6-10. A vertical random force *P* is acting on the beam as shown in the figure. The strain in the *x* direction at point *C* is measured and follows a normal distribution $\varepsilon_x \sim N (80 \times 10^{-6}, (8 \times 10^{-6})^2)$. Determine the distribution of the force *P*. Given that the beam has a Young's modulus of $E = 29 \times 10^3$ ksi. *P* and ε_x are independent.

Solution:

Section Properties

$$I = \frac{1}{12}(8)(15^3) = 2250 \text{ in}^4 \tag{1}$$

$$Q_c = \overline{y'}A' = 6(8)(3) = 144 \text{ in}^3$$
 (2)

Normal Stress

$$\sigma = E\varepsilon_x = (29 \times 10^3)\varepsilon_x \tag{3}$$

$$\sigma = \frac{My}{I} = \frac{3(P)(12)(4.5)}{2250} = 0.072P \tag{4}$$

Thus, from equation (3) and (4), we have

$$\left(29 \times 10^3\right) \varepsilon_x = 0.072P \tag{5}$$

$$P = \left(4.03 \times 10^5\right) \mathcal{E}_x \tag{6}$$

Since $\varepsilon_x \sim N (80 \times 10^{-6}, (8 \times 10^{-6})^2)$, we have

 $\mu_P = (4.03 \times 10^5) \mu_{\varepsilon_x} = 32.24 \,\text{kip}$ ⁽⁷⁾

$$\sigma_P = \left(4.03 \times 10^5\right) \sigma_{\varepsilon_x} = 3.22 \,\mathrm{kip} \tag{8}$$

Thus, force P follows $P \sim N$ (32.24, 3.22²) kip.

Ans.