A Physics-Based Method for System Reliability Prediction in Early Design Stage

Zhengwei Hu, Ph.D. student Xiaoping Du, Professor Department of Mechanical and Aerospace Engineering

Founded 1870 | Rolla, Missouri

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Acknowledgements

• The National Science Foundation through grants CMMI 1300870 and CMMI 1234855.

Outline

- Background
- Review of system reliability
- Proposed method
- Numerical example
- Conclusions and future work

Introduction: Reliability in Early Design

- Conceptual design generates, evaluates, and selects design concepts.
- One important criterion is product (system) reliability.
- Predicting system reliability is hard in early design stage.

Systems with Outsourced Components

- It is now a common practice to have components from suppliers.
- Auto suppliers' contribution (in terms of value)
	- 56% in 1985
	- 82% now

Kallstrom, H. (2015)

Challenges

- To accurately predict system reliability, system designers need to know details about the component designs.
- But the component details are proprietary to the component designers.

Objective of This Research

- Explore the feasibility of accurate system reliability prediction in early design stage.
	- without revealing proprietary component design details
		- Materials
		- Concrete structures
		- Dimensions
	- using a physics-based approach
	- focusing on static problems (no time involved)

Review of System Reliability

• Series systems

Assumption of independent component states

$$
R_s = \prod_{i=1}^{n} R_i, \qquad R: Reliability
$$

In mechanical applications, component states are likely dependent, leading to large errors.

System Reliability Bounds

- $\prod_{i=1}^n R_i$ $\sum_{i=1}^{n} R_i \leq R_S \leq \min\{R_i\}$
- Speed reducer example
	- If $R_i = 0.9999$
	- Then $0.9976 \le R_s \le 0.9999$
- Shortcomings:
	- Wide bounds
	- Conservative lower bound
	- Hard to make decisions

Proposed Method

- At the system design level, accurately predict system reliability for systems whose components share the same system load
	- Use a physics-based method
	- Request more information about component reliabilities without revealing proprietary component details

Component Reliabilities Requested by System Designers

- Reliability function of the *i*-th component $R_i(l_i)$ $(i = 1,2,\cdots,n)$ w.r.t. component load l_i
- Or probability of failure $p_{fi}(l_i) = 1 - R_i(l_i)$
- $R_i(l_i)$ can be obtained at different load levels from
	- Testing
	- Field data
	- Physics-based approach (structural reliability analysis)
- Note that a component may have multiple failure modes. $0\frac{1}{2000}$ 2000 $0\frac{1}{4000}$ 6000 8000

Information Available to System Designers

- Component probabilities of failure $p_{fi}(l_i)$
- Distribution of the system load L
- Relationship between system load and component loads $L_i = w_i L$
- Now L_i is a random variable.

• Construct component limit-state functions

$$
Y_i = S_i - w_i L
$$

- S_i is the generalized strength of component *i*.
- $-S_i$ is usually a function of component details (material properties, dimensions, etc.) (We will see this in the example.)
- No component details appear explicitly.
- When $Y_i = S_i w_i L < 0$, component *i* fails.

- System load L and generalized component strengths S_i are independent.
- We can prove that the cumulative distribution function (CDF) of S_i is the component probability of failure function, namely,

$$
F_{Si}(s) = p_{fi}(s), F = CDF
$$

- Then the joint CDF of all random variables $\mathbf{Z} = (S_1, \dot{S}_2, \cdots, S_n, L)$ is known. $F_{\mathbf{Z}}(\mathbf{z}) = F_L(l) \left[\begin{array}{c} F_{S_i}(s_i) \end{array} \right]$ n_{\cdot}
- $l=1$ • The joint probability density function (PDF) of all random variables $f_{\mathbf{Z}}(\mathbf{z})$ is also known.

• System probability of failure

$$
p_{fs} = \Pr\left\{\bigcup_{i=1}^{n} Y_i = S_i - w_i L < 0\right\}
$$

$$
p_{fs} = \int_{s_i - w_i l < 0} f_{\mathbf{Z}}(\mathbf{z}) d\mathbf{z}
$$
\n
$$
\mathbf{z} = (s_1, s_2, \cdots, s_n, l)
$$

• We can use Monte Carlo simulation, First/Second Order Reliability Method (FORM/SORM), Saddlepoint approximations, etc.

Example

- A system consists of two components that are independently designed and manufactured by two suppliers.
- System designers request component reliability functions.

Component Reliability Analysis Performed by Supplier One

- Supplier one uses physics-based approach.
- There are two failure modes and then two limit-state functions.

- S_{v1} is the yield strength, RV
- S_{v2} is the yield strength, RV
- l_1 is the load
- a_1 , a_2 , d_1 , and d_2 are dimensions, RVs
- RV: random variable

Component 1

Component Reliability Analysis Performed by Supplier One

• By changing l_1 , component designers calculate component reliability with

Component Reliability Analysis Performed by Supplier Two

• Limit-state function for component Two

$$
Y_{21} = \tau - \frac{4l_2 D \left(\frac{4(D-d)}{\sqrt{4D-4d}} + \frac{0.615d}{D}\right)}{\pi d^3}
$$

 τ is the allowable shear stress

- Now system designers have the following information
	- Distribution of system load $L{\sim}N(1200, 250^2)$ N
	- Probability of failure function of component 1 $p_{f1}(l_1)$
	- Probability of failure function of component 2 $p_{f2}(l_2)$
- They then construct limit-state functions
	- $-Y_1 = S_1 w_1 L$
	- $-Y_2 = S_2 w_2L$
	- From force analysis, $w_1 = 1$, and $w_2 = 0.5$
	- CDFs: $F_{S1}(s) = p_{f1}(s)$, and $F_{S2}(s) = p_{f2}(s)$
- They then calculate the probability of system failure $Pr{Y_1 < 0 \cup Y_2 < 0}$

Summary of component and system analyses

sharing load are automatically considered.

Result

- Independent component assumption: large error
- Proposed method: small error
- True value: result obtained as if all the original limit-state functions are known.

Conclusions

- It is possible to accurately predict system reliability of a new product during the early design stage.
- Component limit-state functions could be reconstructed using component reliability functions with respect to component load.
- The dependency of components could be considered automatically.
- Component reliability functions can be generated in different ways.

Future Work

- Extend the proposed method into parallel systems and mix systems.
- Consider more complex situations where more system loads are applied.
- Extend the method to time-dependent reliability problems.

CDF of Strength of Component *i*

- $p_{fi}(l_i) = Pr{S_i < l_i}$
- $p_{fi}(s_i) = Pr{S_i < s_i} = F_{si}(s_i) = CDF \text{ of } S_i$