System Reliability Analysis with Dependent Component Failures during Early Design Stage

Yao Cheng and Xiaoping Du Department of Mechanical and Aerospace Engineering

Founded 1870 | Rolla, Missouri

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

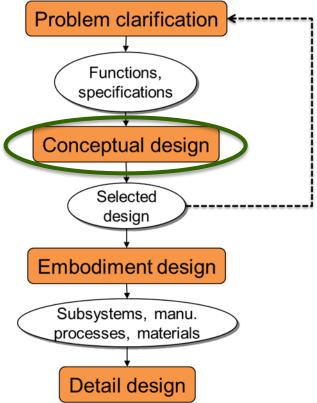
Outline

- Introduction
- Approaches
- Results
- Future work
- Conclusions

Introduction

Objective

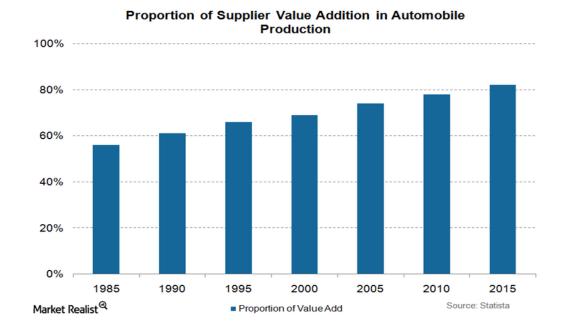
Predict system reliability quantitatively with dependent component failures in product early design stage


Background

What is reliability?

Reliability is the <u>probability</u> that a product performs its <u>intended function</u> under <u>specified conditions</u> during <u>a</u> <u>specified period of time</u>.

Why reliability prediction in early design stages?

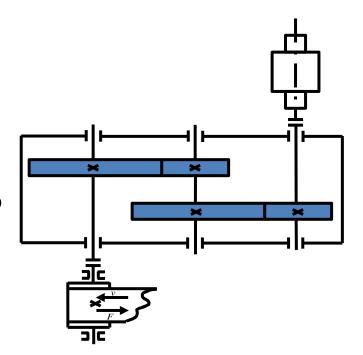

- High reliability
- High robustness
- High safety
- High availability
- Low risk
- Low cost

Background cont.

Why consider dependent component failures?

- It is not necessary to design all the components for a new product.
- Components can be provided by outside suppliers.
- Example in auto suppliers' contribution (in terms of value)
 - 56% in 1985

• 82% now


Kallstrom, H. (2015)

Background cont.

• System reliability from independent component assumption in series system

$$\prod_{i=1}^{n} R_{i} \le R_{s} \le \min\{R_{i}\}, i = 1, ..., n$$

- Speed reducer example
 - If $R_i = 0.9999$
 - $-0.9976 \le R_s \le 0.9999$
- The reliability bounds are too wide to make decisions; the lower bound is too conservative.
- We need to consider component dependency.

Challenge

Consider component dependence with limited information to system designers:

- Known component reliabilities
- Known distribution of the system load
- Unknown details of component design

Approaches

- Use physics-based approaches
- Consider the system load *L* shared by components; in the component design
 - Limit state function: $Y_i = S_{R,i} w_i L$
 - $-S_{R,i}$: generalized strength
 - $-w_i$: constant, $L_i = w_i L$
- System reliability is then $R_s = \Pr(Y_1 > 0, Y_2 > 0, \dots, Y_n > 0) = \Pr(\mathbf{Y} > 0)$
- Use joint distribution to represent component dependence

Optimization Model

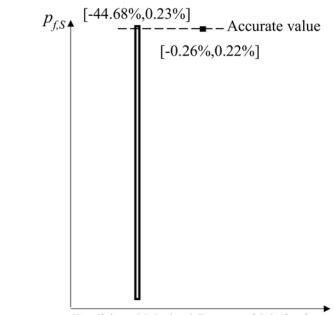
- Objective: $\min R_S \operatorname{or} \max R_S$
- Design variables: distribution parameters Find $\mathbf{d} = \{$ unknown distribution parameters of $S_{R,i} \}$
- Constraints
 - Component reliabilities
 - Range of factors of safety
 - Other
- Solution: bounds [*R_{S,min}*, *R_{S,max}*]

 $\begin{aligned} & \min_{\mathbf{d}} R_{s}(\mathbf{d}; \mu_{L}, \sigma_{L}) \\ & \text{subject to} \\ & h_{i}(\mathbf{d}; \mu_{L}, \sigma_{L}) = \Phi \left(-\frac{w_{i}\mu_{L} - \mu_{S_{R,i}}}{\sqrt{\sigma_{S_{R,i}}^{2} + (w_{i}\sigma_{L})^{2}}} \right) = R_{i}, \ i = 1, 2, ..., n \\ & g_{i}(\mathbf{d}; \mu_{L}, \sigma_{L}) = n_{s,i}^{\min} - \frac{\mu_{S_{R,i}}}{w_{i}\mu_{L}} \leq 0, \\ & g_{i+n}(\mathbf{d}; \mu_{L}, \sigma_{L}) = \frac{\mu_{S_{R,i}}}{w_{i}\mu_{L}} - n_{s,i}^{\max} \leq 0, \\ & g_{i+2n}(\mathbf{d}; \mu_{L}, \sigma_{L}) = c_{i}^{\min} - \frac{\sigma_{S_{R,i}}}{\mu_{S_{R,i}}} \leq 0, \\ & g_{i+3n}(\mathbf{d}; \mu_{L}, \sigma_{L}) = \frac{\sigma_{S_{R,i}}}{\mu_{S_{R,i}}} - c_{i}^{\max} \leq 0, \end{aligned}$

Results

Three components sharing same load

Component 1 Component 2 Component 3


 $L \longleftarrow C_1 \qquad C_2 \qquad C_3 \longrightarrow L$

Information to system designers

Known information	Value	
Probability of component failure $p_{f,1}$	9.920×10 ⁻⁵	
Probability of component failure $p_{f,2}$	1.2696×10 ⁻⁴	
Probability of component failure $p_{f\beta}$	3.87×10 ⁻⁶	
Distribution of system load L	$N(2000, 200^2)$ kN	
Factor of safety for component 1 $n_{s,1}$	[1.5,2.5]	
Factor of safety for component 2 $n_{z,2}$	[1.5,2.5]	
Factor of safety for component 3 $n_{z,3}$	[1.5,2.5]	
Coefficient of variation of resistance of component 1 c_1	[0.08, 0.20]	
Coefficient of variation of resistance of component 2 $c_{\scriptscriptstyle 2}$	[0.08, 0.20]	
Coefficient of variation of resistance of component 3 c_3	[0.08, 0.20]	

Results cont.

	Methods	Bounds of $p_{f,s}$	Interval width	
The bounds	Traditional method	[1.2696, 2.3002]×10 ⁻⁴	1.0306×10^{-4}	The bounds
are much	Proposed method	[2.2891, 2.30]×10 ⁻⁴	0.0109×10^{-4}	do contain
narrower	Exact	2.2950×10 ⁻⁴		exact value

Traditional Method Proposed Method

Future Work

Extend this study in the following aspects:

- Reliability analysis for parallel and mix systems
- Develop the relationship between factor of safety and reliability
- Generate a general stress strength interference model in conceptual design stage
- Predict system reliability for a given period of time

Conclusions

- It is necessary to consider component dependent failures in system reliability analysis.
- It is possible to accurately predict system reliability with component dependence using physics-based methodologies.
- Our proposed method has a potential to be applied widely in the future.

National Science Foundation CMMI 1300870

Thank you! Q&A