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X: Random variables;  Y: Stochastic processes 



Problem Statement 
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• Response of subsystem i 
( ) ( , , ( ), ( ), ( ))i Zi s i s i iZ t g t t t•= X X Y Y L

Since the involvement of stochastic processes, the responses 
are time-dependent random variables, calculating the reliability 
is difficult. 

0 0( , ) Pr{ ( ) ( , , ( ), ( ), ( )) , [ , ]}s i Zi s i s i i sR t t Z t g t t t e t t t•= = < ∀ ∈X X Y Y L

• Time-dependent reliability over  0[ , ]st t

• Inputs:  
X: Random variables 
Y: Stationary stochastic processes 

L: Linking variables 
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 Upcrossing rate methods 
   -Asymptotic upcrossing  rate of a Gaussian stochastic process (i.e. Lindgren 1984, 
Breitung 1984, 1988) 
   - Vector out-crossing rate using parallel approach (i.e. Hagen, 1992) 
   - The Rice’s formula based method (i.e. Rice, 1944, Sudret, Lemaire, 2004, Hu and 
Du, 2012) 
   - The joint-upcrossing rate method (i.e. Hu and Du, 2013) 

 Surrogate model methods 
   - Composite limit-state function method (i.e. Mourelatos, 2011) 
   - Nested extreme value response method (i.e. Wang and Wang, 2014) 
   - Mixed Efficient Global Optimization method (i.e. Hu and Du, 2015) 

 Sampling methods 
   - Importance sampling approach (i.e. Singh and Mourelatos, 2011) 
   - Markov Chain Monte Carlo method (i.e. Wang and Mourelatos, 2013) 
   - Sampling of extreme value distribution (i.e. Hu and Du, 2013) 
 These methods are for components and may not be applicable for 

multidisciplinary systems. 

Time-Dependent Reliability Methods 
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• Approximate a response w.r.t. X by FORM and SORM at MPP 

• Then the response is 

      a linear stationary Gaussian process (FORM), or  

      a quadratic stationary Gaussian process (SORM) 

• Use MCS 

Proposed Method 
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Optimization[1] 
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[1] Du, X., Guo, J., and Beeram, H., 2008, "Sequential optimization and reliability assessment for 
multidisciplinary systems design," Structural and Multidisciplinary Optimization. 

Step 1 − MPP Search 

Failure constraint  

Coupling between subsystems 
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Step 2 − Approximation 
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The Expansion Optimal Linear Estimation (EOLE) method[2]. 
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[2] Li, C. C., Kiureghian, A. D., 1993, "Optimal discretization of random fields," Journal of 
Engineering Mechanics. 

Step 3 − Simulation 

iV    are independent standard normal random variables;      and      are the 
eigenvalues and eigenvectors of the matrix    , respectively. 
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( )1 2,U t tρ                is the autocorrelation function of        . ( )U t



Examples 
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Two examples are solved using: 

1. Proposed method based on FORM (FORM-MCS) 

2. Proposed method based on SORM (SORM-MCS) 

3. Upcrossing rate method (Upcrossing) 

4. Direct MCS with the original limit-state function (MCS) 
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For subsystem 1 
2
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For subsystem 2 
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The autocorrelation coefficient 
function of  1( )Y t

         is a correlation length. 

For MCS, Time interval          is 
divided into 200 time instants and 
106 samples are generated at 
each time instant. 

Limit state   22e =

[0,10]
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Example 2 
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System structure of the compound cylinders 



Example 2 
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Conclusions 
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• A reliability analysis method for time-dependent multidisciplinary 
system with stationary stochastic processes is developed. 

• The results of the examples showed the efficiency and accuracy 
of the proposed method. 

Future Work 
• Explicit functions of time 

• Non-stationary processes 

• Higher efficiency 
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