
2-3. Bar *AB*, which is hung by a cable *CD*, is used to support a load. The weight of the bar is negligible. Force $P_2 \sim N(600, 50^2)$ N acts on the bar at point *A* to support the load P_1 that acts at point *B*. Assuming that the allowable normal stress of the cable is $S_a \sim N(160, 15^2)$ MPa and that P_1 , P_2 , and S_a are independent, determine the diameter of the cable to so that the probability of failure is less than 10^{-4} . (**Ans.** $d_{CD} > 5.07$ mm)

