

ASME 2015 IDETC/CIE Paper number: DETC2015-46162

Extreme Value Metamodeling for System Reliability with Time-Dependent Functions

Zhifu Zhu, Xiaoping Du Missouri University of Science and Technology

Outline

- Objective
- Background
 - Time-dependent system reliability
 - Kriging model
 - Mixed Efficient Global Optimization (mEGO)
- Mixed System EGO (mSEGO)
- Example
- Conclusions

Objective

• Objective

Develop a new time-dependent system reliability method

A series system

A parallel system Two parallel subsystems in series

Time-Dependent System Reliability

The limit-state function of failure mode *i*

$$Y_i = g_i(\mathbf{X}, t), t \in [t_0, t_s]$$

 $Y_i > 0$ leads to a failure.

Probability of failure

$$p_f^i(t_0, t_s) = \Pr\{g_i(\mathbf{X}, t) > 0, \exists t \in [t_0, t_s]\}$$

For a series system, the system probability of failure

$$p_f^S(t_0, t_s) = \Pr\{g_1(\mathbf{X}, t) > 0 \bigcup g_2(\mathbf{X}, t) > 0 \bigcup \cdots \\ \bigcup g_n(\mathbf{X}, t) > 0, \ \exists \ t \in [t_0, t_s]\}$$

Extreme Values

$$p_{f}^{s}(t_{0}, t_{s}) = \Pr\{\max_{i=1,2,\dots,n} g_{i}(\mathbf{X}, t) > 0, \exists t \in [t_{0}, t_{s}]\}$$
$$= \Pr\{\max_{t \in [t_{0}, t_{s}]} \max_{i=1,2,\dots,n} g_{i}(\mathbf{X}, t) > 0\}$$

Let extreme values be

$$Y_i^{\max} = g_i^{\max}(\mathbf{X}) = \max_{t \in [t_0, t_s]} g_i(\mathbf{X}, t)$$

Therefore

$$p_f^S(t_0, t_s) = \Pr\left\{\max_{i=1, 2, \cdots, n} \left(Y_i^{\max}\right) > 0\right\}$$

We create surrogate models for Y_i^{max}

Surrogate Modeling-Kriging Model

• Kriging prediction and variance for $g(\mathbf{x})$

 $\hat{y} = \hat{g}(\mathbf{x}) \sim N(\mu_g(\mathbf{x}), \sigma_g^2(\mathbf{x}))$

- Our problem: build \hat{Y}_i^{max} for $g_i(\mathbf{X},t), (i = 1, 2, \dots, n)$
- Solution: mixed Efficient Global Optimization^[1] (mEGO)

mEGO method has two major advantages:

- 1) Sample variables **X** and *t* simultaneously.
- 2) Use AK-MCS^[2] to improve efficiency.

[1] Hu, Z., and Du, X., 2015, "Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis," Journal of Mechanical Design.

[2] Echard, B., etc., 2011, "AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation," Structural Safety.

mEGO Procedures

- For each point of \mathbf{x}_{MCS} , find the global maximum response over $[t_0, t_s]$ using *EI*.
- \mathbf{x}_{new}^* is a point from \mathbf{x}_{MCS} with minimum U value.

U-function defined by AK-MCS

$$U_{\hat{g}^{\max}(\mathbf{X})} = \frac{\left| \mu_{\hat{g}^{\max}(\mathbf{X})} \right|}{\sigma_{\hat{g}^{\max}(\mathbf{X})}}$$

Indicate the accuracy of Kriging model at the limit-state.

mEGO is only for component

Proposed Method (mSEGO)

For a series system, the composite prediction μ^{*} ^[3] is

$$\mu^*(\mathbf{x}) = \max(\hat{g}_i^{max}(\mathbf{x}))$$

High efficiency

- Sample **X** and t simultaneously
- Check component contributions

[3] Bichon,B.J. et al., 2011, "Efficient surrogate models for reliability analysis of systems with multiple failure modes".

Missouri University of Science and Technology $% \mathcal{T}_{\mathcal{T}}$

Variable	Mean (mm)	Standard deviation (mm)	Distribution
X _c	100	0.5	Normal
X_1	150	0.75	Normal
X_2	250	1.25	Normal
X_3	200	1.0	Normal

$$\theta_1 = \omega t, \, \theta_2 = \omega t - \frac{\pi}{6}, \, \theta_3 = \omega t - \frac{\pi}{3}.$$

Component probabilities of failure

Motion outputs

$$S_i = X_c \cos \theta_i + \sqrt{X_i^2 - (X_c \sin \theta_i)^2}$$

Required motion outputs

$$S_{R_i} = \mu_c \cos \theta_i + \sqrt{\mu_i^2 - (\mu_c \sin \theta_i)^2}$$

The motion errors

$$\Delta S_i = \left| S_{R_i} - S_i \right|$$

$$Y_i = g_i(\mathbf{X}, t) = \begin{vmatrix} (X_c - \mu_c) \cos \theta_i + \\ \sqrt{X_i^2 - (X_c \sin \theta_i)^2} - \sqrt{\mu_i^2 - (\mu_c \sin \theta_i)^2} \end{vmatrix} - \varepsilon_i$$

Allowable motion errors: $\varepsilon_i = 4.8, 5.5, 5.2$ mm.

System probability of failure $p_f^{S} = \Pr\left\{Y_1^{max} > 0 \bigcup Y_2^{max} > 0 \bigcup Y_3^{max} > 0\right\}$

Missouri University of Science and Technology $% \mathcal{T}_{\mathcal{T}}$

Motion error of mechanism 1 at point (100.5, 150.0) and (100.5, 151.0) mm

Extreme motion error of mechanism 1

Results

Time interval [0, 2π] second is divided into 360 time instants. For MCS, 10⁶ samples are generated at each time instant.

Method	p_f	Error (%)	Function calls
MCS	1.76E-4	N/A	(3.6, 3.6, 3.6)×10 ⁸
mSEGO	1.71E-4	2.95%	(268, 365, 261)

Conclusions

mSEGO method works well for the following systems:

- Limit-state functions are explicit functions of time .
- No stochastic processes in the input variables.
- Components of system can be in series, parallel, or their combination.

Future Work

- Share the training points and their responses among the components.
- Use adaptive convergence criterion for the *EI* for the extreme responses.

Acknowledgement

- National Science Foundation through grant CMMI 1234855
- The Intelligent Systems Center (ISC) at the Missouri University of Science and Technology