4-4. Two vertical random forces $P_1 \sim N(500, 50^2)$ lb and $P_2 \sim N(850, 60^2)$ lb act on a shaft shown in the following figure. The sleeve bearings at *A* and *B* support only vertical forces. The diameter of the shaft d = 2.5 in , and the allowable bending stress of the shaft is $S_a \sim N(18, 3^2)$ ksi . P_1 and P_2 , and S_a are independent. Determine the probability of failure of the shaft.

Solution:

The free-body diagram of this shaft is shown in Fig. 1. The shear and moment diagrams are shown in Fig. 2.

Fig. 1

Fig. 2

$$\zeta + \Sigma M_A = 0$$
, $F_B(40) - P_1(10) - P_2(30) = 0$, $F_B = 0.25P_1 + 0.75P_2$
 $\zeta + \Sigma M_B = 0$, $-F_A(40) + P_1(30) + P_2(10) = 0$, $F_A = 0.75P_1 + 0.25P_2$

As indicated on the moment diagram, $M_{\text{max}} = 2.5P_1 + 7.5P_2$.

The moment of inertia of the cross section about the neutral axis is $I = \frac{\pi}{64} d^4$.

Given
$$c = \frac{d}{2}$$
, we have
 $S_{\text{max}} = \frac{M_{\text{max}}c}{I} = \frac{(2.5P_1 + 7.5P_2)\left(\frac{d}{2}\right)}{\left(\frac{\pi}{64}d^4\right)} = \frac{(10.19)(2.5P_1 + 7.5P_2)}{2.5^3} = 1.63P_1 + 4.89P_2.$

Set $Y = S_a - S_{\text{max}}$, then $Y \sim N(\mu_Y, \sigma_Y^2)$, where

$$\mu_{Y} = \mu_{S_{a}} - \mu_{S_{max}} = \mu_{S_{a}} - 1.63\mu_{P_{1}} - 4.89\mu_{P_{2}} = 18000 - 1.63(500) - 4.89(850) = 13028.5 \text{ psi}$$

$$\sigma_{Y} = \sqrt{\sigma_{S_{a}}^{2} + (1.63)^{2} \sigma_{P_{1}}^{2} + (4.89)^{2} \sigma_{P_{2}}^{2}} = \sqrt{(3000)^{2} + (1.63)^{2} (50)^{2} + (4.89)^{2} (60)^{2}} = 3015.4 \text{ psi}$$

The probability of failure of the shaft is then given by

$$p_f = \Pr\left(Y < 0\right) = \Pr\left(\frac{Y - \mu_Y}{\sigma_Y} < \frac{-\mu_Y}{\sigma_Y}\right) = \Phi\left(\frac{-\mu_Y}{\sigma_Y}\right) = \Phi\left(-4.32\right) = 7.8 \times 10^{-6}$$
Ans.