ASME 2013 IDETC/CIE 2013 Paper number: DETC2013-12033

A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS

Zhen Hu, Xiaoping Du Department of Mechanical & Aerospace Engineering Missouri University of Science and Technology

Missouri University of Science and Technology

Outline

- Background
- Fatigue reliability under stochastic loadings
- Examples
- Conclusions
- Future work

Introduction

Structures under stochastic loadings

Time dependent reliability

- Global extreme over time interval
- Investigated by Mahadevan, Mourelatos, Du, Wang, etc.

Fatigue reliability

- Local extremes
- Damages accumulation

Fatigue life analysis

- Strain-life based method
 - Related to initial crack
- Stress-life based method
 - Based on material S-N curve
- Fracture mechanics method
 - Related to initiation and propagation of crack

Background

Current methods

- Monotonic structure responses to the stochastic loading
- Assumption of narrow-band or broad-band
- Based on field stress or strain data
- Monte Carlo Simulation
- Efficiency and accuracy may not be good for nonlinear functions w.r.t. stochastic loadings

Examples

Random field loading: $Y(x, t) = \mu(x) + Z(x, t) = \mu(x) + \sum_{j=1}^{r} q_j(t) \varphi_j$

Nonlinear combination of stochastic processes

$$S(t) = g(\mathbf{X}, \mathbf{Y}(t))$$

- X is a vector of random variables
- Y(t) is a vector of stationary stochastic processes

$$p_f = \Pr\{T_F \le T\}$$

Predict fatigue reliability with less computational effort

Fatigue Reliability Analysis under Stochastic Loadings

First Order Reliability Method (FORM)

 $\begin{cases} \operatorname{Min} \|\mathbf{u}_X\| \\ \text{s.t.} \\ D_F(T(\mathbf{u}_X)) \leq 1 \end{cases}$

Expected accumulated fatigue damage over a time interval conditioned on

$$\mathbf{x} = T(\mathbf{u}_X)$$

- Peak counting (PC)
- Level crossing counting (LCC)
- Range counting (RC)
- Rainflow counting (RFC)

Expected fatigue damage analysis

The Palmgren-Miner's rule

$$D_F = \sum_{i=1}^{k} \frac{n(s_i)}{N(s_i)} = \sum_i \frac{n(s_i)}{1/(\gamma s_i^{\kappa})}$$
$$D_F = v_0 T \int \gamma s^{\kappa} p(s) ds$$

- mean upcrossing rate of the stress process
- PDF of the stress cycle

Overview

- Calculate mean value upcrossing rate
- Obtain stress cycle distribution from stress response function
- Determine integration region for damage analysis

Mean Value Analysis

$$\mu_{s} = \int_{0}^{1} F^{-1}(P_{s}) dP_{s} = \frac{1}{2} \sum_{j=1}^{r} w_{j} F^{-1} \left(\frac{\xi_{j} + 1}{2}\right)$$
$$P_{s} = F(s)$$

- CDF of stress response S
- Transform stress region to probability region (0,1)

Mean Value Analysis

$$\begin{cases} \max_{\mathbf{u}_{Y(t)}} s = F^{-1}\left(\frac{\xi_{j}+1}{2}\right) = g(T(\mathbf{u}_{X}), T(\mathbf{u}_{Y(t)}) \\ \text{s.t.} \end{cases}$$

$$\|\mathbf{u}_{Y(t)}\| = \begin{cases} -\Phi^{-1}\left(\frac{\xi_{j}+1}{2}\right), \text{ if } \frac{\xi_{j}+1}{2} \le 0.5 \\ \Phi^{-1}\left(\frac{\xi_{j}+1}{2}\right), \text{ otherwise} \end{cases}$$

MISSOURI

Inverse MPP search is performed at each of the Gaussian quadrature points

Mean upcrossing rate analysis

Rice's formula:

$$v_{0} = \omega_{\mu}(t)\phi(\beta_{\mu}(t))\Psi(\dot{\beta}_{\mu}(t) / \omega_{\mu}(t))$$

- The mean upcrossing rate is equivalent to the upcrossing rate of an Equivalent Gaussian process
- Derivation based on the Rice's formula got the similar expression as that from other methods

$$Z_{i}(t) = g(T(\mathbf{u}_{X}), T(\mathbf{U}_{Y}(t))) - s_{i} \quad \text{FORM} \quad L(t) = \boldsymbol{\alpha}_{i}(t)\mathbf{U}_{Y}^{T}(t)$$

$$Pr\{Z_{i}(t) = g(\mathbf{u}_{X}, T(\mathbf{U}_{Y}(t))) - s_{i} < 0\}$$

$$= \begin{cases} Pr\{L(t) < -\beta_{i}\} = \Phi(-\beta_{i}), \text{ if } s_{i} < \mu_{s} \\ Pr\{L(t) < \beta_{i}\} = \Phi(\beta_{i}), \text{ otherwise} \end{cases}$$

$$Pr\{Z_{p}(t) < s_{i}\} = \begin{cases} Pr\{L_{p}(t) < -\beta_{i}\}, \text{ if } s_{i} < \mu_{s} \\ Pr\{L_{p}(t) < \beta_{i}\}, \text{ otherwise} \end{cases}$$

MISSOURI

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

For a Gaussian stochastic process with regularity factor 77

CDF:
$$F_P(\xi) = \Phi\left(\frac{\xi}{\sqrt{1-\eta^2}}\right) - \eta e^{-\frac{\xi^2}{2}} \Phi\left(\frac{\eta\xi}{\sqrt{1-\eta^2}}\right)$$

PDF:
$$f_p(\xi) = \sqrt{1-\eta^2} \phi \left(\frac{\xi}{\sqrt{1-\eta^2}}\right) + \eta \xi e^{-\frac{\xi^2}{2}} \Phi \left(\frac{\eta \xi}{\sqrt{1-\eta^2}}\right)$$

Regularity
$$\eta = \frac{\omega_0(t)}{\omega_p(t)} = \frac{\alpha(t)\ddot{\mathbf{C}}_{12}(t,t)\alpha(t)^T}{\sqrt{\alpha(t)\ddot{\mathbf{C}}_{1122}(t_1,t_2)}\Big|_{t_1=t_2=t}\alpha(t)^T}$$

Corresponding to the probability of one stress level si

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

$$\int_{\mu_{s}}^{\infty} \gamma s^{\kappa} p(s) ds = \int_{P_{\mu_{s}}}^{1} \gamma (P^{-1}(P_{s_{p}}))^{\kappa} dP_{s_{p}}$$

$$\int_{\mu_{s}}^{1} \gamma (P^{-1}(P_{s_{p}}))^{\kappa} dP_{s_{p}}$$

$$= \frac{1 - P_{\mu_{s}}}{2} \sum_{i=1}^{r} w_{i} \gamma (P^{-1}(P_{p_{i}}))^{\kappa}$$

$$\int_{\mu_{s}}^{1} \gamma (P^{-1}(P_{s_{p}}))^{\kappa} dP_{s_{p}}$$

$$= \frac{1 - P_{\mu_{s}}}{2} \sum_{i=1}^{r} w_{i} \gamma (P^{-1}(P_{p_{i}}))^{\kappa}$$

$$\int_{\mu_{s}}^{1} \gamma (P^{-1}(P_{p_{i}}))^{\kappa} dP_{s_{p}}$$

$$= \frac{1 - P_{\mu_{s}}}{2} \sum_{i=1}^{r} w_{i} \gamma (P^{-1}(P_{p_{i}}))^{\kappa}$$

$$\int_{\mu_{s}}^{1} \gamma (P^{-1}(P_{p_{i}}))^{\kappa} dP_{s_{p}}$$

$$= \frac{1 - P_{\mu_{s}}}{2} \sum_{i=1}^{r} w_{i} \gamma (P^{-1}(P_{p_{i}}))^{\kappa}$$

- Transform stress peak region to the probability region
- Inverse peak distribution analysis is applied

Mathematical Example

$$S(t) = g(\mathbf{X}, \mathbf{Y}(t)) = Y_1(t) + Y_2(t) + Y_3(t)$$

Variable	Mean	Standard deviation	Process type
$Y_1(t)$	1	0.3	Gaussian
$Y_2(t)$	2	0.5	Gaussian
$Y_3(t)$	1.5	0.2	Lognormal

$$\rho_{Y_1}(t_1, t_2) = \exp[-(t_2 - t_1)^2]$$

$$\rho_{Y_2}(t_1, t_2) = \cos[\pi(t_2 - t_1)]$$

$$Y_3(t) = \exp[0.2U_3(t) + 1.5]$$

$$\rho_{U_3}(t_1, t_2) = \exp[-(t_2 - t_1)^2 / 0.5^2]$$

Results

Variable	MCS	Proposed	Error (%)
Mean Value	7.5720	7.5423	0.39
Zero upcrossing rate	0.4420	0.4475	1.24
Function calls	5×10 ⁷	488	-

Fatigue Reliability of A Shaft

Variable	Mean	Standard deviation	Distribution	Auto- correlation
d	59 mm	2.95 mm	Gaussian	N/A
l	200 mm	10 mm	Gaussian	N/A
γ	2.87×10 ⁻¹³	5.74×10 ⁻¹⁵	Gaussian	N/A
к	1.0693	0.0214	Gaussian	N/A
$\ln(F(t))$	7.59 N	0.11 N	Lognormal	Eq. (71)
Q(t)	250 Nm	25 Nm	Gaussian	Eq. (72)

MISSOURI

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Results

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Conclusions

- The method is for fatigue reliability under stochastic loadings.
- Stationary process assumption is made.
- Peak counting method is employed.
- Both Gaussian and non-Gaussian stochastic loadings can be addressed.

Future work

- Consider non-stationary stochastic loadings.
- Study the other cycle counting methods, such as RC, LCC and RFC.
- Further improve the efficiency.

Acknowledgments

- ONR N000141010923 (application)
- NSF CMMI 1234855 (methodology development)
- Intelligent Systems Center at Missouri S&T (partial financial support)

National Science Foundation WHERE DISCOVERIES BEGIN

