

A General Approach to Robust Design Optimization with Multilevel Uncertainty

Xiaoping Du

2008 ASME International Mechanical Engineering Congress & Exposition

Outline

- Background
 - Robustness
 - Random and interval variables
- Robustness assessment
- Robust design
- Examples
- Conclusion

Robustness

- Products function regardless of variations in environments.
- Degree of insensitivity to uncertainties.
- Performance Z = f(X)

Uncertainties in Input X

- X=(R,I)
- Random variables R
- Interval variables I
 - Tolerance, $d = 10\pm0.01$ mm
 - Periodic condition monitoring, 6 mo <L<7 mo

Robustness with R and I

- Robustness measured by standard deviation (std) of Z, σ_Z
- Because of I,

$$\sigma_{\rm Z}^{\rm min} \leq \sigma_{\rm Z} \leq \sigma_{\rm Z}^{\rm max}$$

Robustness Assessment

- Given
 - Distributions of R
 - Width of I
- Find
 - Effect of R: average std

$$\overline{\sigma}_Z = \frac{1}{2} \left(\sigma_Z^{\text{max}} + \sigma_Z^{\text{min}} \right)$$

Effect of I, std difference

$$\delta \sigma_Z = \sigma_Z^{\text{max}} - \sigma_Z^{\text{min}}$$

Semi-2nd-Order Approximation

$$\Delta f(\mathbf{R}, \mathbf{I}) = \nabla_{\mathbf{R}}^{T} \Delta \mathbf{R} + \nabla_{\mathbf{I}}^{T} \Delta \mathbf{I} + \frac{1}{2} \Delta \mathbf{X}^{T} \nabla^{2} \Delta \mathbf{X}$$

Interaction terms of **R** and **I** are kept.

$$\nabla^2 = \begin{pmatrix} & & & \frac{\partial^2 g}{\partial R_1 \partial I_1} & \cdots & \frac{\partial^2 g}{\partial R_1 \partial I_{nI}} \\ & & & & \cdots & \cdots & \cdots \\ & & & \frac{\partial^2 g}{\partial R_{nR} \partial I_1} & \cdots & \frac{\partial^2 g}{\partial R_{nR} \partial I_{nI}} \\ & & & & \cdots & \cdots & \cdots \\ & & \frac{\partial^2 g}{\partial R_1 \partial I_1} & \cdots & \frac{\partial^2 g}{\partial R_1 \partial I_{nI}} \\ & & & \cdots & \cdots & \cdots & \cdots \\ & & \frac{\partial^2 g}{\partial R_{nR} \partial I_1} & \cdots & \frac{\partial^2 g}{\partial R_{nR} \partial I_{nI}} \end{pmatrix}$$

σ_z Bounds

$$\sigma_{z} = \sqrt{\sum_{i=1}^{nR} \left(\frac{\partial f}{\partial R_{i}} \Big|_{\overline{\mathbf{R}}, \overline{\mathbf{I}}} + \sum_{j=1}^{nI} \frac{\partial^{2} f}{\partial R_{i} \partial I_{j}} \Big|_{\overline{\mathbf{R}}, \overline{\mathbf{I}}} \Delta I_{j} \right)^{2}} \sigma_{Ri}^{2}$$

Calls f function $(nR + 3 \times nR \times nI + 1)$ times

For
$$\sigma_Z^{\min}$$

$$\min_{\mathbf{I}} \sum_{i=1}^{nR} \left(\frac{\partial f}{\partial R_i} \bigg|_{\overline{\mathbf{R}}, \overline{\mathbf{I}}} + \sum_{m=1}^{nI} \frac{\partial^2 f}{\partial R_i \partial I_j} \bigg|_{\overline{\mathbf{R}}, \overline{\mathbf{I}}} \Delta I_j \right)^2 \sigma_i^2$$

s.t.
$$\mathbf{I}^l \leq \mathbf{I} \leq \mathbf{I}^u$$

No f function calls

Robust Design

Example 1: 4-Bar Linkage Single Discipline

Random variables

Variable	Mean	Standard Deviation	Distribution
$R_1(l_2)$	51.68mm	0.20 mm	Normal
$R_{2}\left(l_{3}\right)$	297.06mm	0.20 mm	Normal
$R_3(l_4)$	197.08mm	0.20 mm	Normal
$R_4\left(l_p ight)$	99.11mm	0.20 mm	Normal

Interval variables

Variable	I^L	I^U
$I_{1}\left(l_{1} ight)$	$\overline{l_1}$ – 0.5 mm	$\overline{l_1} + 0.5 \text{ mm}$
$I_{2}(\beta)$	$\overline{\beta}$ -1°	$\overline{\beta}$ + 1°

Output: P(x,y)

4-Bar Linkage - Results

	GRA	MCS
at 10°	(0.178,0.203) mm	(0.172,0.207) mm
at 10°	(0.177,0.203) mm	(0.171,0.207) mm
at 60°	(0.149,0.260) mm	(0.148,0.261) mm
at 60°	(0.148 ,0.259) mm	(0.146 ,0.259) mm

GRA: General robustness assessment

Multidisciplinary Cylinder Problem

Output: P(x,y)

$$Z_1^{(1)} = \sigma_a - S$$

$$Z_1^{(2)} = \sigma_b - S$$

 σ_a and σ_b : stresses at a and b S: strength

Compound cylinder system

Subsystem 1: Inner cylinder

Subsystem 2: Outer cylinder

Cylinder Problem

Random variables

Variables	Mean	Standard Deviation	Distribution
S	10.0×10^3 psi	1.0×10^3 psi	Normal
p_0	$20.0 \times 10^{3} \text{ psi}$	2.0×10^3 psi	Normal
а	75 in	0.1 in	Normal
δ	0.004 in	0.0004 in	Normal

Interval variables

Variables	I^L	I^U
E	$30 \times 10^6 \times (1 - 2\%) \text{ psi}$	$30 \times 10^6 \times (1 + 2\%) \text{ psi}$
ρ	$0.3 \times (1-2\%)$	$0.3 \times (1 + 2\%)$
b	9.95 in	10.05 in
С	14.95 in	15.05 in

Result

	GRA	MCS
$\sigma_{\mathbf{Z}_1}^{\mathrm{max}}(\mathit{psi})$	$[3.485 \times 10^3 \ 2.444 \times 10^3]$	$[3.597 \times 10^3 \ 2.570 \times 10^3]$
$\sigma_{\mathbf{Z}_1}^{\min}(\mathit{psi})$	$[3.484 \times 10^3 \ 2.419 \times 10^3]$	$[3.562 \times 10^3 \ 2.515 \times 10^3]$
$\sigma_{\mathbf{Z}_2}^{ ext{max}}(\mathit{psi})$	$[2.40 \times 10^3 \ 1.667 \times 10^3]$	$[2.544 \times 10^3 \ 1.750 \times 10^3]$
$\sigma^{ ext{min}}_{\mathbf{Z}_2}(\mathit{psi})$	$[2.373\times10^3\ 1.667\times10^3]$	$[2.50 \times 10^3 \ 1.724 \times 10^3]$

Conclusions

- The robustness assessment is efficient.
- The accuracy is good when standard deviations and widths are small.
- The method is not applicable when the performance function is expanded at a saddlepoint.
- Future work will be the use of the method for robust design.

Acknowledgement

NSF CMMI 0400081.