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Uncertainty

= The difference between the present state

of knowledge and the complete knowledge
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Uncertainty Types

= Aleatory type — inherent variation due to
the nature of randomness

= Epistemic type - lack of knowledge
= Uniform and unbent coin o
s Pr(heads) =0.5 -
m Aleatory: the chance of heads ( |(
= Bent coin @ @&\
m Epistemic: Pr(heads)=" . ,
m Aleatory: the chance of heads
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m Distributions

= Evidence theory
m Intervals

m Fuzzy set

Model Epistemic Uncertainty

= Probability theory Evidenceth<a<rv_

Plausibility measures

Belief measures\

T
Probability
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Possibility
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Probability th
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s Membership functions

preliminary study.
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= We will focus on evidence theory In this



Intervals in Evidence Theory

= Example: periodical condition monitoring

to t; t,

t tisg
o o o o o & >
Time Y
O : working ®: failure
ty Ch & Cyp b b Cvi  lin
| — L — | l | | >
TimeY
my(Cy;) =0.5% my (Cy;) = 5%

my (Cy) = 25%
m: Basic Probability Assignment

. m The CAE simulation of an application has
a 10% error.

= The diameter is 10+0.01 mm.
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= Joint BPA

Basic Probability Assignment

= BPA can be obtained from statistical data,
multiple sources, and expert opinions.

v m,,([0,2]) =0.25 | m,,([2,4]) =0.45 | m,,([4,5]) = 0.3
m,,([0,1]) = 0.1 0.025 0.045 0.03
m,,([1,3]) = 0.3 0.075 0.135 0.09
m,,([3,4]) = 0.6 0.15 0.27 0.18
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Belief and Plausibility

= Performance function Z=G(Y)

m Y - Parameters with epistemic uncertainty
m Faillure event: F = {Z=G(Y)<c}
m Belief
Saferegion  Limitstate  Failweregion  BEI(F) =Y m,(A)=0.09+0.18=0.27

GY.¥)»c GiF.)=c G(Y,.T,) <c AcF
T W = Plausibility
PICF)= D, my(A)=

ANF#J

0.045+0.135+0.27+0.03+0.09+0.18=0.75
= Probability of failure

P, = Pr{G(Y) <0}
Bel(F) < p, < PI(F)




Unified Uncertainty Analysis

= Performance function Z=G(X, Y)
m X — Aleatory parameters with distributions
m Y — Epistemic parameters with intervals

Iﬂ. G=a(X.Y) L9

AN

X:Jomt PDF | (jnified Uncertainty Analysis >
»| Framework G- PDF and CDF
Y: joint BPA bounds, scnsitivity

< B Possible supporting
= computational tools

Computational algorithms
- FORM & SORM

- Saddlepoint approximations
- Sampling methods

- Design of Experiments




Probability Bounds
(Belief and Plausibility)

- imv(cvi)Pr{G(X,Y) < C‘Yi = CYi}

BeI(F) — (pf )min

- Zn: my (Cy;) Pr {Gmax (X,Y) < C‘Y eC,, }

PI(F) = (Pt )max

UMR] Zm (Cai)Pr{Gy, (X, Y) <c|Y €C,,}



G=9g(X,P)=X; + X, +Y +Y;

X1 X1 Y, Y, ~N(O, 1),
Only the joint BPA of Y, Y, are know~
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Computational Issues
= Calculate the probabillity in each set of
Interval variables.

m Search the maximum and minimum
performance function values in each set.

= Monte Carlo simulation may not be
applicable.

= The analysis Is computationally intensive.

Bel(F) = imY (Cyi)Pr{G (X, Y) <c|Y eC,,|



A FORM-Based Approach

First Order Reliability Method
p, =Pr {G(X) < O} IR

X ->U (standard ﬂﬁ

| ~ normal) o §/// / ,
e min |u | ‘G(U) =0. )
aqion - u

llllllllllllll

~ The most Probable Point u* and the
shortest distance (reliability index) g

— P = O (-f)
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Expensive Double-Loop Method

Probabilistic
 MPE search = analysis
min | ||g(u,y) =¢
Tnitial u and y . I ; MPP u'
- >

Minimum &
m}rin giu,y) |j’ e Cy;

—— Interval analysis

Pr{Gua (X, Y) <c|Y eCy, | =®(-)

Bel(F) = Zn:mY (Cyi) Pr{G (X, Y) <c|Y eC,;}



New Sequential

Minimize g
mm giu,y) ¥

Single Loops

Method

Minitnize |u |

ﬁ fEE

/ ~

|A: Optimization
algorithms )

UNIVERSITY OF MISSOURI-ROLLA
The Name. The Degree. The Difference.

» |min |uf
gf g, yi=¢

/

T

| Vg(u*™?, y* )|
Vg (ukD,y®D)
[Vg(u™™?,y* )]

ﬂ<k> — gD 4

® — _p®



Flowchart

The new
method IS more
efficient.
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Example

4P(a+b)

Aleatory variables

Variable Gymbaols Mean atd Digtribution
i) et 100t 0.01 tntn Motmal
Ao b A00 e 0.01 Motnal
A F 250 K 25 kI Mommal
Ay E 200 5Pa 30 GPa Mommal
i & 2900Pa 29 WPa Motmal
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G =0,(XY)=S-

7z(\/(a+b)2 —¢? —ye)(dz2 -d?)

7°E(d? —d? P(a+b

G,=0,(d.X,Y)= (642bz 1)_ (2 2)
\/(a+b) —e® — e

i Epistemic variables
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Results

Belief

Plausibility I M

F,={X,Y|g,(X,Y) <0} Bel(F)=5.068x10"

F={XY|g(X,Y)<0] Bel(F)=13309x10" FI(F)=27226x10" | 8657 984

A(F)=3331:10" | 4752 972

N, - # of function calls by double-loop method
N, - # of function calls by sequential single loop method
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Future Work

= Sensitivity: identify the most important
uncertain variables Most important Y”

arge effect of epistemic uncertainty

o Sensitivity |
| analysis Collect more
| ‘argegapin % Information on Y’
« Pf
: \

Reduced effect of epistemic

= Integrate the method  uncertainey

L | n n [ | CDF
With optimization ﬁ |
mall gap in ps
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