5. The weight of the platform assembly follows a normal distribution $F_1 \sim N(300, 5^2)$ lb. The center of gravity of the platform is at G_1 . The counterweight W_A at A is used to prevent the platform from tippling over, and its distribution is $W_A \sim N(80, 2^2)$ lb. If the load at point G_2 is 390 lb, what is the probability that the platform will tip over? F_1 and W_A are independently distributed.

When tipping occurs, $F_B = 0$

$$\sum M_c = 0$$

-F₂(3) + F₁(1.5) + W_A(8.5) = 0

From above equation, we have

Solution

$$F_2 = \frac{F_1(1.5) + W_A(8.5)}{3}$$

Given $F_1 \sim N(300, 5^2)$ lb, $W_A \sim N(80, 2^2)$ lb and they are distributed independently, μ_{F_2} and σ_{F_2} are calculated by

$$\mu_{F_2} = \frac{\mu_{F_1}(1.5) + \mu_{W_A}(8.5)}{3} = 376.67 \text{ lb}$$
$$\sigma_{F_2} = \frac{\sqrt{\sigma_{F_1}^2 (1.5)^2 + \sigma_{W_A}^2 (8.5)^2}}{3} = 6.19 \text{ lb}$$

Thus, we get $F_2 \sim N(376.67, 6.19^2)$ lb

If the platform will tip over, F_2 will be greater than the maximum load 390 lb at point G_2 , Suppose

$$Y = 390 - F_2$$

We can calculate μ_{Y} and σ_{Y} by

$$\mu_{Y} = 390 - \mu_{F_{2}} = 13.33 \text{ lb}$$

 $\sigma_{Y} = \sigma_{F_{2}} = 6.19 \text{ lb}$

Thus the probability that the platform will tip over is

$$P(Y < 0) = \Phi\left(\frac{0 - \mu_Y}{\sigma_Y}\right) = 1 - \Phi\left(\frac{3.33}{6.19}\right) = 0.0156$$
 Ans.