Interval Reliability Analysis

Xiaoping Du University of Missouri – Rolla (Missouri University of Science and Technology)

Outline

Background

- Algorithm for reliability analysis
- Sensitivity analysis for intervals
- Examples
- Conclusions

Response (Performance)

- Let random variables be **x** and interval variables response z be **y**.
- Then response z=g(x, y) is also in mixture of randomness and intervals.

Examples of Existing Research

- Design optimization with only interval variables
 - Lombardi and Haftka, 1998
 - Rao and Cao, 2002
- Reliability analysis with random and interval variables
 - Penmetsa and Grandhi, 2002
- Reliability-based design with random and interval variables
 - Du and Sudjianto, 2003
- Fuzzy and epistemic uncertainty
 - Choi
 - Mourelatos

Our New Method

Reliability analysis for reliability bounds

- The extension of our reliability analysis algorithms (2003)
- to the mixture of random and interval variables
- Sensitivity analysis in terms of intervals
 - The most important interval variables to reliability

Direct Reliability Analysis

• Given: $g = g(\mathbf{X}, \mathbf{Y})$

Find: the probability of failure

$$p_f = \Pr\{g(\mathbf{X}, \mathbf{Y}) < 0\}$$

- Minimum $p_f^{\max} = \Pr\left\{\min_{\mathbf{Y}} g(\mathbf{X}, \mathbf{Y}) < 0\right\}$
- Maximum $p_f^{\min} = \Pr\left\{\max_{\mathbf{Y}} g(\mathbf{X}, \mathbf{Y}) < 0\right\}$

Maximum
$$p_f$$
 $p_f^{\text{max}} = \Pr\left\{\min_{\mathbf{Y}} g(\mathbf{X}, \mathbf{Y}) < 0\right\}$

FORM – First Order Reliability Method

$\min_{\mathbf{u}} \left\| \mathbf{u} \right\| \left\| \min_{\mathbf{Y}} g(\mathbf{U}, \mathbf{Y}) = 0 \right\|$

U – std. normal var. from X.

Inverse Reliability Analysis
Given: the probability of failure p_f
Find: c such that p_f = Pr{g(X, Y) < c}

- Modified our algorithm (2003)
 - Arc search
 - Optimization for interval:
 - KKT conditions

Sensitivity Analysis

- 6 types of sensitivity are proposed to identify the relationship between the p_f bounds and interval variables
- 1st type of sensitivity derivative of the width of p_f with respect to the width of an interval variable

1st type of sensitivity

We consider only one way in our definition

 Derivation of equation: Different cases give different equations, for example,

• Case 1
$$y_i = y_i^U$$
, reach p_f^U ;
 $y_i = y_i^L$, reach p_f^L $\rightarrow \frac{1}{2}$

$$\left(\frac{-\phi(-\beta^{\max})}{\|\nabla\| \|\mathbf{u}^U} \frac{\partial g}{\partial y} \right|_{y=y_i^U} + \frac{-\phi(-\beta^{\min})}{\|\nabla\| \|\mathbf{u}^L}$$

 $\frac{\partial g}{\partial y}$

$$\begin{array}{c} \text{Case 2} \\ y_i = y_i^L, reach \ p_f^U; \\ y_i = y_i^U, reach \ p_f^L \end{array} \rightarrow \begin{array}{c} -\frac{1}{2} \left(\frac{-\phi(-\beta^{\max})}{\|\nabla\| \| \mathbf{u}^U} \frac{\partial g}{\partial y} \right|_{y=y_i^L} + \frac{-\phi(-\beta^{\min})}{\|\nabla\| \| \mathbf{u}^L} \frac{\partial g}{\partial y} \right|_{y=y_i^U} \end{array}$$

1st type of sensitivity

Other possible cases are

• Case 3
$$y_i = y_i^U$$
, reach p_f^U ; interior, reach p_f^L

• Case 4
$$y_i = y_i^L$$
, reach p_f^U ; interior, reach p_f^L

• Case 5
$$y_i = y_i^U$$
, reach p_f^L ; interior, reach p_f^U

• Case 6
$$y_i = y_i^L$$
, reach p_f^L ; interior, reach p_f^U

• Case 7 interior, reach
$$p_f^U$$
 and p_f^L

Example

Interval variables

	Variable	Lower bound	Upper bound
Y_I	e (mm)	100	150
Y_2	μ	0.15	0.25

Random variables

Variable	Symbols in Figure	Mean	Standard deviation	Distribution
X_1	а	$100 \mathrm{mm}$	0.01 mm	Normal
X_2	b	300 mm	0.01 mm	Normal
X_3	Р	250 kN	25 kN	Normal
X_4	Ε	200 GPa	30 GPa	Normal
X_5	S	390 MPa	29 MPa	Normal

Reliability Analysis Result

Sensitivity Analysis Result

Sensitivity of interval variables

	Y_l	Y_2
Sensitivity $\partial \delta_p / \partial \delta_i$	0.0000350	<mark>0.00453</mark>
Sensitivity $\partial \overline{p}_f / \partial \delta_i$	1.634e-005	0.00211
Sensitivity $\partial \delta_p / \partial \overline{y}_i$	6.537e-005	0.00842
Sensitivity $\partial \overline{p}_f / \partial \overline{y}_i$	3.450e-005	<mark>0.00453</mark>

Sensitivity Analysis Result

Sensitivity of random variables

UNIVERSI

The Name, The De

		Sensitivity $\partial \delta_p / \partial p$	Sensitivity $\partial \overline{p}_f / \partial p$
X ₁	$p = \mu_1$	3.365e-005	1.780e-005
	$p = \sigma_1$	2.370e-008	1.228e-008
X2	$p = \mu_2$	<mark>-3.365e-005</mark>	1.780e-005
	$p = \sigma_2$	2.370e-008	1.228e-008
X3 -	$p = \mu_3$	2.333e-008	1.287e-008
	$p = \sigma_{_3}$	4.009e-008	2.237e-008
X4	$p = \mu_4$	-3.399e-011	-1.901e-011
	$p = \sigma_4$	9.449 e- 011	5.454e-011
X5	$p = \mu_s$	Ō	0
	$p = \sigma_s$	0	0

Conclusions

- The methods can give us more accurate results about reliability.
- The methods can allow us to make more reliability decisions.
- The methods can give us directions of collecting more information to reduce the effects of uncertainty.

Acknowledgements:

