ASME 2004 DETC Conferences

A Saddlepoint Approximation Method for Uncertainty Analysis - Second Order Approximation

Xiaoping Du

Mechanical and Aerospace Engineering University of Missouri – Rolla

Agus Sudjianto

Risk Quality and Productivity Bank of America

Outline

- Review of reliability analysis method
- Introduction to Saddlepoint Approximations
- Saddlepoint approximation method for uncertainty analysis
- Examples
- Conclusion

Uncertainty Analysis

Given: distributions of input variables X
Joint *pdf* f_X(x)
Find: cdf of Y
F_Y(y)=Pr{g(X)<y}

Probability Integration

 Multidimensional integral

$$F_{Y}(\mathbf{y}) = \Pr\{g(\mathbf{X}) < y\} = \int_{g(\mathbf{x}) < y} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

- Nonlinear integrand f_x(x)
- Nonlinear Integration boundary g(x)=0
 - It is difficult or even impossible to obtain a theoretic or numerical solution.
- Approximation is needed.

FORM and SORM Transformation and approximation $f(u_1, u_2)$ a(u1.u2)=0 pdf cont pdf contou q(x1, x2) = 0g(x1, x2) < 0g(x1, x2) > 0 X 3 1 U_2 MPP g(u1,u2)<0 Integration reg a(u1.u2)>0 g=0 U_1 SORM – more accurate **SORM** U 2 g = y $F_{Y}(y) = \Pr\{g(\mathbf{X}) < y\} = \Phi(-\beta) \prod_{i=1}^{n-1} (1+\beta \kappa_{i})^{1/2}$ *g*<*y* MPP g>yß when β is very large. U_1 **FORM**

Saddlepoint Approximation (SPA)

- Proposed in 1954
- Used for approximating the distribution of sum of random variables
- pdf of Y=g(X)

$$f(y) = \frac{1}{2\pi} \int_{-i\infty}^{+i\infty} \exp\{K(\xi) - \xi y\} d\xi$$

K – Cumulant Generation Function (CGF)

$$SPA (Cont.)$$
$$f(y) = \frac{1}{2\pi} \int_{-i\infty}^{+i\infty} \exp\{K(\xi) - \xi y\} d\xi$$

 Approximate K(ξ)-ξy at the saddlepoint t to the second order

$$F_{Y} = P\{Y \le y\} = \Phi(w) + \phi(w) \left(\frac{1}{w} - \frac{1}{v}\right)$$
$$w = sign(t) \left\{2\left[ty - K(t)\right]\right\}^{1/2}$$

$$v = t \left\{ K''(t) \right\}^{1/2}$$

UMR

Features of SPA

- Accurate probability estimation
 - especially in the tail area of a distribution (where a reliability resides!)
 - Goutics and Casella, 1999.
- Small sample asymptotics
 - besides the theoretical reasons, one empirical reason for the excellent small sample behavior is that the Saddlepoint Approximations are density-like objects and do not show the polynomical-like waves.
 - Field and Ronchetti, 1990

First Order SPA

- Linearize the performance function in the original random space
- More accurate than FORM
- Sometime more accurate than SORM (presented in MAO 04)

Second Order SPA (SOSPA)

Same procedure as SORM to approximate the performance function at the MPP

$$Y \approx V_n - \left(\beta + \frac{1}{2} \mathbf{V}^{\mathsf{T}} \mathbf{D} \mathbf{V}^{\mathsf{T}}\right)$$

CGF of Y

$$K(t) = -\beta t + \frac{1}{2}t^2 - \frac{1}{2}\sum_{i}^{n-1}\log(1 - 2t\lambda_i)$$

$$K'(t) = -\beta + t + \sum_{i=1}^{n-1} \frac{\lambda_i}{1 - 2t\lambda_i} = y \longrightarrow \text{Saddlepoint}$$

Example

Performance function

$$Y = g(\mathbf{X}) = \frac{X_1 + X_2}{X_1 + X_2 + X_3}$$

 X_i follows distributions with degree of freedom 2, 3, 1

SOSPA is the more accurate method than SORM for this example. UNIVERSITY OF MISSOURI-ROLLA The Name. The Degree. The Difference.

Comparison

	Transformation from X to U	Accuracy (generally)	
FORM	May increase nonlinearity	SOSPA>=SORM	
	1st approximation of g(U)	SORM > FORM	
SORM	Transformation from X -> U		
	May increase nonlinearity	FOSPA >= FORM	
	2nd approximation of g(U)	(FOSPA>=SORM) or	
FOSPA	No transformation from X to U	(FOSPA<=SORM)	
	Doesn't increase nonlinearity	Efficiency (generally)	
	1st approximation of g(X)	FOSPA >=	
SOSPA	Transformation from X -> U	FORM>SOSPA and	
	May increase nonlinearity	SORM	
	2nd approximation of g(U)	SOSPA=SORM	
UMR	UNIVERSITY OF MISSOURI-ROLLA	tter than: =: the same as	

Example

X	Mean	STD	Distribution
а	10.0	0.01	Normal
d_1	40	0.01	Normal
d_2	58	0.01	Normal
L	120	0.01	Normal
Q	2700	50	Gumbel
S _y	200 N/mm ²	20 N/mm ²	Normal

$$g(\mathbf{X}) = S_y - \frac{Q(2l - d_2)d_2}{4I}$$

Probability of failure

$$P_f = \Pr\{g(\mathbf{X}) < 0\}$$

Results

Method	P_{f}	Function Calls
FORM	0.0149×10 ⁻⁴	66
SORM	0.0149×10 ⁻⁴	122
FOSPA	0.1423×10 ⁻⁴	51
SOSPA	0.0149×10 ⁻⁴	122
MCS	0.1300×10-4	106

For this example

U

Accuracy: FOSPA>SOSPA=SORM>FORM

Efficiency: FOSPA>FORM>SOSPA=SORM

Future Work

- Sampling based SPA for large scale problems
 - Use fewer samples to generate CGF of performance function
- Extension to design under uncertainty
 - Reliability-based design
 - Robust design
 - Design for Six Sigma

Acknowledgement

NSF DMI 0400081

University of Missouri Research Board

