Reliability-Based Design with Mixture of Random and Interval Variables

Xiaoping Du, University of Missouri – Rolla Agus Sudjianto, Ford Motor Company

The Name, The Degree, The Difference.

Motivations

- **Distributions of some random variables** are not precisely known.
	- Only intervals are known.
- Some uncertain variables are not from randomness
	- They are expressed in intervals.
- **Therefore, we have mixture of random and** interval variables.

Response (Performance)

- **x** and interval variables response z Let random variables be be **y.**
- Then response z=g(**x**, **y**) is also in mixture of randomness and intervals.

The Name. The Degree. The Difference.

Existing Research

- **Reliability analysis with mixture of random** and interval variables
	- Penmetsa and Grandhi, 2002
- **Design optimization with only intervall** variables
	- Lombardi and Haftka, 1998
	- Rao and Cao, 2002

Issues?

- 1. How should we fully use the information available (distributions and intervals)?
- 2. In what sense should we make use of the reliability?
- 3. How can we solve RBD efficiently under such situation?
	- This research tries to answer these three questions.

Answers

- 1. Use no assumptions.
- 2. Use reliability in the worst combinations of interval variables.
- 3. Use single-loop method to solve reliability-based design (RBD) problems?

Worst Case Reliability

- **Inverse reliability (Der Kiureghian, et al, 1994; Li** and Foschi, 1998; Wu, 1998; Tu and Choi, 1999; 2001; Wu, 2001; Du and Chen, 2001)
- Given reliability R, find corresponding response z: R-percentile performance z^R

Worst Case R-Percentile Performance by FORM

, **u y** $\int \min_{\mathbf{u}, \mathbf{v}} \text{minimize} \quad g(\mathbf{u}, \mathbf{y})$

subject to $\|\mathbf{u}\| = \Phi^{-1}(R)$ $\big\{$ $\left| \text{subject to} \right| = \Phi$

- **u** random variables transformed from x space to standard normal space
- Solution u^{MPP} worst case MPP (Most Probable Point)
	- yworst worst case combination of **y**
- **Norst case R-percentile performance**
	- \blacksquare z^R =g(u^{MPP}, y^{worst})

The Name. The Degree. The Difference.

RBD Formulation

Sequential Optimization and Reliability Assessment (SORA)

- Single loop strategy
- Decouple optimization from reliability analysis
- **High efficiency**

DOPT: deterministic optimization RA: reliability analysis

OF MISSOURI-ROLLA The Name. The Degree. The Difference.

Numerical Example

X

■ Objective: Minimize area

n Constraints Random: X and Y; Interval: S and E Y w t $L=100$ $g_1(S, X, Y, w, t) = S - \left(\frac{600}{w^2}Y + \frac{600}{w^2t}X\right)$ wt^2 w^2t $= S - (\frac{000}{2} Y +$ $h = wt$ 3 $(\mathbf{v})^2$ $(\mathbf{v})^2$ $2(U, 2, 1, 1, w, \iota) = D_0$ E_{1} $(1 \tfrac{2}{3})^{-1} \tfrac{1}{2}$ $g_2 (E, X, Y, w, t) = D_0 - \frac{4 L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2}$

The Name. The Degree. The Difference.

Results

Required reliability = 0.9978 (β =3)

■ Total function calls=358 (double loop needs 4604)

U

Results (cont.)

Let's compare the efficiency with traditional RBD (all variables are random)

Conclusions

- Worst case reliability
- Single-loop strategy
- **n** Inverse reliability strategy
- Solution from worst case RBD is more conservative than traditional RBD
- The efficiency of proposed method is same as traditional RBD

