

ASME 2011 IDETC/CIE 2011 Paper number: 2011-47855

Robustness Metrics For Time-Dependent Quality Characteristics

Xiaoping Du

Missouri University of Science and Technology

Outline

- Quality loss function
- Time-dependent quality loss function
- Robustness metrics
- Example

USL

V

Target

m

LSL

Quality Loss Function

Constant

- Nominal-the-best type performance Y
- Quality loss $L = A(Y m)^2_{L^{(s)}}$
- Robustness metric
 - Expected L

$$E_L = A[(\mu_Y - m)^2 + \sigma_Y^2]$$

 $\min E_L \Rightarrow \mu_Y \to m \text{ and } \min\{\sigma_Y\}$

Traditional robust design: Y is time invariant, and so is L_{1} .

Reality: Time-Dependent Performances Y=g(X(t),t) with input X(t)

Hydrokinetic turbine

20

40

60

80

100

120

MISSOURI

Challenge: We have stochastic processes now

- Input
 - $\mathbf{X}(t)$
- Performance: $Y(t) = g[\mathbf{X}(t), t]$
- Quality loss

$$L(t) = A(t)[Y(t) - m(t)]^2$$

Why Is It a Challenge?

- Over $[t_0, t_f]$, for a stochastic process, we need to know
 - its instantaneous distributions at any t
 - its auto-dependence of any pair t_1 and t_2
- Example: two Gaussian processes
 - same instantaneous distributions (standard normal)
 - different auto correlation coefficients $\rho=0.999$ (red) and $\rho=0.01$ (weak).
- Both processes behave totally differently.

• Point expected QLF $E_L(t) = A(t)[(\mu_Y(t) - m(t))^2 + \sigma_Y^2(t)]$ is not a good metric.

Quality Loss Process

7

Interval Quality Loss Function

- QL is irreversible L(t) once it occurred; L(t₀, there is no way to go back.
- Over [t₀, t_f], QL is the maximal instantaneous QL.

$$L(t_0, t_f) = \max_{\tau} A(\tau) [Y(\tau) - m(\tau)]^2 , t_0 \le \tau \le t_f$$

New Metrics $E_L(t_0, t_f)$

- True quality loss
- Can account for auto-dependence of L(t)

Two L(t) processes

- Same distributions at t
- Different autocorrelation coefficients

Result in

- Same P-QLF at t
- Different I-QLF over $[t_0, t_f]$.

Example

Required motion (time $t = \theta [0^{\circ}, 120^{\circ}]$)

 $\psi_d(\theta) = \psi_0 + 50^{\circ} \sin\left[\frac{3}{4}(\theta + \theta_0)\right]$

QC – motion error

$$Y(\mathbf{X},\theta) = \psi(\mathbf{X},\theta) + \psi_0 - \psi_d(\theta)$$

$$\mathbf{X} = (R_1, R_2, R_3, R_4)^T$$

Traditional P-QLF	New I-QLD	
$L(\theta) = A[Y(\theta)]^2$	$L(0^\circ, 120^\circ) = A \max\{L(\theta)\}$	
0°≤ <i>θ</i> ≤120°	0°≤ <i>θ</i> ≤120°	
Min $\sum_{i=1 \text{ to } N} E_L(\theta_i)/N$	Min E _L (0°,120°)	
s.t. constraints	s.t. constraints	

Design variables $(\mu_2,\mu_3,\mu_4, heta_0,\psi_0)$

Results

Method	P-QLF	I-QLF
$\mu_{R_2}(\text{mm})$	48.14	43.08
$\mu_{R_3}(\text{mm})$	100.48	103.57
μ_{R_4} (mm)	74.13	66.51
θ_0 (deg)	100.46	97.15
$\psi_0 (\text{deg})$	99.01	93.89
Average expected I-QLF $\overline{L}_{E}(\theta)$ (\$)	21.60	24.76
Maximal expected I-QLF max $L_E(\theta)$ (\$)	70.0	28.33
Expected I-QLF $L_E(0^\circ, 120^\circ)$ (\$)	84.21	43.87

$M_{\text{ISSOURI}} \text{ University of Science and Technology}$

MISSOURI

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ave. motion error: The new is better than the traditional.

How does auto correlation look like?

 Between 0° and θ (0°≤θ≤120°)

Conclusions

- Static robustness metrics are not good for time-dependent problems.
- New metrics should account for auto dependence of time-dependent performances.
- The proposed metric is the only one of many possible metrics.