

ASME 2015 IMECE Paper number: IMECE2015-53441

Time-Dependent Reliability Analysis for Bivariate Responses

Zhen Hu¹, Zhifu Zhu², Xiaoping Du² ¹ Vanderbilt University ² Missouri University of Science and Technology

Outline

- Objective
- Time-dependent System Reliability
- Proposed Method
- Examples
- Conclusions

Objective: Develop a new time-dependent system reliability method for bivariate responses that are general functions of random variables, stochastic processes and time.

Major contribution: Derivation of bivariate joint outcrossing rate.

MISSOUR

Time-Dependent System Reliability

The limit-state function of failure mode i

 $G_i = g_i(\mathbf{X}, \mathbf{Y}(t), t)$

X : random variables; $\mathbf{Y}(t)$: stochastic processes.

Probability of failure

$$p_{f,i}(t_0, t_s) = \Pr\{g_i(\mathbf{X}, \mathbf{Y}(t), t) > e_i, \exists t \in [t_0, t_s]\}$$

 e_i : failure threshold of component *i*

Time-Dependent System Reliability

Let Ω_s be the safe region for a system. For a series system

$$\Omega_s = \left\{ [\mathbf{X}, \mathbf{Y}(t)] \Big| \bigcap_{i=1}^r g_i(\mathbf{X}, \mathbf{Y}(t), t) < e_i, \forall t \in [t_0, t_s] \right\}$$

For a parallel system

$$\boldsymbol{\Omega}_{s} = \left\{ \left[(\mathbf{X}, \mathbf{Y}(t)) \middle| \bigcup_{i=1}^{r} g_{i}(\mathbf{X}, \mathbf{Y}(t), t) < e_{i}, \forall t \in [t_{0}, t_{s}] \right\}$$

The time-dependent system reliability

$$R_s(t_0, t_s) = \Pr\{[\mathbf{X}, \mathbf{Y}(t)] \in \Omega_s, \forall t \in [t_0, t_s]\}$$

Time-Dependent Reliability for Bivariate Responses

Two limit-state functions:

$$G_i = g_i(\mathbf{X}, \mathbf{Y}(t), t)$$
 and $G_j = g_j(\mathbf{X}, \mathbf{Y}(t), t)$

The joint time-dependent P_f

$$p_{f,ij}(t_0, t_s) = \Pr\{g_i(\mathbf{X}, \mathbf{Y}(\chi), \chi) > e_i \cap g_j(\mathbf{X}, \mathbf{Y}(\tau), \tau) > e_j, \exists \chi \text{ and } \tau \in [t_0, t_s]\}$$
$$p_{f,ij}(t_0, t_s) = p_{f,i}(t_0, t_s) + p_{f,j}(t_0, t_s) - p_{f,i \cup j}(t_0, t_s)$$

where

$$p_{f,i\cup j}(t_0,t_s) = \Pr\{g_i(\mathbf{X},\mathbf{Y}(\chi),\chi) > e_i \cup g_j(\mathbf{X},\mathbf{Y}(\tau),\tau) > e_j, \exists \chi \text{ and } \tau \in [t_0,t_s]\}$$

MISSOURI

Part 1: Upcrossing rate method for time-dependent component

$$p_{f,k}(t_0, t_s) = 1 - [1 - p_{f,k}(t_0)] \exp\left\{-\int_{t_0}^{t_s} v_k^+(t) dt\right\}$$

where $v_k^+(t)$ is the upcrossing rate.

Part 2: Joint Probability $p_{f,i\cup j}(t_0,t_s)$

For a series system

$$p_{f,i\cup j}(t_0,t_s) = 1 - R_{ij}(t_0) \exp\left\{-\int_{t_0}^{t_s} v_{i\cup j}^+(t)dt\right\}$$

 $R_{ij}(t_0)$: The probability that both components are safe at t0s $R_{ii}(t_0) = \Pr\{g_i(\mathbf{X}, \mathbf{Y}(t_0), t_0) \le e_i \cap g_i(\mathbf{X}, \mathbf{Y}(t_0), t_0) \le e_i\}$

 $v_{i \cup j}^+(t)$: Outcrossing rate of a series system with components *i* and *j* at time instant *t*

9

Joint Outcrossing Rate $v_{i\cup i}^+(t)$ $\Pr\left\{ \begin{bmatrix} G_i(t) < e_i \cap G_j(t) < e_j \end{bmatrix} \\ \cap \left[G_i(t + \Delta t) > e_i \cup G_j(t + \Delta t) > e_j \end{bmatrix} \right\}$ $= p_{ii}^{+-}(t) + p_{ii}^{-+}(t) + p_{ii}^{++}(t)$ $v_{i \cup i}^{+}(t) = v_{ii}^{+-}(t) + v_{ii}^{-+}(t) + v_{ii}^{++}(t)$ $v_{ij}^{+-}(t) = \lim_{\Delta t \to 0} \left(\frac{p_{ij}^{+-}(t)}{\Delta t} \right), v_{ij}^{-+}(t) = \lim_{\Delta t \to 0} \left(\frac{p_{ij}^{-+}(t)}{\Delta t} \right), v_{ij}^{++}(t) = \lim_{\Delta t \to 0} \left(\frac{p_{ij}^{++}(t)}{\Delta t} \right)$

The problem now becomes to calculate the joint uprossing rates

Joint Upcrossing Rates

FORM transforms $(\mathbf{X}, \mathbf{Y}(t))$ into standard normal random variables $\mathbf{U}(t) = (\mathbf{U}_{\mathbf{X}}, \mathbf{U}_{\mathbf{Y}}(t))$. After linearization of the limit-state function at the MPP

With the rice's formula

$$v_{ij}^{+-}(t) = \phi(\beta_{i}(t)) \int_{-\infty}^{\beta_{j}(t)} \frac{\sigma_{L_{i}|L_{i}=\beta_{i}(t), L_{j}=l_{j}}}{\sigma_{L_{j}|L_{i}=\beta_{i}(t)}} \phi\left(\frac{l_{j} - \mu_{L_{j}|L_{i}=\beta_{i}(t)}}{\sigma_{L_{j}|L_{i}=\beta_{i}(t)}}\right) H dl_{j}$$

Where H is a function of reliability indexes and their derivatives

Joint Upcrossing Rates

After obtaining $v_{ij}^{+-}(t)$, $v_{ij}^{-+}(t)$ can be easily obtained by switch the subscripts *i* and *j* for above derived equations.

We proved that when Δt becomes infinitely small

$$v_{ij}^{++}(t) = 0$$

Therefore

$$v_{i\cup j}^{+}(t) = v_{ij}^{+-}(t) + v_{ij}^{-+}(t)$$

Procedures

Missouri University of Science and Technology

A two-bar system

$$g_i(\mathbf{X}, \mathbf{Y}(t), t) = P(t) / 2 - (a_i - 2k_i t)(b_i - 2k_i t)\sigma_{bi}$$

where $\mathbf{X} = [a_1, b_1, a_2, b_2, \sigma_{b1}, \sigma_{b2}], \mathbf{Y}(t) = [P(t)].$

The auto-correlation function of P(t)

$$\rho^{P}(t_{1}, t_{2}) = \exp\left[-\frac{(t_{2} - t_{1})^{2}}{\zeta^{2}}\right], \zeta = 2 \text{ years}$$

Result of Example 1

The curve of outcrossing rate from MCS is not smooth. The noise comes from the numerical discretization of stochastic process.

The error of the new method becomes large with a longer period of time or with a larger probability of failure. The error is mainly from the assumption of independent outcrossings. It is the intrinsic drawback of the outcrossing rate method.

Missouri University of Science and Technology

The results show good accuracy of the proposed method.

θ(°)

80

90

100

110

MCS
New Method

Result of Example 2

The curve of outcrossing rate from MCS is not smooth. The noise comes from the numerical discretization of stochastic process.

The error of the new method becomes large with a longer period of time or with a larger probability of failure. The error is mainly from the assumption of independent outcrossings. It is the intrinsic drawback of the outcrossing rate method.

Conclusions

- A reliability method is proposed for a system with two response variables that are functions of random variables, stochastic processes and time.
- When the dependency between upcrossings are weak, the method has good accuracy.

Future Work

- Improve the accuracy
- Extend the method to systems with multiple responses

Acknowledgement

- National Science Foundation through grant CMMI 1234855
- The Intelligent Systems Center (ISC) at the Missouri University of Science and Technology

Thank You

Questions?