2-9. Bar *AB*, which is hung by a cable *CD*, is used to support a load. The weight of the bar is negligible. Force $P_1 \sim N(700, 55^2)$ N acts on the bar at point *B* to support the load P_2 that acts at point *A*. Assuming that the allowable normal stress of the cable is $S_a \sim N(150, 12^2)$ MPa, and that P_1 , P_2 , and S_a are independent, determine the diameter of the cable to make sure that the probability of failure is less than 10^{-4} .

Solution:

The internal force developed in cable *CD* is shown below.

$$\zeta + \Sigma M_{\rm A} = 0$$
, $F_{CD}(0.5) - P_1(1.7) = 0$, $F_{CD} = 3.4P_1$

The stress in cable CD is

$$S_{CD} = \frac{F_{CD}}{A} = \frac{3.4P_1}{A}$$

Set $Y = S_a - S_{CD}$, and then $Y \sim N(\mu_Y, \sigma_Y^2)$, where

$$\mu_{Y} = \mu_{S_{a}} - \mu_{S_{CD}} = \mu_{S_{a}} - \frac{3.4\mu_{P_{1}}}{A} = 150 \times 10^{6} - \frac{2380}{A}$$

$$\sigma_{Y} = \sqrt{\sigma_{S_{a}}^{2} + \left(\frac{3.4}{A}\right)^{2} \sigma_{p}^{2}} = \sqrt{(12 \times 10^{6})^{2} + \left(\frac{3.4}{A}\right)^{2} (55^{2})}$$

$$p_{f} = \Pr\left(Y < 0\right) = \Pr\left(\frac{Y - \mu_{Y}}{\sigma_{Y}} < \frac{-\mu_{Y}}{\sigma_{Y}}\right) = \Phi\left(\frac{-\mu_{Y}}{\sigma_{Y}}\right) < 10^{-4} = \Phi\left(-3.719\right)$$
Then, $\frac{-\mu_{Y}}{\sigma_{Y}} < -3.719$. We have $A = \frac{\pi d_{CD}^{2}}{4} > 2.45 \times 10^{-5} \,\mathrm{m}^{2} = 24.5 \,\mathrm{mm}^{2}$.

Thus, $d_{CD} > 5.59 \text{ mm}$.

Ans.