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Uncertainties

 Variation in dimensions,

material properties, and <:I Does not change
with time
other parameters

O Stochastic loadings
including wind, river, wave <:| Vary with time
loadings

Effects on the design

O System response varies with time (i.e. time-dependent characteristics)
O The longer the time interval, the lower the reliability

O Time-dependent reliability analysis methods need to be employed

Limit-State
Function: G=9(X) = G(t)=9(X, Y(),1)

-
L

(o

-



MISSOURI

S&T Problem statement

Time-dependent reliability: the probability that the system can still work after a certain time period

p, =Pr{G=9(X,Y(r), 7)<e, Iz €[0, T]}
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Challenges:

- Statistical characteristics of the response change with time
- More computationally expensive than the traditional reliability analysis

Significances

0.999 ¢

- Directly related to lifecycle cost optimization and maintenance
- Essential for guaranteeing the reliability of a system
- Basis for designing high reliability into a product
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Examples

Vehicles (Mourelatos,
2011)

Alircrafts

Offshore
structures
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Focus of this work

For a special group p; =Pr{G e,z [0, T]}

of problem:
=Pr{G, ., (X) > e}
Examples:

3 |—Df0 sin(€2¢)
k,

H:(l?_‘ )
@ ~

4
(Mourelatos, 2010) (Zhang and Du, 2011) (Zang and Friswell, 2005) (Wang and Wang, 2012)

Challenges:

» Global optimization for given values of X
» Surrogate model of global extreme value response
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State of the Art

= Upcrossing rate method

-Asymptotic upcrossing rate of a Gaussian stochastic process (i.e. Lindgren
1984, Breitung 1984, 1988)

- Vector out-crossing rate using parallel approach (i.e. Hagen, 1992)

- The Rice’s formula based method (i.e. Rice, 1944, Sudret, Lemaire, 2004,
Zhang and Du, 2011)

- The joint-upcrossing rate method (i.e. Hu and Du, 2013)
= Surrogate model method

- Composite limit-state function method (i.e. Mourelatos, 2010)
- Nested extreme value response method (i.e. Wang and Wang, 2012)

= Sampling method

- Importance sampling approach (i.e. Singh and Mourelatos, 2011)
- Markov Chain Monte Carlo method (i.e. Wang and Mourelatos, 2013)
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A Mixed EGO-Based Method

Overview

Existing Methods New Method

Repeatedly use EGO to get
extreme values of
responses

Sample on X
Given X, sample on t

Not efficient

Proposed a mixed EGO
method to identify extreme
values

Sample on X and t
simultaneously

More efficient

» EGO -- Efficient global optimization (i.e. Jones, 1998) is an efficient sampling based

method for global optimization
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Tteration one

Efficient Global Optimization e
For a given X=x: G (X) = max {g(x, 7)} "o
7e[0,T] omb Y
Algorithm 1 Efficient Global Optimization (EGO) =T \\._
1 Generate initial samples x° =[x¥;x7;---:x'¥] s I R =
2 Compute ¥ =[g(x™).g(x®).... g(x®)] : set - . | meeeswo .
m=1 oozt - ?—::::;f:ﬂ 1
3  While {m=1} or { m_aéc.EI(x) < g5} do oot s e
Construct a Kriging model y = g(X) using N 4.::: / - S——— .
{I: . }.-"} 002~ |
Find ‘}: - Tal, !ﬁ+m—l{g(xm )} j:: : i
6 Search for x*™ — arg max El(x) . where EI(x) 0053 2 25 3 25
is computed by Eq. (4)
7 Scale mag:EI(x)=1m§; El(x) | ,8[1]| . where
B(1) 1s the first element of the trend coefficients
P givenin Eq (1) =
8 Compute g(x**™) : update
N (E+m) 5 _ - k) E :
¥ =Dy eGT] and X~ xT -Slebal< 1 . . .
9 m=m+1 L TUMNUL 5 25 ] 3 as
10 End While maximurn N
EI(x) = (44(x) f%[
\ -n04 - _* ;%;qum \\\‘_‘
Culrrtgnt best Mean and standard s , e
solution deviation of prediction : =, "‘5
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Independent EGO

Algorithm 2 Independent EGO method

]

10

Generate initial training points x° = [x¥: xP: ... x®]
Solve for ¥im =[Zume(EP). Zee &9, -, G &™) .
where g (x?) = r&&fl{g(x{ﬂﬁ 1)} , usmg EGO; set
m=1 |

While {m=1} or {%EE:T»-ISE(I) < & 1+ do

Construct a Kriging model ¥ =g__ (X) using

X, Yo

Find x*™ =arg I‘IE{{{MSE(I}}

Search for g,__ (x*™) = max {g(x*™™ 1)} using EGO

fE[rD, Ils ]
Update x° =[x":x*™] and v =[vi..g..x"™)]
m=m+1
End While

Reliability analysisusing ¥, =g__ (X)

Similar method: the nested extreme method (Wang and
Wang, 2012)

= EGO needs to be performed
independently and repeatedly for
each training point of X

= Mean Square Error (MSE) is used
for convergence study of the
surrogate model

Can be improved from the following
two aspects:

= Reduce the number of function
evaluations required by global
optimizations

= Change the update criterion for
training points

10
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Mixed EGO From the same
model G=g(X, t)

0.15

0.1f

0.05

-0.15¢

-0.2

Multiple independent EGOs under Multiple independent EGOs
different values of x

» Independently constructing surrogate models g(x4, t), g(x,, 1), ..., 9(X,, t) ignored
the correlations between these surrogate models

» The ignored information can reduce the number of function evaluations required
11
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Mixed EGO

Algorithm 3 Mixed EGO model for initial ¥ =g, (X)

10
11

12

At mitial training points,
y* =" | - =[§r(1m= fm)h L
Set x; =x", m=1, and the initial current best

compute

solution vector v, =V’
While {m=1}or {I <5} do
Construct Kriging model ¥=g(X ) using
{x.€Ly"}
Find a pommt with maximum  EL
[ F]= arg max :@g[lrf;g]{EI(xm.- £)}} . where

ipe[l. . k] and EI(x".f) is computed

based on F=g(X 1) calculate

Lo =EIG™. %) /| B, @] -

Compute ™ = g(x'®_ ¢¥)

Update current best solution
) e e

Vo) ={y;i )

Update data points ¥ —[x':x*]
t* =[t"; ], and ¥ =[y".»"]
m=m+1
End While
Record v, . [x;.t'].and ¥’

Construct ¥ =g (X) using {x° v,

= Construct surrogate model for g(X, t) instead
of g(Xy, 1), g(X,, 1), ..., g(X,, t) independently

= Sampling for variables X and t
simultaneously

» Modify the updating criterion of original EGO

o [HO-Y MOy
EN(t) = (u(t) y)‘D{ o (1) j“’(m{ o (t) ]

() ) _ M +y_ " px?, )y
EI(x™, t) = (u(x", 1) yi)q)[ a(x", 1) j

p(x®, 1) - y?j

a(x®,t)

+o(x?, t)q{
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Reliability analysis with mixed EGO

[ Xfl) Xél) e Xr(11)1 t(l) |
(2) (2) (2) (2)
.y >(1 X2 te X y t S i i I
Initial Samples: X, =[X*, t']=||". . " yo=[y T =[g(xY, t)].,
(k) (k) (k) (k)
X Xy -

NE Mixed EGO (x) Kriging

> gmax > Gmax = g\max (X) >
S S
> Updated data of x;and Y —> E
Two Purposes:

= Generate more training points near the limit state
= Use available data of X; and y° to reduce the number of function evaluations

required to identify the Jmx (X" ) corresponding to the new training point X™"
13
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For Purpose 1: Generate new training points

= Kriging model based method

- Efficient Global Reliability Analysis (EGRA) method proposed by Bichon,
Mahadevan, and et.al. (i.e. Bichon, Mahadevan, and et.al., 2008)

- AK-MCS method developed after the EGRA method (i.e. Echard. Gayton, and
Lemaire, 2011)

- Dubourg and Sudret integrated the importance sampling approach with the
AK-MCS method (i.e. Dubourg and Sudret, 2013)

= Support vector machine based method

- Generate explicit decision functions using SVM (i.e. Basudhar and Missoum,
2008)

- Further improved in 2010 (i.e. Basudhar and Missoum, 2010)

Note: In this work, the EGRA method is employed, but it is not limited to the EGRA
method. Other methods, such as AK-MCS, the SVM-based method can be used as
well. 14
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Efficient Global Reliability Analysis (EGRA) (i.e. Bichon 2008)

oo [ 2O =Y pO-y
EI(t) = (u(t) y)q’[ o(t) ]MW( o (t) j

EF(x) = (u (x)—e){m{e_”@l(x)]_q{e‘ﬂg(X)J_q)(e*—ﬂg(X)ﬂ
g (%) o, (X) o, (X)
e—u, (X)) (e —p(X)) e —u(X)
_Gg(x)[2¢( o (9 j ¢( o (0 j ¢{ o (9 H
ez
o, (X) o,(X)
> ldentify the point that is close to the limit state as the new training point

» Use the similar principle as the mixed EGO to identify the extreme value
corresponding to the new training point

15
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For Purpose 2: Use of available data

Algorithm 4 _Sampling update

Y e {po1) or (i EF ) < 57 o . =|ntegrated the proposed
3: C{':ns:n;c; a Kriging model of ¥, =g, (X) using mlxed EGO methOd Wlth
Y ey ™™ ™| EGRA (ie. available EGRA method
5: Generate a :;ew random ¢, that follows umform BIChOﬂ, 2008) .
distribution on [r,.1,] = Used available data to
6: Compute VE =g 1) : Update
= =[x x™P1¢ <[t £,] and ¥ =[y".»%] reduce the number Of
T Set you(krp)=y and g=1 " Used the available : luati :
g While {g=1} or {!ﬁgzﬂ{s‘“?’,r‘) <&g ) do B data fI’Om m|Xed EGO fU nCtlon eva UatlonS reqUIred
- onstruct an m+1 JiusrETTSTon igmng mode .. . .
’ T og0% 1 e iy for initial surrogate to identify the extreme value
10: Find a  point maximum  EL m Od e I

=~ g . ). where EXGE,0) 3 corresponding to the new

computed basedon ¥ =g(X. 1)

11 Scale El(xﬁ""].rH)=EI(1ﬁ+"':'.rEI).-"|,G(1[}(l}| ) M0d|f|ed EGO tralnlng pOInt

where f, (1) 1s the first element of the trend }= for the new . Updated the data Set

coefficients of ¥ = g(X ) model

12 Compute y% = g(=**7_ ¢5) training point . -
13: Update current best solution Ite ratlve Iy
Vi (e p)= Jrl‘l-‘EI, ity =i (k+p)
e [im(k+p).  otherwise
14: Update data pointsx’ =[x} x*#'] ¢ =[t': ],
¥ =¥ »"]
15: g=g+1 -
te EndWhie Updated data set
17 Record y... ¥ =[x stff-m], for next global
18:  p=-p+l optimization 16

19:  End While
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Summary

« Mixed EGO reduces the functioncall required for the global optimization
 EGRA reduces the number of training points needed for surrogate model
* Principle of mixed EGO method further improves the efficiency of global

Table 1 Major Procedure of EGORA

Step 1: Initial sampling

1. Generate mital samples ' and

Step 21: Build initial extreme response model (Algorithm 3)

2. Buld time-dependent swrogate model F=g(X.1)

3. Solve for the maximmum responses ¥ at x° based on
¥=g(X.0)

4. Buld mfial extreme respense model ¥ =g, (X)

Step 3: Update extreme response model (Algorithm 4)

5. Addmmg new samples of X though updatmg and using
F=g(X0)

6. Obtamn finalmodel ¥ =g, (X)

Step 4: Reliabilitv analysis

7. Monte Carlo simmlation basedon ¥ =g (X).

optimization with new training points
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Example 1
y(X, t) = ———sin(2.5X) cos(t +0.4)? |:> X ~N(10,0.5%) tell, 2.5]
X“+4
0.014 T T T T T T
0.014 : : : : : — °
oozl 0.012} .
- o g 0
E 0.01} o é 0.01} o ]
E 0.008} o % 0.008} o ]
E fo) § o)
£ 0008} = 0.006f 1
E £
£ o I= o
5 0.004f 2 o0.004} i
0.002} o . g 0.002 o i
o o
0") ! ! ! ! ! ! O"\ ! ! ! ! ! !
0 0002 0004 0006 0008 00L 0012 0014 0 0.002 0004 0006 0008 00l 0012 0014
True Ymax True Ymax
Number of NOF
« Same samples of X samples of X Independent EGO Mixed EGO
and same |:> 10 85 49
convergence criterion = = 09
9 18 153 66

e=1x10"° 20 170 69
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A Vibration Problem

Amplitude of vibration of mass m1

o sin(§2 12
|_. k, q — f szgz +(k, — ngz)z
k /NN e 020 (K, — mQF — Q) + (koM — (k, — M) (K, — m,2%))?
m, m,
— F— Nondimensionalized s
e ok k1 1)
’ K, = (c202% + (k, — m,?Y?)
Vaniable Mean STD Distnbution
K, = c2Q%(k, — mQ? —m,Q%)?
ko (Nm)  3x108 210" Normal
_ 2 (k _mO2\k 2
T R C— Ky = (komyQ? — (k, — m2%)(k, — m, %))
k, (N/m) B.5x10° 0 Detemumstic  Probability of failure over a certain excitation frequency:
m (kg) 430 0 Deterministic
o Msm) 300 0 Deterministic p; (8, 28) = Pr{g(X, 2) > 31, 32 <8, 28]}
. Number of NOF 7
2| sa;.uples of X Nested - Mixed EGO TeSt the
- - - - efficiency of the
o 110 2142 513 mixed EGO
- 140 2663 588 _
1wl Method NOF Dy (Xlo_i) Error (%) ] o
Rice 34235 0 100 Test the efficiency
1 fndependent 2663 39 20 - of the mixed
ot - - S EGORA 704 3.25 0 EGO+EGRA
) 2 MCS 1107 325 NA | 19
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A Mechanism Example
Fy

Vaniable Mean STD Distribution
L, (mm) 100 0.05 Normal
L, (mm) 55.5 0.05 Normal
L, (mm) 1441 0.05 Normal
L, (mm) 72.5 0.05 Mormal

L J

FEETE -

&(X, 1) = 2arctan
F-D

—Eix/E2+D2—F2j

—(60° +60° sin[0.75(t —97°)])

Differences between designed
function output and the actual
function output over a certain

design region:

Probability of failure over the D, (t,,t.) = Pr{e(X, 7) > 0.75,37 € [97°, 217°]}

design region:

Method NOF p; (x107)  Error (%)
Rice 21677 1.986 10.86
Independent
.
EGO 181 2.231 1.3
EGORA 123 2.231 1.3
MCS 5%10° 2.228 N/A

20
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* Proposed a mixed-EGO method for global optimizations in
the time-dependent reliability analysis

 Integrated the proposed mixed-EGO method with the EGRA
method, which further improves the efficiency of reliability
analysis

 Demonstrated the effectiveness of the proposed method
using numerical examples

Future Works

* Time-dependent reliability analysis based design optimization
IS one of the future works

» Test the proposed method with high-dimensional problems is
also one of the future works
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