Reliability-Based Design with Mixture of Random and Interval Variables

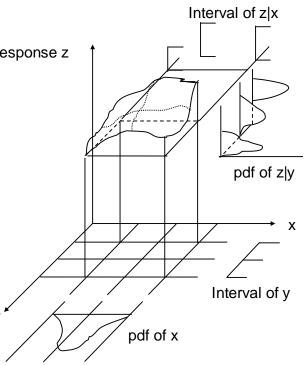
Xiaoping Du, University of Missouri – Rolla Agus Sudjianto, Ford Motor Company

Motivations

- Distributions of some random variables are not precisely known.
 - Only intervals are known.
- Some uncertain variables are not from randomness
 - They are expressed in intervals.
- Therefore, we have mixture of random and interval variables.

Response (Performance)

- Let random variables be **x** and interval variables response z be **y**.
- Then response z=g(x, y) is also in mixture of randomness and intervals.



Existing Research

- Reliability analysis with mixture of random and interval variables
 - Penmetsa and Grandhi, 2002
- Design optimization with only interval variables
 - Lombardi and Haftka, 1998
 - Rao and Cao, 2002

Issues?

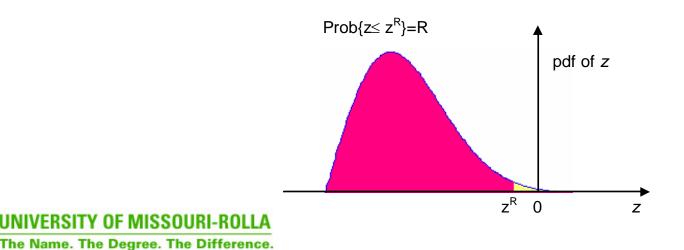
- 1. How should we fully use the information available (distributions and intervals)?
- 2. In what sense should we make use of the reliability?
- 3. How can we solve RBD efficiently under such situation?
- This research tries to answer these three questions.

Answers

- 1. Use no assumptions.
- Use reliability in the worst combinations of interval variables.
- 3. Use single-loop method to solve reliability-based design (RBD) problems?

Worst Case Reliability

- Inverse reliability (Der Kiureghian, et al, 1994; Li and Foschi, 1998; Wu, 1998; Tu and Choi, 1999; 2001; Wu, 2001; Du and Chen, 2001)
- Given reliability R, find corresponding response z: R-percentile performance z^R



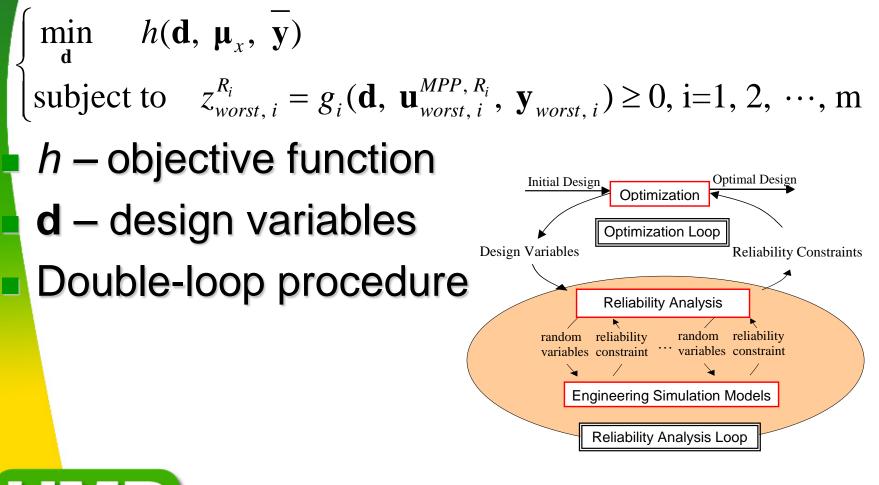
Worst Case R-Percentile Performance by FORM

 $\underset{\mathbf{u}, \mathbf{y}}{\text{minimize}} \quad g(\mathbf{u}, \mathbf{y})$

subject to $\|\mathbf{u}\| = \Phi^{-1}(R)$

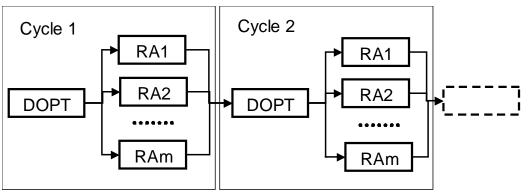
- u random variables transformed from x space to standard normal space
- Solution u^{MPP} worst case MPP (Most Probable Point)
 - yworst worst case combination of y
- Worst case R-percentile performance
 - $z^{R} = g(u^{MPP}, y^{worst})$

RBD Formulation

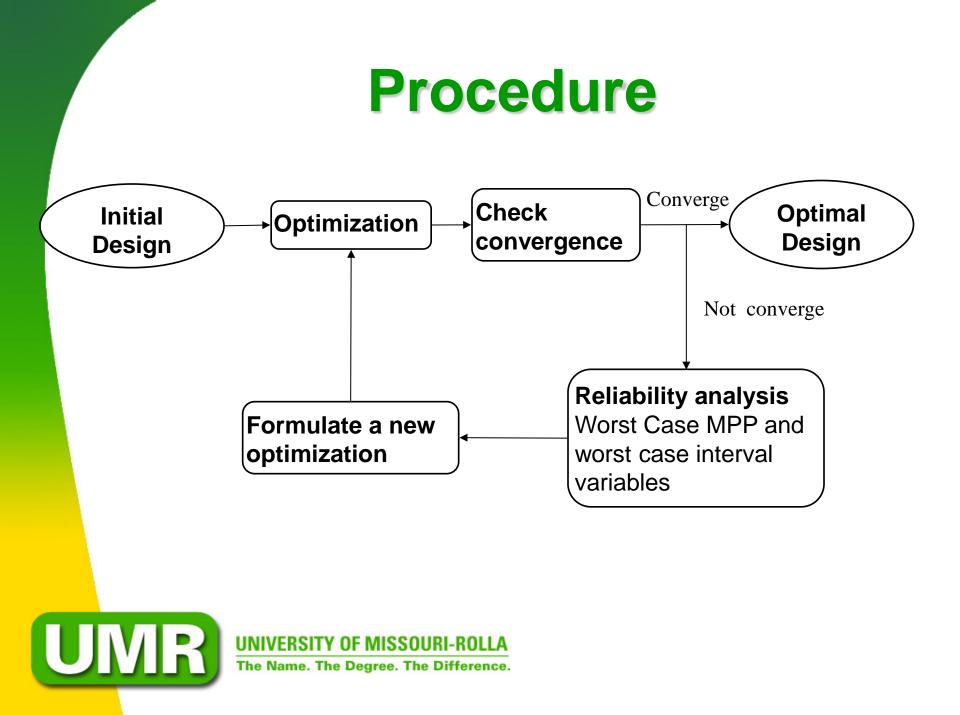


Sequential Optimization and Reliability Assessment (SORA)

- Single loop strategy
- Decouple optimization from reliability analysis
- High efficiency



DOPT: deterministic optimization RA: reliability analysis



Numerical Example

Objective: Minimize area

L=100" h = wtConstraints $g_1(S, X, Y, w, t) = S - \left(\frac{600}{wt^2}Y + \frac{600}{w^2t}X\right)$ $g_2(E, X, Y, w, t) = D_0 - \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2}$ Random: X and Y; Interval: S and E

Results

• Required reliability = 0.9978 (β =3)

Cycle	Design variables (<i>w</i> , <i>t</i>)	Objective	\mathbf{g}_{1}^{R}	g_2^R
1	(3.1458, 2.2244)	6.9976	-0.3497	-0.3103
2	(4.0724, 2.0698)	8.4290	-0.0027	-0.0364
3	(3.9852, 2.1196)	8.4471	0.0541×10 ⁻³	-0.2101×10 ⁻³
4	(3.9848, 2.1199)	8.4474	0.0158×10 ⁻⁷	0.4506×10 ⁻⁷

Total function calls=358 (double loop needs 4604)

Results (cont.)

Let's compare the efficiency with traditional RBD (all variables are random)

	S and E: are Interval	S and E are uniformly
	variables	distributed with same intervals
(<i>t</i> , <i>w</i>)	(3.9848, 2.119)	(3.8064, 2.1528)
Area <i>t</i> ×w	8.4438	8.1945

Starting point		mixture	Random variables			
	(d_1, d_2)	Number of function calls	Number of function calls			
	(4, 2)	318	409			
	(8, 3)	358	449			
	(2, 1)	339	430			
_	(1.5, 0.5)	319	410			
		/	<u>†</u>			
			Same order of magnitude			

The Name. The Degree. The Difference.

Conclusions

- Worst case reliability
- Single-loop strategy
- Inverse reliability strategy
- Solution from worst case RBD is more conservative than traditional RBD
- The efficiency of proposed method is same as traditional RBD

