

ASME 2012 IDETC/CIE Paper number: DETC2012-70131

A Reliability Approach to Inverse Simulation Under Uncertainty

Xiaoping Du

Missouri University of Science and Technology

Outline

- Inverse simulation
- Inverse simulation under Uncertainty
 - A reliability and optimization approach
- Example
- Conclusions

Inverse Simulation

• Direct simulation: Given x find y

- Inverse simulation
 - An inverse process to the direct simulation
 - Given y find part of x

Example: Inverse Kinematics

- Direct modeling
 - Uses joint parameters to compute motion output
- Inverse modeling
 - Determines the joint parameters to achieve desired motion output

Source: http://en.wikipedia.org/wiki/Inverse_kinematics

MISSOURI

Example: Accident Reconstruction

Direct simulation

- Input: vehicle speed, position, etc.
- Output: accident consequences

Inverse simulation: accident reconstruction

- Given measured accident consequences
- Find vehicle speed of collision

Source: From Dr. Xaioyun Zhang

 \circ

t=0.00 s

v1=40.0 [km/h] v2=49.2 [km/h] v3=49.8 [km/h] Missouri University of Science and Technology $% \mathcal{T}_{\mathcal{T}}$

Methodology: Model

Direct simulation equations

$$\mathbf{y} = \mathbf{g}(\mathbf{x})$$

 $\mathbf{x} = (\mathbf{x}_{unkn}, \mathbf{x}_{kn}, \mathbf{x}_{unc})$
 $\begin{cases} y_1 = g_1(\mathbf{x}) \\ y_2 = g_2(\mathbf{x}) \\ \dots \\ y_m = g_m(\mathbf{x}) \end{cases}$

Unknown input $\mathbf{x}_{unkn} = (x_{unkn,1}, \dots, x_{unkn,n_1})$ Precisely known input $\mathbf{x}_{kn} = (x_{kn,1}, \dots, x_{kn,n_2})$ Random known input $\mathbf{x}_{unc} = (x_{unc,1}, \dots, x_{unc,n_3})$

Methodology: Task and Approach

- Given: CDF of $x_{\text{unc},i}$ $(i = 1, ..., n_3)$ $F_{\text{unc},i}(x)$, $\mathbf{x}_{\text{kn}} = (x_{\text{kn},1}, ..., x_{\text{kn},n_2})$, $\mathbf{y} = (y_1, ..., y_m)$, and $\mathbf{g}(\cdot) = (g_1(\cdot), ..., g_m(\cdot))$ Find: CDF of $x_{\text{ukn},j}$ $(j = 1, ..., n_1)$ $F_{\text{ukn},j}(x)$
- Assume a unique solution
- Use First Order Reliability Method (FORM) for the CDF
- Use optimization

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Methodology: Challenge and Solution

• Challenge: double loop

$$\begin{cases} \min_{\mathbf{u}} \beta = \|\mathbf{u}\| \\ \text{subject to} \\ x_{\text{unkn}} = g^{-1}(\mathbf{x}_{\text{unkn}}, \mathbf{x}_{\text{kn}}, \mathbf{T}(\mathbf{u})) > x \end{cases}$$

Outer loop: CDF evaluation (reliability analysis FORM)

Embedded inner loop: Inverse simulation

• Solution: combine the two loops \rightarrow single loop

Methodology: Single Loop

- KKT conditions

 → Single loop
 solution =
 Double loop
 solution
- Much more efficient

Example: Particle Impact

- A hits B with v_{A0}
- After impact
 - A rebounds with d_A
 - B slides with d_B

- Task of inverse simulation
 - What are v_{A0} and v_{B0} ?
 - $-d_A$ and d_B are measured (observed).

Problem Formulation

- Direct simulation
 - $\mathbf{y} = \mathbf{g}(\mathbf{x}_{\mathrm{unkn}}, \mathbf{x}_{\mathrm{kn}}, \mathbf{x}_{\mathrm{unc}})$
- Unknown input $\mathbf{x}_{unkn} = (v_{A0}, v_{B0})$
- Known input

 $\mathbf{x}_{\mathrm{kn}} = (m_A, m_B, h, heta)$

• Random input

 $\mathbf{x}_{unc} = (e, \mu_k) = (\text{coeff of restitution}, \text{coeff of friction})$

• Output

$$\mathbf{y} = (d_A, d_B) = (0.582, 0.708) \text{ m}$$
¹¹

Results

- v_{A0}: Mean = 10.16 m/s, std =1.22 m/s
- v_{B0}: Mean = 1,06 m/s, std =0.46 m/s

Proposed
 MCS

2.5

Conclusions

- As direct simulation, inverse simulation also has uncertainties.
- Considering uncertainty gives more information
 - Distribution
 - Mean and Std
- The proposed method is efficient.
- May not be accurate for highly nonlinear simulation models. 13

Future Work

- We are working on more advanced methodologies
 - More general problems
 - Maximum likelihood
- Vehicle accident reconstruction
 - Commercial crash simulations
 - Real accident cases