

ASME 2012 IDETC/CIE 2012 Paper number: DETC2012-70132

Time-Dependent Reliability Analysis by a Sampling Approach to Extreme Values of Stochastic Processes

Zhen Hu Xiaoping Du Missouri University of Science and Technology

Outline

- Time-dependent reliability
- A sampling approach to extreme values of stochastic processes
- Reliability analysis
- Examples
- Conclusions
- Future work

Time-Dependent Reliability

• Limit-state functions change with time

 $G = g(X, Y(t), t)$

• Reliability *Y*: A stochastic process

 $R(0, t_s) = Pr\{g(\mathbf{X}, Y(t) < 0, \text{ for any } t \in [0, t_s]\}\$

X: Random variables

- Reliability is therefore time dependent
- Consistent with the reliability definition

– Probability of success over a period of time

Examples

- **Mechanisms**
	- G-function: $G = g(\mathbf{X}, t)$
	- $-$ Defined over $[0, t_{_S}]$ or $[\theta_{_{0}}, \theta_{_{S}}]$
- Hydrokinetic turbine
	- $-G$ -function: $G = g(\mathbf{X}, Y(t), t)$
	- Stochastic process
		- Water flow velocity

Challenges

- We need the distribution of extreme values of $g(\cdot)$ over $[0,t_s]$. $R(0, t_s) = Pr\{g(\mathbf{X}, Y(t) < 0, \text{ for any } t \in [0, t_s]\}\$
- Monte Carlo simulation is too expensive.
- The most commonly used method is inaccurate
	- Upcrossing rate method

New Methodology

- Limit-state function $G = g(\mathbf{X}, Y(t))$
- Decompose Yinto Y_R and Y_S
	- Y_R : Generalized strength variables
	- Y _s: Generalized stress variables
- Worst case over $[0, t_{\rm s}]$ with
	- Minimum Y_R and maximum Y_S
- Time-dependent \rightarrow Time-independent

 $p_f(0, t_s) = \Pr\left\{g(\mathbf{X}, Y(t) > 0, \exists t \in [0, t_s]\right\} = \Pr\left\{\max g(\mathbf{X}, Y_R(t), Y_S(t)) > 0, t \in [0, t_s]\right\}$ $\mathbf{P} = \Pr \left\{ g(\mathbf{X}, Y_{\scriptscriptstyle R}^{\scriptscriptstyle\min}, Y_{\scriptscriptstyle S}^{\scriptscriptstyle\max}) > 0 \right\},$

$$
\text{Task and Approach} \\ p_f(0, t_s) = \Pr\left\{g(\mathbf{X}, Y_R^{\min}, Y_S^{\max}) > 0\right\}
$$

- \bullet Task: find distributions of Y_R^{min} and Y_S^{max} .
- Approach
	- Use Monte Carlo simulation (MCS)
	- $-$ Sample on Y_R and Y_S over $[0, t_S]$
	- $-$ Obtain samples of Y_R^{min} and Y_S^{max} .
	- It will not call the g-function
- Then time-independent analysis – FORM, SORM, etc.

Sampling Approach

- Expansion Optimal Linear Estimation method (EOLE) is used to generate samples for *Y*
- Saddlepoint Approximation (SPA) is employed to approximate the CDF of Y_R^{min} and $Y_{\text{S}}^{\text{max}}$
- SPA maintains the robustness of reliability analysis

Procedure

- Identify *Y*_R and *Y*_S
- Find distributions of the extreme values of *Y*_R and *Y*_S by sampling
- Perform time-invariant reliability analysis

Example: Hydrokinetic Turbine Blades

• Random variables

 $\mathbf{X} = [l_1, t_1, t_2, \varepsilon_{allow}]$

• Generalized stress variables

 $Y_s = v(t)$

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Limit-State Function

Bending moment

$$
M_{_{flap}}=\frac{1}{2}\rho v(t)^2C_{_m}
$$

Limit-state function

$$
g=\varepsilon_{_{allow}}-\frac{M_{_{flap}t_1}}{EI}=\varepsilon_{_{allow}}-\frac{\rho v(t)^2C_{_{m}t_1}}{2EI}
$$

$$
I = \frac{1}{12}l_1((2t_1)^3 - (2t_2)^3) = \frac{2}{3}l_1(t_1^3 - t_2^3)
$$

 $v(t)$ is a non-stationary stochastic process

functions of time ₁₁ Mean and standard deviation are

Results: Accuracy

Maximum river velocity

UC: Up-crossing rate method

Results: Efficiency

Number of function calls

Conclusions

- The accuracy of the proposed method is good
- The proposed method is efficient
- Applicable for problems with nonstationary stochastic loading
- Limitations
	- $G = g(\mathbf{X}, Y(t))$
	- *Y* can be decomposed into Y_R and Y_S

Future Work

- We are working on more advanced methodologies
	- General problems G=g(**X**, *Y*(*t*), *t*)
	- Time-dependent system reliability
- Design optimization with time-dependent uncertainties

Acknowledgement

- ONR N000141010923
- The Intelligent Systems Center at the Missouri University of Science and Technology.