
6-1. The internal pressure of a gas tank is $p \sim N(70, 7^2)$ psi. The tank has an internal diameter of 18 in, and the wall thickness is 0.2 in. Determine the distribution of the Hoop stress and Longitudinal stress developed at point M, which is on the wall of the tank.

Solution:

Hoop Stress: Since $\frac{r}{t} = \frac{(18/2)}{0.2} = 45 > 10$, then thin wall analysis can be used. Thus, the hoop stress is

$$s_1 = \frac{pr}{t} = 45 p$$

Since $p \sim N(70, 7^2)$ psi, s_1 also follows a normal distribution, and

$$\mu_{s_1} = 45\mu_p = 45(70) = 3150 \text{ psi}$$

 $\sigma_{s_1} = 45\sigma_p = 45(7) = 315 \text{ psi}$

Thus, s_1 follows a normal distribution $s_1 \sim N(3150, 315^2)$ psi.

Ans.

Longitudinal stress:

$$s_2 = \frac{pr}{2t} = 22.5\,p$$

Thus, s_2 also follows a normal distribution, and

$$\mu_{s_2} = 22.5\mu_p = 22.5(70) = 1575 \text{ psi}$$

 $\sigma_{s_2} = 22.5\sigma_p = 22.5(7) = 157.5 \text{ psi}$

Thus, s_2 follows a normal distribution $s_2 \sim N(1575, 157.5^2)$ psi.

Ans.