

3. The force acting on a beam is normally distributed with $F \sim N(800, 80^2)$ lb, find the distributions of its two components, one parallel and the other one perpendicular to the u axis.

Solution

 F_1 stands for the parallel force; F_2 stands for the perpendicular force.

For F_1

$$\mu_1 = \mu_F \sin 40^\circ = 800 \sin 40^\circ = 514.23 \text{ lb}$$

$$\sigma_1 = \sigma_F \sin 40^\circ = 80 \sin 40^\circ = 51.42 \text{ lb}$$

For F_2

$$\mu_2 = \mu_F \cos 40^\circ = 800 \cos 40^\circ = 612.84 \text{ lb}$$

$$\sigma_2 = \sigma_F \cos 40^\circ = 80 \cos 40^\circ = 61.28 \text{ lb}$$

Thus the distributions of F_1 and F_2 follow

$$F_1 \sim N(514.23, 51.42^2)$$
 lb **Ans.**

$$F_2 \sim N(612.84, 61.28^2)$$
 lb **Ans.**