

A Mixed Efficient Global Optimization (m-EGO) Based Time-Dependent Reliability Analysis Method

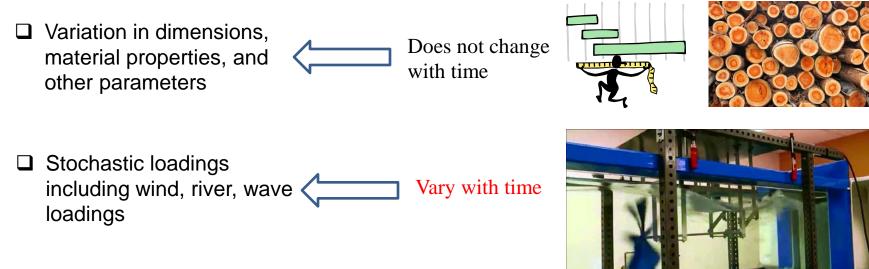
ASME 2014 IDETC/CIE 2014 Paper number: DETC2014-34281

Zhen Hu, Ph.D. Candidate Advisor: Dr. Xiaoping Du Department of Mechanical and Aerospace Engineering Missouri University of Science and Technology, Rolla, MO, 65409

- Problem statement
- Mixed Efficient Global Optimization (m-EGO)
- Time-Dependent Reliability Analysis with m-EGO
- Numerical Examples
- Conclusion and future works

Problem statement

Uncertainties

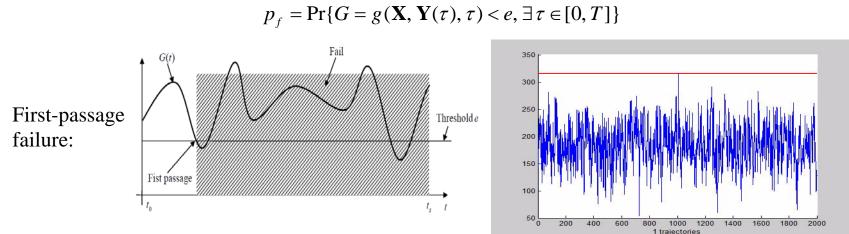


Effects on the design

- □ System response varies with time (i.e. time-dependent characteristics)
- □ The longer the time interval, the lower the reliability
- □ Time-dependent reliability analysis methods need to be employed

Limit-State Function: $G = g(\mathbf{X}) \implies G(t) = g(\mathbf{X}, \mathbf{Y}(t), t)$

Time-dependent reliability: the probability that the system can still work after a certain time period

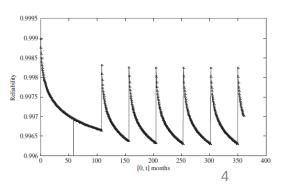


Challenges:

- Statistical characteristics of the response change with time
- More computationally expensive than the traditional reliability analysis

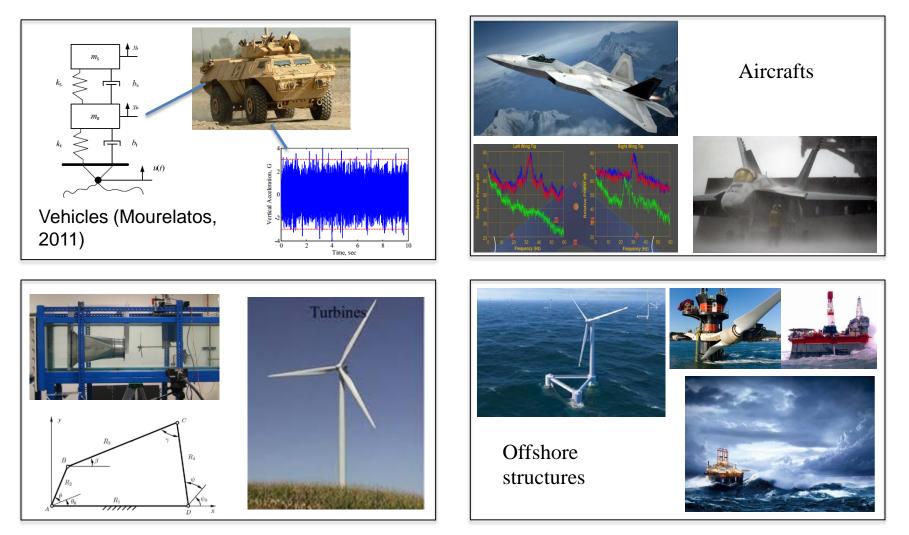
Significances

- Directly related to lifecycle cost optimization and maintenance
- Essential for guaranteeing the reliability of a system
- Basis for designing high reliability into a product



Problem statement

Examples

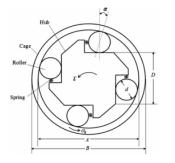


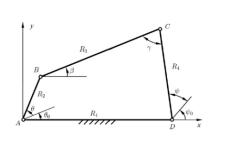
Problem statement

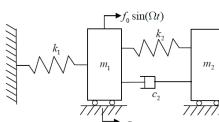
Focus of this work

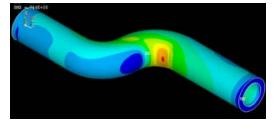
For a special group $p_f = \Pr\{G = g(\mathbf{X}, \tau) > e, \exists \tau \in [0, T]\}$ of problem: $= \Pr\{G_{\max}(\mathbf{X}) > e\}$

Examples:









(Mourelatos, 2010)

(Zhang and Du, 2011)

(Zang and Friswell, 2005)

(Wang and Wang, 2012)

Challenges:

- Global optimization for given values of X
- Surrogate model of global extreme value response

State of the Art

Upcrossing rate method

-Asymptotic upcrossing rate of a Gaussian stochastic process (i.e. *Lindgren* 1984, *Breitung* 1984, 1988)

- Vector out-crossing rate using parallel approach (i.e. Hagen, 1992)

- The Rice's formula based method (i.e. Rice, 1944, Sudret, Lemaire, 2004, Zhang and Du, 2011)

- The joint-upcrossing rate method (i.e. Hu and Du, 2013)

Surrogate model method

- Composite limit-state function method (i.e. Mourelatos, 2010)
- Nested extreme value response method (i.e. Wang and Wang, 2012)

Sampling method

- Importance sampling approach (i.e. Singh and Mourelatos, 2011)
- Markov Chain Monte Carlo method (i.e. Wang and Mourelatos, 2013)

<u>Overview</u>

Existing Methods	New Method
 Repeatedly use EGO to get extreme values of responses Sample on <i>X</i> Given <i>X</i>, sample on <i>t</i> Not efficient 	 Proposed a mixed EGO method to identify extreme values Sample on <i>X</i> and <i>t</i> simultaneously More efficient

EGO -- Efficient global optimization (i.e. Jones, 1998) is an efficient sampling based method for global optimization

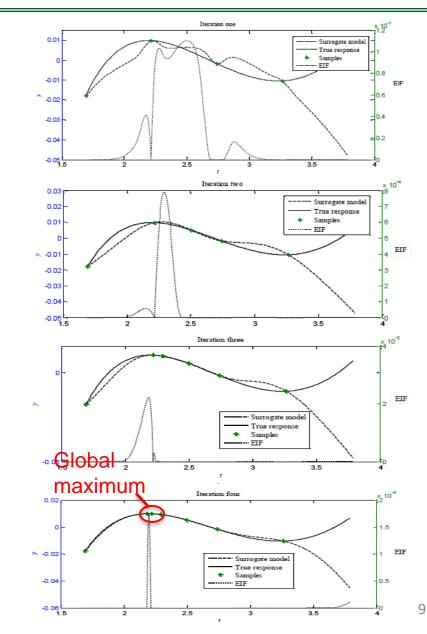
Efficient Global Optimization

For a given X=x:
$$G_{\max}(\mathbf{x}) = \max_{\tau \in [0,T]} \{g(\mathbf{x}, \tau)\}$$

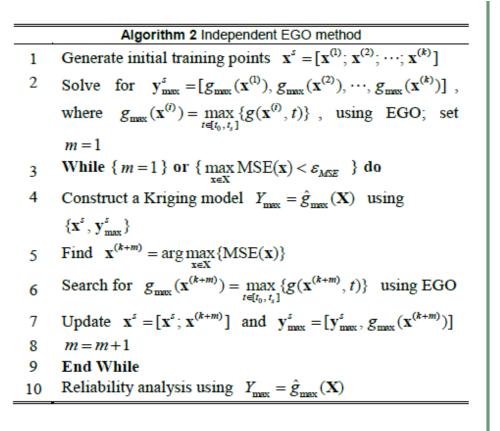
Algorithm 1 Efficient Global Optimization (EGO) Generate initial samples $\mathbf{x}^{s} = [\mathbf{x}^{(1)}; \mathbf{x}^{(2)}; \dots; \mathbf{x}^{(k)}]$ 1 Compute $y^{s} = [g(x^{(1)}), g(x^{(2)}), \dots, g(x^{(k)})]$; set 2 m = 1While $\{m=1\}$ or $\{\max_{x \in EI}(x) < \varepsilon_{EI}\}$ do 3 Construct a Kriging model $\hat{y} = \hat{g}(\mathbf{X})$ using 4 $\{x^{i}, y^{i}\}$ Find $y^* = \max_{i=1, 2, \dots, k+m-1} \{g(\mathbf{x}^{(i)})\}$ 5 Search for $x^{(k+m)} = \arg \max_{x \in X} EI(x)$, where EI(x)6 is computed by Eq. (4) 7 Scale $\max_{x \in X} EI(x) = \max_{x \in X} EI(x) / |\beta(1)|$, where $\beta(1)$ is the first element of the trend coefficients β given in Eq. (1) Compute $g(\mathbf{x}^{(k+m)})$; update 8 $y^{s} = [y^{s}, g(x^{(k+m)})]$ and $x^{s} = [x^{s}; x^{(k+m)}]$ 9 m = m + 110 End While $+\sigma(\mathbf{x})\phi\left(\frac{\mu(\mathbf{x})-\mathbf{y'}}{\sigma(\mathbf{x})}\right)$ $EI(x) = (\mu(x) -$

Current best solution

Mean and standard deviation of prediction



Independent EGO

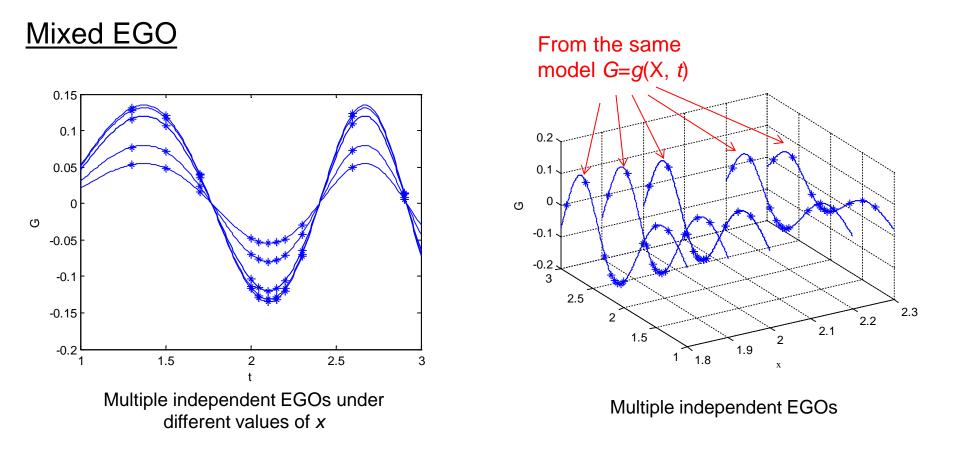


Similar method: the nested extreme method (*Wang and Wang*, 2012)

- EGO needs to be performed independently and repeatedly for each training point of X
- Mean Square Error (MSE) is used for convergence study of the surrogate model

Can be improved from the following two aspects:

- Reduce the number of function evaluations required by global optimizations
- Change the update criterion for training points



- Independently constructing surrogate models $g(x_1, t)$, $g(x_2, t)$, ..., $g(x_n, t)$ ignored the correlations between these surrogate models
- The ignored information can reduce the number of function evaluations required

A Mixed EGO-Based Method

Mixed EGO

-	Algorithm 3 Mixed EGO model for initial $Y_{\text{max}} = \hat{g}_{\text{max}}(\mathbf{X})$
1	At initial training points, compute
•	$\mathbf{y}^{s} = [y^{(i)}]_{i-1,\dots,k} = [g(\mathbf{x}^{(i)}, t^{(i)})]_{i-1,\dots,k}$
2	Set $x_t^s = x^s$, $m = 1$, and the initial current best
2	-
	solution vector $y_{max}^{5} = y^{5}$
3	While $\{m=1\}$ or $\{I_{\max} < \varepsilon_{EI}\}$ do
4	Construct Kriging model $Y = \hat{g}(\mathbf{X}, t)$ using
	$\{[\mathbf{x}_{t}^{s}, \mathbf{t}^{s}], \mathbf{y}^{s}\}$
5	Find a point with maximum EI:
	$[\mathbf{x}^{(i_{\text{EI}})}, t^{\text{EI}}] = \underset{i=1, 2, \dots, k}{\operatorname{arg max}} \{ \max_{t \in [t_0, t_s]} \{ \text{EI}(\mathbf{x}^{(i)}, t) \} \}, \text{ where }$
	$i_{\text{EI}} \in [1,, k]$ and $\text{EI}(\mathbf{x}^{(i)}, t)$ is computed
	based on $Y = \hat{g}(\mathbf{X}, t)$; calculate
	$I_{\max} = \mathrm{EI}(\mathbf{x}^{(i_{\mathrm{EI}})}, t^{\mathrm{EI}}) / \left \beta_{(\mathbf{x}, t)}(1) \right .$
6	Compute $y^{\text{EI}} = g(\mathbf{x}^{(i_{\text{EI}})}, t^{\text{EI}})$
7	Update current best solution
	$y_{\max}^{s}(i_{\text{EI}}) = \begin{cases} y^{\text{EI}} & \text{if } y^{\text{EI}} > y_{\max}^{s}(i_{\text{EI}}) \\ y_{\max}^{s}(i_{\text{EI}}) & \text{otherwise} \end{cases}$
	$y_{\text{max}}^{\text{max}}(i_{\text{EI}}) = \begin{cases} y_{\text{max}}^{\text{s}}(i_{\text{Tr}}) & \text{otherwise} \end{cases}$
8	Update data points $\mathbf{x}_t^s = [\mathbf{x}_t^s; \mathbf{x}^{(i_{\text{EI}})}]$,
	$\mathbf{t}^{s} = [\mathbf{t}^{s}; t^{EI}], \text{ and } \mathbf{y}^{s} = [\mathbf{y}^{s}, y^{EI}]$
9	m = m + 1
10	End While
11	Record y_{max}^{s} , $[x_{t}^{s}, t^{s}]$, and y^{s}
12	Construct $Y_{\text{max}} = \hat{g}_{\text{max}}(\mathbf{X})$ using $\{\mathbf{x}^s, \mathbf{y}_{\text{max}}^s\}$

- Construct surrogate model for $g(\mathbf{X}, t)$ instead of $g(x_1, t), g(x_2, t), \dots, g(x_n, t)$ independently
- Sampling for variables X and t simultaneously
- Modify the updating criterion of original EGO

$$EI(t) = (\mu(t) - y^*)\Phi\left(\frac{\mu(t) - y^*}{\sigma(t)}\right) + \sigma(t)\phi\left(\frac{\mu(t) - y^*}{\sigma(t)}\right)$$
$$EI(\mathbf{x}^{(i)}, t) = (\mu(\mathbf{x}^{(i)}, t) - y_i^*)\Phi\left(\frac{\mu(\mathbf{x}^{(i)}, t) - y_i^*}{\sigma(\mathbf{x}^{(i)}, t)}\right)$$
$$+ \sigma(\mathbf{x}^{(i)}, t)\phi\left(\frac{\mu(\mathbf{x}^{(i)}, t) - y_i^*}{\sigma(\mathbf{x}^{(i)}, t)}\right)$$

Reliability analysis with mixed EGO

Initial Samples:
$$\mathbf{x}_{t}^{s} = [\mathbf{x}^{s}, \mathbf{t}^{s}] = \begin{bmatrix} x_{1}^{(1)} & x_{2}^{(1)} & \cdots & x_{n}^{(1)}, & t^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} & \cdots & x_{n}^{(2)}, & t^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{(k)} & x_{2}^{(k)} & \cdots & x_{n}^{(k)}, & t^{(k)} \end{bmatrix} \quad \mathbf{y}^{s} = [y^{(i)}]_{i=1,\dots,k} = [g(\mathbf{x}^{(i)}, t^{(i)})]_{i=1,\dots,k}$$

$$\mathbf{x}^{s} \xrightarrow{\text{Mixed EGO}} g_{\max}(\mathbf{x}^{s}) \xrightarrow{\text{Kriging}} G_{\max} = \hat{g}_{\max}(\mathbf{X}) \xrightarrow{\text{Solution}} \mathbf{y}^{s} \xrightarrow{\text{Solution}} \mathbf{y}^{s$$

Two Purposes:

- Generate more training points near the limit state
- Use available data of \mathbf{x}_t^s and \mathbf{y}^s to reduce the number of function evaluations required to identify the $g_{\max}(\mathbf{x}^{new})$ corresponding to the new training point \mathbf{x}^{new}

For Purpose 1: Generate new training points

Kriging model based method

- Efficient Global Reliability Analysis (EGRA) method proposed by Bichon, Mahadevan, and *et.al.* (i.e. Bichon, Mahadevan, and et.al., 2008)

- AK-MCS method developed after the EGRA method (i.e. Echard. Gayton, and Lemaire, 2011)

- Dubourg and Sudret integrated the importance sampling approach with the AK-MCS method (i.e. Dubourg and Sudret, 2013)

Support vector machine based method

- Generate explicit decision functions using SVM (i.e. *Basudhar and Missoum, 2008*)

- Further improved in 2010 (i.e. *Basudhar and Missoum, 2010*)

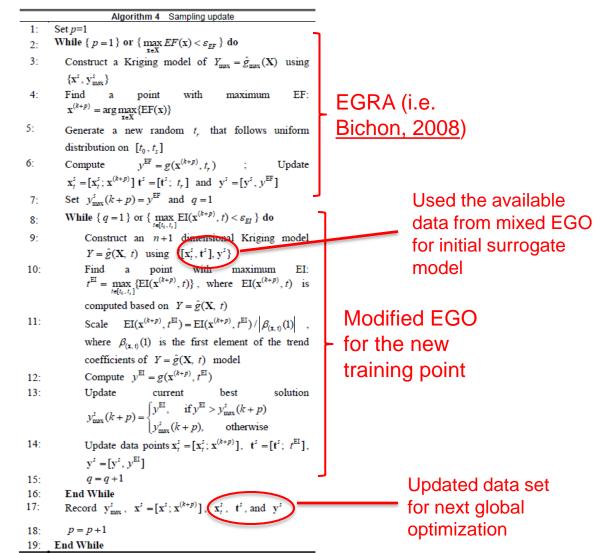
Note: In this work, the EGRA method is employed, but it is not limited to the EGRA method. Other methods, such as AK-MCS, the SVM-based method can be used as well.

Efficient Global Reliability Analysis (EGRA) (i.e. Bichon 2008)

$$\begin{split} \mathrm{EI}(t) &= (\mu(t) - y^{*}) \Phi\left(\frac{\mu(t) - y^{*}}{\sigma(t)}\right) + \sigma(t) \phi\left(\frac{\mu(t) - y^{*}}{\sigma(t)}\right) \\ &= \left(\mu_{g}(\mathbf{x}) - e\right) \left[2 \Phi\left(\frac{e - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) - \Phi\left(\frac{e^{-} - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) - \Phi\left(\frac{e^{+} - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) \right] \\ &- \sigma_{g}(\mathbf{x}) \left[2 \phi\left(\frac{e - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) - \phi\left(\frac{e^{-} - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) - \phi\left(\frac{e^{+} - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) \right] \\ &+ \delta\left[\Phi\left(\frac{e^{+} - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right) - \Phi\left(\frac{e^{-} - \mu_{g}(\mathbf{x})}{\sigma_{g}(\mathbf{x})}\right)\right] \right] \end{split}$$

- Identify the point that is close to the limit state as the new training point
- Use the similar principle as the mixed EGO to identify the extreme value corresponding to the new training point

For Purpose 2: Use of available data



 Integrated the proposed mixed EGO method with available EGRA method

 Used available data to reduce the number of function evaluations required to identify the extreme value corresponding to the new training point

 Updated the data set iteratively

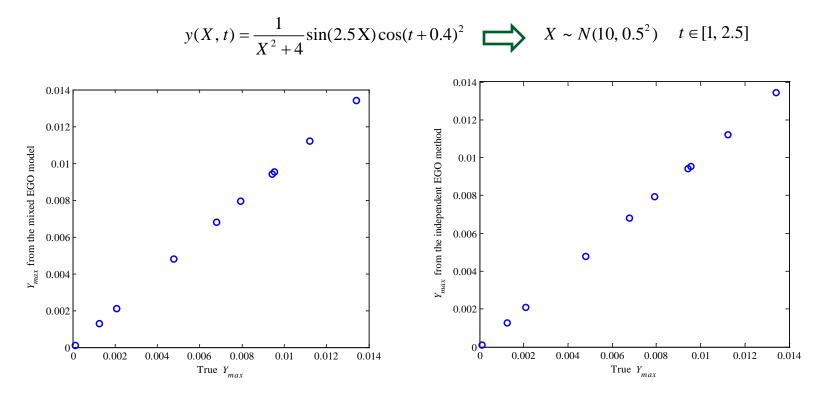
Summary

Table 1 Major Procedure of EGORA

Step 1: Initial sampling

- 1. Generate initial samples x' and t'
- Step 2: Build initial extreme response model (Algorithm 3)
- 2. Build time-dependent surrogate model $Y = \hat{g}(\mathbf{X}, t)$
- Solve for the maximum responses Y_{max} at x^{*} based on Y = ĝ(X,t)
- 4. Build initial extreme response model $Y_{max} = \hat{g}_{max}(\mathbf{X})$
- Step 3: Update extreme response model (Algorithm 4)
- 5. Adding new samples of X though updating and using $Y = \hat{g}(X, t)$
- 6. Obtain final model $Y_{\text{max}} = \hat{g}_{\text{max}}(\mathbf{X})$
- Step 4: Reliability analysis
- 7. Monte Carlo simulation based on $Y_{\text{max}} = \hat{g}_{\text{max}}(\mathbf{X})$.
- Mixed EGO reduces the functioncall required for the global optimization
- EGRA reduces the number of training points needed for surrogate model
- Principle of mixed EGO method further improves the efficiency of global optimization with new training points

Example 1

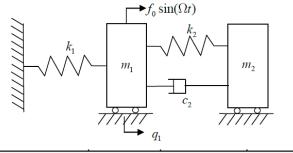


• Same samples of **X** and same convergence criterion $\varepsilon = 1 \times 10^{-5}$

NOF		
Independent EGO	Mixed EGO	
85	49	
127	59	
153	66	
170	69	
	Independent EGO 85 127	

Examples

A Vibration Problem



Variable	Mean	STD	Distribution
k ₁ (N/m)	3×10 ⁶	2×104	Normal
<i>m</i> ₁ (kg)	1.6×104	2×10 ²	Normal
k ₂ (N/m)	8.5×104	0	Deterministic
<i>m</i> ₂ (kg)	480	0	Deterministic
c ₂ (Ns/m)	300	0	Deterministic

Amplitude of vibration of mass m1

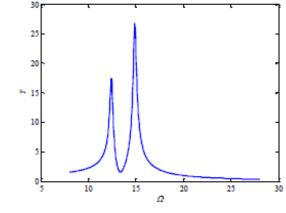
$$q_{1\max} = f_0 \left(\frac{c_2^2 \Omega^2 + (k_2 - m_2 \Omega^2)^2}{c_2^2 \Omega^2 (k_1 - m_1 \Omega^2 - m_2 \Omega^2)^2 + (k_2 m_2 \Omega^2 - (k_1 - m_1 \Omega^2) (k_2 - m_2 \Omega^2))^2} \right)^{1/2}$$

Nondimensionalized

$$Y = g(\mathbf{X}, \Omega) = k_1 \left(K_1 / \left(K_2 + K_3^2 \right) \right)^{1/2}$$
$$K_1 = \left(c_2^2 \Omega^2 + (k_2 - m_2 \Omega^2)^2 \right)$$
$$K_2 = c_2^2 \Omega^2 (k_1 - m_1 \Omega^2 - m_2 \Omega^2)^2$$
$$K_3 = \left(k_2 m_2 \Omega^2 - (k_1 - m_1 \Omega^2) (k_2 - m_2 \Omega^2) \right)$$

Probability of failure over a certain excitation frequency:

$$p_f(8, 28) = \Pr\{g(\mathbf{X}, \Omega) > 31, \exists \Omega \in [8, 28]\}$$



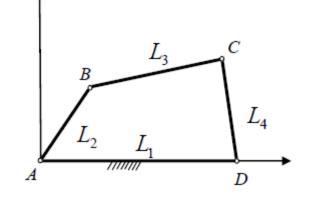
Number of	NOF		
amples of X	Nested Mi		ixed EGO
30	579	•	156
80	1521	·	482
110	2142		513
140	2663		588
Method	NOF	$p_f (\times 10^{-5})$	Error (%)
Rice	34235	0	100
Independent EGO	2663	3.9	20
EGORA	704	3.25	0
MCS	1×10 ⁹	3.25	N/A

Test the efficiency of the mixed EGO

Test the efficiency of the mixed EGO+EGRA

Examples

A Mechanism Example



Mean	STD	Distribution
100	0.05	Normal
55.5	0.05	Normal
144.1	0.05	Normal
72.5	0.05	Normal
	100 55.5 144.1	100 0.05 55.5 0.05 144.1 0.05

$$\varepsilon(\mathbf{X}, t) = 2 \arctan\left(\frac{-E \pm \sqrt{E^2 + D^2 - F^2}}{F - D}\right)$$

$$-(60^o + 60^o \sin[0.75(t - 97^o)])$$

Differences between designed function output and the actual function output over a certain design region:

Probability of failure over the design region:

 $p_f(t_0, t_s) = \Pr{\{\varepsilon(\mathbf{X}, \tau) > 0.75, \exists \tau \in [97^\circ, 217^\circ]\}}$

Method	NOF	p_f (×10 ⁻¹)	Error (%)
Rice	21677	1.986	10.86
Independent EGO	181	2.231	1.3
EGORA	123	2.231	1.3
MCS	5×10 ⁸	2.228	N/A

- Proposed a mixed-EGO method for global optimizations in the time-dependent reliability analysis
- Integrated the proposed mixed-EGO method with the EGRA method, which further improves the efficiency of reliability analysis
- Demonstrated the effectiveness of the proposed method using numerical examples

Future Works

- Time-dependent reliability analysis based design optimization is one of the future works
- Test the proposed method with high-dimensional problems is also one of the future works

- National Science Foundation through grant CMMI 1234855
- The Intelligent Systems Center at the Missouri University of Science and Technology.

Thank You

