

ASME 2012 IDETC/CIE 2012 Paper number: DETC2012-70132

Time-Dependent Reliability Analysis by a Sampling Approach to Extreme Values of Stochastic Processes

Zhen Hu Xiaoping Du Missouri University of Science and Technology

Outline

- Time-dependent reliability
- A sampling approach to extreme values of stochastic processes
- Reliability analysis
- Examples
- Conclusions
- Future work

Time-Dependent Reliability

Limit-state functions change with time

 $G = g(\mathbf{X}, Y(t), t)$

Reliability
 Y: A stochastic process

 $R(0, t_s) = \Pr\{g(\mathbf{X}, Y(t) < 0, \text{ for any } t \in [0, t_s]\}$

X: Random variables

- Reliability is therefore time dependent
- Consistent with the reliability definition

- Probability of success over a period of time

Examples

- Mechanisms
 - G-function: $G = g(\mathbf{X}, t)$
 - Defined over $[0, t_s]$ or $[\theta_0, \theta_s]$
- Hydrokinetic turbine
 - G-function: $G = g(\mathbf{X}, Y(t), t)$
 - Stochastic process
 - Water flow velocity

Challenges

- We need the distribution of extreme values of $g(\cdot)$ over $[0, t_s]$. $R(0, t_s) = \Pr \left\{ g(\mathbf{X}, Y(t) < 0, \text{ for any } t \in [0, t_s] \right\}$
- Monte Carlo simulation is too expensive.
- The most commonly used method is inaccurate
 - Upcrossing rate method

New Methodology

- Limit-state function $G = g(\mathbf{X}, Y(t))$
- Decompose Y into Y_R and Y_S
 - $-Y_R$: Generalized strength variables
 - Y_S: Generalized stress variables
- Worst case over $[0, t_s]$ with
 - Minimum Y_R and maximum Y_S
- Time-dependent \rightarrow Time-independent

$$\begin{split} p_f(0,t_s) &= \Pr\left\{g(\mathbf{X},Y(t)>0,\,\exists t\in[0,\,t_s]\right\} = \Pr\left\{\max g(\mathbf{X},Y_{_R}(t),Y_{_S}(t))>0,\,t\in[0,\,t_s]\right\} \\ &= \Pr\left\{g(\mathbf{X},Y_{_R}^{\min},Y_{_S}^{\max})>0\right\} \end{split}$$

Task and Approach

$$p_f(0, t_s) = \Pr \left\{ g(\mathbf{X}, Y_R^{\min}, Y_S^{\max}) > 0 \right\}$$

- Task: find distributions of Y_R^{\min} and Y_S^{\max} .
- Approach
 - Use Monte Carlo simulation (MCS)
 - Sample on Y_R and Y_S over $[0, t_s]$
 - Obtain samples of Y_R^{\min} and Y_S^{\max} .
 - It will not call the g-function
- Then time-independent analysis
 FORM, SORM, etc.

Sampling Approach

- Expansion Optimal Linear Estimation method (EOLE) is used to generate samples for Y
- Saddlepoint Approximation (SPA) is employed to approximate the CDF of Y_R^{\min} and Y_S^{\max}
- SPA maintains the robustness of reliability analysis

Procedure

- Identify Y_R and Y_S
- Find distributions of the extreme values of Y_R and Y_S by sampling
- Perform time-invariant reliability analysis

Example: Hydrokinetic Turbine Blades

Random variables

 $\mathbf{X} = \left[\mathit{l}_{1}, \, \mathit{t}_{1}, \, \mathit{t}_{2}, \, arepsilon_{allow}
ight]$

 Generalized stress variables

 $Y_s = v(t)$

Missouri University of Science and Technology $% \mathcal{T}_{\mathcal{T}}$

Limit-State Function

Bending moment

$$M_{_{flap}}=\frac{1}{2}\rho v(t)^2 C_{_m}$$

Limit-state function

$$g = \varepsilon_{allow} - \frac{M_{flap}t_1}{EI} = \varepsilon_{allow} - \frac{\rho v(t)^2 C_m t_1}{2EI}$$

$$I = \frac{1}{12}l_1((2t_1)^3 - (2t_2)^3) = \frac{2}{3}l_1(t_1^3 - t_2^3)$$

v(t) is a non-stationary stochastic _ process

Mean and standard deviation are functions of time₁₁

Results: Accuracy

Maximum river velocity

UC: Up-crossing rate method

Results: Efficiency

Number of function calls

Time interval (months)	UC	Proposed	MCS
[0, 4]	2522	102	106
[0, 5]	6539	85	106
[0, 6]	6761	121	106
[0, 7]	11500	98	106
[0, 8]	6678	98	106
[0, 9]	19399	98	10^{6}

Conclusions

- The accuracy of the proposed method is good
- The proposed method is efficient
- Applicable for problems with nonstationary stochastic loading
- Limitations
 - $G = g(\mathbf{X}, Y(t))$
 - Y can be decomposed into Y_R and Y_S

Future Work

- We are working on more advanced methodologies
 - General problems $G=g(\mathbf{X}, Y(t), t)$
 - Time-dependent system reliability
- Design optimization with time-dependent uncertainties

Acknowledgement

- ONR N000141010923
- The Intelligent Systems Center at the Missouri University of Science and Technology.