3. The distribution of force P is $N(1000,50^2)$ N, and the strength of the cable is normally distributed with $T_S \sim N(2200,250^2)$ N. P and T_S are independent. Determine the distribution of the resultant force at A, and the probability of failure of the cable.

Solution

1)

$$\Sigma M_A = 0;$$
 $T(0.2 + 0.6) - P(0.9 + 0.9) = 0$

$$\Sigma F_X = 0;$$
 $A_X - T = 0$

$$\Sigma F_Y = 0;$$
 $A_Y - P = 0$

Thus

$$A_X = T = 2.25P$$

$$A_Y = P$$

$$F_A = \sqrt{(2.25P)^2 + P^2} = \sqrt{6.06P^2} = 2.46P$$

So we have

$$\mu_{F_A} = 2.46 \mu_P = 2460 \text{ N}$$

$$\sigma_{F_A} = 2.46\sigma_P = 123 \text{ N}$$

The distribution of the resultant force at A is $F_A \sim N(2460, 123^2)~\mathrm{N}$.

Ans.

2)

From 1), we know $P \sim N(1000, 50^2) \text{ N}$

$$T = 2.25P$$

 $\mu_T = 2.25 \mu_P = 2250 \text{ N}$
 $\sigma_T = 2.25 \sigma_P = 112.5 \text{ N}$

So the distribution of T is $T \sim N(2250,112.5^2)$ N. Also, we know the strength of the cable is normally distributed with $T_S \sim N(2200,250^2)$ N.

Suppose $Y = T_s - T$, we can find μ_Y and σ_Y

$$\mu_{Y} = \mu_{T_{S}} - \mu_{T} = -50 \text{ N}$$

$$\sigma_{Y} = \sqrt{\sigma_{T_{S}}^{2} + \sigma_{T}^{2}} = 274 \text{ N}$$

$$P(Y < 0) = \Phi\left(\frac{0 - \mu_{Y}}{\sigma_{Y}}\right) = \Phi\left(\frac{50}{274}\right) = 0.57$$
Ans