) Standard deviation (mm) Distribution 
L1 ¹ L 1 = 57:95 ¾L 1 = 0:035 Normal 
L2 ¹ L 2 = 121:47 ¾L 2 = 0:035 Normal 
L3 ¹ L 3 = 109:78 ¾L 3 = 0:035 Normal 
L4 ¹ L 4 = 100 ¾L 4 = 0:035 Normal 

 

 



26 
 

 

Table 5. Random clearances of inverse the tangent mechanism 

Variable Clearance radius r c (mm) Distribution 
(X 1; Y1) 0.015 2D-uniform within a circle 
(X 2; Y2) 0.015 2D-uniform within a circle 
(X 3; Y3) 0.015 2D-uniform within a circle 
(X 4; Y4) 0.015 2D-uniform within a circle 

 

Table 6. pf (µ0; µe) of the inverse tangent mechanism 

[µ0; µe] (±) Proposed 
method MCS 

95% MCS 
confidence 

interval 

error 
(%) 

Number of 
function 

evaluations 

Computational 
time (seconds) 

Proposed 
method MCS 

[104.37, 104.37] 6.65×10-4 6.66×10-4 [6.15, 7.17]×10-4 0.21 114 0.21 1.57 
[104.37, 114.37] 6.65×10-4 6.66×10-4 [6.15, 7.17]×10-4 0.21 234 0.09 187 
[104.37, 124.37] 6.71×10-4 6.71×10-4 [6.20, 7.22]×10-4 0.00 234 0.06 191 
[104.37, 134.37] 3.72×10-3 3.70×10-3 [3.58, 3.82]×10-3 0.45 234 0.06 188 
[104.37, 144.37] 4.95×10-3 4.99×10-3 [4.85, 5.13]×10-3 0.84 350 0.17 192 
[104.37, 154.37] 4.95×10-3 4.99×10-3 [4.85, 5.13]×10-3 0.83 350 0.15 189 
[104.37, 164.37] 4.95×10-3 4.99×10-3 [4.85, 5.13]×10-3 0.83 350 0.11 197 
[104.37, 174.37] 4.98×10-3 5.02×10-3 [4.88, 5.16]×10-3 0.83 350 0.11 202 
[104.37, 184.37] 7.20×10-3 7.28×10-3 [7.12, 7.45]×10-3 1.15 466 0.20 209 
[104.37, 194.37] 7.18×10-3 7.28×10-3 [7.11,7.44]×10-3 1.29 466 0.13 200 
[104.37, 204.37] 7.89×10-3 8.41×10-3 [8.23, 8.59]×10-3 6.22 466 0.13 200 
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Figure 6  pf (µ0; µe) of the inverse tangent mechanism 

4.3. Combined trigonometric function generation mechanism 

To further test the proposed method, we now combine the two trigonometric 

functions (cosine and tangent functions) for the desired function, which is defined by 

y = cos(x) + 0:6tan(x=3)y = cos(x) + 0:6tan(x=3) with x 2 [x0; xe] = [45±; 120±]x 2 [x0; xe] = [45±; 120±] . The initial angle of the crank 

is µ0 = 55:68±µ0 = 55:68±, and the range of the input angle is ¢ µ = 100±¢ µ = 100±. The initial angle of the 

rocker is Ã0 = 76±Ã0 = 76±, and the range of the output angle is ¢ Ã = 60±¢ Ã = 60±. The distributions of 

the dimension variables are given in Table 7. The centers of the joints are assumed 

uniform within the clearance radii r cj  (j = 1; 2; 3; 4), and the associated distributions are 

shown in Table 8, where ¢ µ = µ¡ µ0¢ µ = µ¡ µ0. The failure is defined by the event when the 
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absolute error of the output motion is greater than " = 0:31±, or by the event where 

jg(S; µ)j > 0:31± . 

 

Table 7. Random dimensions of the combined trigonometric function mechanism 

Variable Mean (mm) Standard deviation (mm) Distribution 
L1 ¹ L 1 = 56:28 ¾L 1 = 0:03 Normal 
L2 ¹ L 2 = 96:44 ¾L 2 = 0:03 Normal 
L3 ¹ L 3 = 85:71 ¾L 3 = 0:03 Normal 
L4 ¹ L 4 = 100 ¾L 4 = 0:03 Normal 

 

Table 8. Random clearances of the combined trigonometric function mechanism 

Variable Clearance radius r c (mm) Distribution 
(X 1; Y1) 0.01 2D-uniform within a circle 
(X 2; Y2) 0.01 2D-uniform within a circle 
(X 3; Y3) 0.01 2D-uniform within a circle 
(X 4; Y4) 0.01 2D-uniform within a circle 

 

The results are given in Table 9 and are plotted in Fig. 7. The sample size of MCS 

is 106, and the 95% confidence interval of the MCS solution is also provided in Table 9. 

The results show that proposed method is still accurate with the MCS solution as a 

reference. The error of the proposed method is smaller than 2:2%2:2% for time intervals from 

µ 2 [55:68±; 55:68±]µ 2 [55:68±; 55:68±]  to µ 2 [55:68±; 155:68±]µ 2 [55:68±; 155:68±]  (or time intervals from ¢ µ 2 [0±; 0±]¢ µ 2 [0±; 0±] 

to¢ µ 2 [0±; 100±]¢ µ 2 [0±; 100±]).  
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Figure 7  pf (µ0; µe) of the combining trigonometric function mechanism 

 

Table 9.  pf (µ0; µe) of the combining trigonometric function mechanism 

[µ0; µe] (±) Proposed 
method MCS 

95% MCS 
confidence 

interval 

error 
(%) 

Number of 
function 

evaluations 

Computational time 
(seconds) 

Proposed 
method MCS 

[55.68, 55.68] 6.44×10-5 6.44×10-5 [5.94, 6.94]×10-5 0.05 114 0.08 1.57 
[55.68, 65.68] 6.44×10-5 6.44×10-5 [5.94, 6.94]×10-5 0.05 234 0.09 179 
[55.68, 75.68] 6.44×10-5 6.44×10-5 [5.94, 6.94]×10-5 0.07 234 0.06 178 
[55.68, 85.68] 6.70×10-4 6.69×10-4 [6.53, 6.85]×10-4 0.23 234 0.07 186 
[55.68, 95.68] 1.01×10-3 1.01×10-3 [0.95, 1.07]×10-3 0.50 350 0.10 185 
[55.68, 105.68] 1.01×10-3 1.01×10-3 [0.95, 1.07]×10-3 0.60 350 0.11 187 
[55.68, 115.68] 1.01×10-3 1.01×10-3 [0.95, 1.07]×10-3 0.40 350 0.14 188 
[55.68, 125.68] 1.01×10-3 1.01×10-3 [0.95, 1.07]×10-3 0.40 350 0.11 186 
[55.68, 135.68] 2.07×10-3 2.11×10-3 [2.02, 2.20]×10-3 1.89 466 0.15 186 
[55.68, 145.68] 2.10×10-3 2.11×10-3 [2.02, 2.20]×10-3 0.50 466 0.14 190 
[55.68, 155.68] 4.17×10-3 4.26×10-3 [4.14, 4.39]×10-3 2.11 466 0.14 199 
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5. CONCLUSIONS 

Inherent uncertainty exists in clearances of mechanisms. This uncertainty directly 

affects the performance of mechanisms. Qualifying its effect is critical. In this work, we 

develop an effective reliability analysis method to predict the kinematic reliability of 

function generation mechanisms by considering the uncertainty existing in both 

dimension variables and joint clearances for a given period of time. 

The assumptions of the method include that the dimension variables are 

independently and normally distributed and that the 2-D or 3-D coordinates of the centers 

of joint pins are uniformity distributed within their clearance circles. The computational 

challenges present in two aspects. First, the motion output is time dependent, and the 

failures at different time instants in the given period of time are dependent. Second, the 

coordinates of a joint pin are dependent and are constrained within a circle or sphere. We 

tackle the challenges by employing the hybrid dimension reduction method to 

approximate the motion output with respect to random variables and also by employing 

the envelope method to account for the time dependence of the failures.   

The three numerical examples, involving the sine, inverse tangent, and combined 

trigonometric function generators, respectively, demonstrate that the proposed method 

are both efficient and accurate. The errors of the probabilities of failure for the three 

mechanisms are smaller than 2.2%, except for the inverse tangent function generator for 

only one time period of time where the error is 6.22%. The three examples also indicate 

high computational efficiency as the reliability analysis could be completed within less 

than one second.   
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When the standard deviations of dimension variables and the radii of the joint 

clearances are large, the error from the proposed method may be large. This situation, 

however, is relatively rare for function generation mechanisms. As the three examples 

indicate, the errors for certain periods of time are still relatively large, and our future 

work will be the accuracy improvement.  

 

Appendix Envelope Method  

We briefly review the envelope method, and more details can be found in [29]. 

According to Eq. (16),   

 L(U ; µ) = b0(¹ S; µ) + b(¹ S; µ) ¢UL(U ; µ) = b0(¹ S; µ) + b(¹ S; µ) ¢U  (37) 

where b0(¹ S; µ) = a0b0(¹ S; µ) = a0 , and b(¹ S; µ) = [am£ 1; 1q£ 1] ¢¾b(¹ S; µ) = [am£ 1; 1q£ 1] ¢¾ , where a = (a1; a2; ¢¢¢; am)a = (a1; a2; ¢¢¢; am) 
¾ = (¾L ; ¾r c)¾ = (¾L ; ¾r c),  ¾L = (¾L 1 ; ¾L 2 ; ¢¢¢; ¾L m )¾L = (¾L 1 ; ¾L 2 ; ¢¢¢; ¾L m ) and ¾r c = (¾r c1 ; ¾r c2 ; ¢¢¢; ¾r cq )¾r c = (¾r c1 ; ¾r c2 ; ¢¢¢; ¾r cq ). The task now 

becomes to find the envelope functions G+ (U )G+ (U )  and  G¡ (U )G¡ (U )  for L(U ; µ) = "L(U ; µ) = "  and 

L(U ; µ) = ¡ "L(U ; µ) = ¡ " , respectively.  

According to Eq. (28), G+ (U ) = 0G+ (U ) = 0 is given by 

 
½

L(U ; µ) = b0(¹ S; µ) + b(¹ S; µ) ¢U = "
_L(U ; µ) = _b0(¹ S; µ) + _b(¹ S; µ) ¢U = 0

½
L(U ; µ) = b0(¹ S; µ) + b(¹ S; µ) ¢U = "
_L(U ; µ) = _b0(¹ S; µ) + _b(¹ S; µ) ¢U = 0 (38) 

From the first line of Eq. (38),  

 U =
[" ¡ b0(¹ S; µ)]b(¹ S; µ)

b(¹ S; µ) ¢b(¹ S; µ)
U =

[" ¡ b0(¹ S; µ)]b(¹ S; µ)
b(¹ S; µ) ¢b(¹ S; µ)

 (39) 

Plugging it into the second line of Eq. (38) yields 

 _b0(¹ S; µ) + [" ¡ b0(¹ S; µ)]
_b(¹ S; µ) ¢b(¹ S; µ)
b(¹ S; µ) ¢b(¹ S; µ)

= 0_b0(¹ S; µ) + [" ¡ b0(¹ S; µ)]
_b(¹ S; µ) ¢b(¹ S; µ)
b(¹ S; µ) ¢b(¹ S; µ)

= 0 (40) 
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There may be multiple solutions for µµ from the above equation. As indicated in Eq. 

(29), the motion error at µµ should be positive. We then eliminate those solutions where 

the motion errors are negative. Let the remaining solutions be  µ+
iµ+
i , where i = 1; 2; ¢¢¢; p+

ii = 1; 2; ¢¢¢; p+
i . 

The expansion points are then 

 U (µ+
i ) =

[" ¡ b0(¹ S; µ+
i )]b(¹ S; µ+

i )
b(¹ S; µ+

i ) ¢b(¹ S; µ+
i )

U (µ+
i ) =

[" ¡ b0(¹ S; µ+
i )]b(¹ S; µ+

i )
b(¹ S; µ+

i ) ¢b(¹ S; µ+
i )

 (41) 

The envelope function G+ (U ) = 0G+ (U ) = 0  can now be approximated by hyper-planes 

L(U (µ+
i ); µ+

i ) = "L(U (µ+
i ); µ+

i ) = " , where i = 1; 2; ¢¢¢; p+
ii = 1; 2; ¢¢¢; p+
i . With the same principle, the envelope 

function  G¡ (U ) = 0G¡ (U ) = 0 can be approximated by L(U (µ¡
i ); µ¡

i ) = "L(U (µ¡
i ); µ¡

i ) = " , where i = 1; 2; ¢¢¢; p¡
ii = 1; 2; ¢¢¢; p¡
i .  

The expansion points µ¡
iµ¡
i  are given by 

 U (µ¡
i ) = ¡

[" + b0(¹ S; µ¡
i )]b(¹ S; µ¡

i )
b(¹ S; µ¡

i ) ¢b(¹ S; µ¡
i )

U (µ¡
i ) = ¡

[" + b0(¹ S; µ¡
i )]b(¹ S; µ¡

i )
b(¹ S; µ¡

i ) ¢b(¹ S; µ¡
i )

 (42) 

Hence the time-dependent reliability is calculated by 

 R(µ0; µe) = Pr

8
<

:

p+\

i= 1

£
L(U ; µ+

i ) < "
¤ p¡\

j = 1

£
L(U ; µ¡

j ) > ¡ "
¤
9
=

;R(µ0; µe) = Pr

8
<

:

p+\

i= 1

£
L(U ; µ+

i ) < "
¤ p¡\

j = 1

£
L(U ; µ¡

j ) > ¡ "
¤
9
=

;  (43) 

Also considering the two end points µ0µ0  and µeµe  of the time interval, the time-

dependent reliability is then given by 

 R(µ0; µf ) = Pr

( p\

i= 1

z(U ; µi ) < "

)

R(µ0; µf ) = Pr

( p\

i= 1

z(U ; µi ) < "

)

 (44) 

where z(U ; µi ) = s(µi )L(U ; µi )z(U ; µi ) = s(µi )L(U ; µi ),  µiµi  includes µ+
iµ+
i ,µ¡

iµ¡
i ,µ0µ0, and µeµe, and p = p+

i + p¡
i + 2p = p+

i + p¡
i + 2. 

In Eq. (43), s(µi )s(µi ) is a sign function and defined by 

 s(µi ) =

8
>>><

>>>:

1 if µ = µ+
i

¡ 1 if µ = µ¡
i

1 if µ = µ0 or µe; L(U ; µ) ¸ 0
¡ 1 if µ = µ0 or µe; L(U ; µ) · 0

s(µi ) =

8
>>><

>>>:

1 if µ = µ+
i

¡ 1 if µ = µ¡
i

1 if µ = µ0 or µe; L(U ; µ) ¸ 0
¡ 1 if µ = µ0 or µe; L(U ; µ) · 0

 (45) 
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From Eq. (37), the approximated motion error L(U ; µ)L(U ; µ) is normally distributed, and 

s(µi )L(U ; µi )s(µi )L(U ; µi ) in Eq. (44) is also normally distributed. The reliability can therefore be 

estimated by a multivariate normal distribution function with mean ¹ z¹ z  and covariance §§ , 

or ©p(" ; ¹ z ; § )©p(" ; ¹ z ; § ); ¹ z¹ z  and §§  are given in Eqs. (43) and (44), respectively. Then the interval 

reliability can be estimated as discussed in Sec. 3.3. 
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