
A Saddlepoint Approximation Method for 
Uncertainty Analysis 

- Second Order Approximation 

Xiaoping Du 
Mechanical and Aerospace Engineering 

University of Missouri – Rolla 
 

Agus Sudjianto  
Risk Quality and Productivity 

Bank of America 

ASME 2004 DETC Conferences 



Outline 

 Review of reliability analysis method 
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Approximations 
 Saddlepoint approximation method for 

uncertainty analysis 
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Uncertainty Analysis 

 Given: distributions of input variables X 
 Joint pdf fX(x) 

 Find: cdf  of Y 
 FY(y)=Pr{g(X)<y}  

 Analysis Model 
 

Y=g(X) 
X Y 



Probability Integration 
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X x x Multidimensional 
integral 

 Nonlinear integrand 
fx(x) 

 Nonlinear Integration 
boundary g(x)=0 

 It is difficult or even 
impossible to obtain 
a theoretic or 
numerical solution. 

 Approximation is 
needed. 



FORM and SORM 
 Transformation and approximation 

 
 
 

 SORM – more accurate 
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when β is very large. 



Saddlepoint Approximation (SPA) 

 Proposed in 1954 
 Used for approximating the distribution of 

sum of random variables 
 pdf of Y=g(X) 

 
 

 K – Cumulant Generation Function (CGF) 
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SPA (Cont.) 
 
 

 Approximate                  at the saddlepoint t  to 
the second order       
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cdf 

1 1{ } ( ) ( )YF P Y y w w
w v

φ  = ≤ = Φ + − 
 

[ ]{ }1/ 2
( ) 2 ( )w sign t ty K t= −

{ }1/ 2"( )v t K t=



Features of SPA 
 Accurate probability estimation 

 especially in the tail area of a distribution (where a 
reliability resides!) 

 Goutics and Casella, 1999.  
 Small sample asymptotics 

 besides the theoretical reasons, one empirical reason 
for the excellent small sample behavior is that the 
Saddlepoint Approximations are density-like objects 
and do not show the polynomical-like waves.  

 Field and Ronchetti, 1990 



First Order SPA 

 Linearize the performance function in the 
original random space 

 More accurate than FORM 
 Sometime more accurate than SORM 
 (presented in MAO 04) 



Second Order SPA (SOSPA) 
 Same procedure as SORM to approximate 

the performance function at the MPP 
 

 CGF of Y  
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Example 

 Performance function 
 
 
 

 Xi follows  distributions with degree of 
freedom 2, 3, 1 
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Result 

SOSPA is the more accurate method than SORM for 
this example. 
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Comparison 
FORM 

Transformation from X to U 
May increase nonlinearity 
1st approximation of g(U) 

SORM 
Transformation from X -> U 
May increase nonlinearity 
2nd approximation of g(U) 

FOSPA 
No transformation from X to U 
Doesn’t increase nonlinearity 
1st approximation of g(X) 

SOSPA 
Transformation from X -> U 
May increase nonlinearity 
2nd approximation of g(U) 

Accuracy (generally) 

SOSPA>=SORM 

SORM > FORM 

FOSPA >= FORM 

(FOSPA>=SORM) or 
(FOSPA<=SORM)  

Efficiency (generally) 

FOSPA >= 
FORM>SOSPA and 

SORM 

SOSPA=SORM 

>: better than; =: the same as 



Example 
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Results 
Method Pf Function Calls 
FORM 0.0149×10-4 66           
SORM 0.0149×10-4 122 
FOSPA 0.1423×10-4 51 
SOSPA 0.0149×10-4 122 
MCS 0.1300×10-4 106  

For this example 

Accuracy: FOSPA>SOSPA=SORM>FORM 

Efficiency: FOSPA>FORM>SOSPA=SORM 



Future Work 
 Sampling based SPA for large scale 

problems 
 Use fewer samples to generate CGF of 

performance function 
 Extension to design under uncertainty 

 Reliability-based design 
 Robust design 
 Design for Six Sigma 
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